مطالب
مدیریت تغییرات در سیستم های مبتنی بر WCF
تشریح مسئله : در صورتی که بعد از انتشار برنامه؛ در نسخه بعدی مدل سمت سرور تغییر کرده باشد و امکان بروز رسانی مدل‌های سمت کلاینت وجود نداشته باشد برای حل این مسئله بهترین روش کدام است.
نکته : برای فهم بهتر مطالب آشنایی اولیه با مفاهیم WCF الزامی است.
ابتدا مدل زیر را در نظر بگیرید:
   [DataContract]
    public class Book 
    {
        [DataMember]
        public int Code { get; set; }

        [DataMember]
        public string Name { get; set; }             
    }
حالا یک سرویس برای دریافت و ارسال اطلاعات این مدل به کلاینت می‌نویسیم.
  [ServiceContract]
    public interface ISampleService
    {
        [OperationContract]
        IEnumerable<Book> GetAll();

        [OperationContract]
        void Save( Book book );
    }
و سرویسی که Contract بالا رو پیاده سازی کند.
public class SampleService : ISampleService
    {
        public List<Book> ListOfBook 
        {
            get; 
            private set; 
        }

        public SampleService()
        {
            ListOfBook = new List<Book>();
        }
        public IEnumerable<Book> GetAll()
        {
            ListOfBook.AddRange( new Book[] 
            {
                new Book(){Code=1 , Name="Book1"},
                new Book(){Code=2 , Name="Book2"},
            } );
            return ListOfBook;
        }

        public void Save( Book book )
        {
            ListOfBook.Add( book );
        }
    }
 متد GetAll برای ارسال اطلاعات به کلاینت و متد Save نیز برای دریافت اطلاعات از کلاینت.
حالا یک پروژه Console Application بسازید و از روش AddServiceReference سرویس مورد نظر را به Client اضافه کنید. برنامه را تست کنید. بدون هیچ مشکلی کار می‌کند.
حالا اگر در نسخه بعدی سیستم مجبور شویم به مدل Book یک خاصیت دیگر به نام Author را نیز اضافه کنیم و امکان Update کردن سرویس در سمت کلاینت وجود نداشته باشد چه اتفاقی خواهد افتاد.
به صورت زیر:
 [DataContract]
    public class Book 
    {
        [DataMember]
        public int Code { get; set; }
        [DataMember]
        public string Name { get; set; }

        [DataMember]
        public string Author { get; set; }
    }
به طور پیش فرض اگر در DataContract‌های سمت سرور و کلاینت اختلاف وجود داشته باشد این موارد نادیده گرفته می‌شوند. یعنی همیشه مقدار خاصیت Author برابر null خواهد بود.
نکته : برای Value Type‌ها مقادیر پیش فرض و برای Reference Type‌ها مقدار Null.
اگر برای DataMemberAttribute خاصیت IsRequired را برابر true کنیم از این پس برای هر درخواستی که مقدار Author  آن مقدار نداشته باشد یک Protocol Exception  پرتاب می‌شود. به صورت زیر:
[DataMember( IsRequired = true )]
public string Author { get; set; }
اما این همیشه راه حل مناسبی نیست.
روش دیگر این است که Desrialize کردن مدل را تغییر دهیم. بدین معنی که هر گاه مقدار Author برابر Null بود یک مقدار پیش فرض برای آن در نظر بگیریم. این کار با نوشتن یک متد و قراردادن OnDeserializingAttribute به راحتی امکان پذیر است. کلاس Book به صورت زیر تغییر می‌کند.
  [DataContract]
    public class Book
    {
        [DataMember]
        public int Code { get; set; }
        [DataMember]
        public string Name { get; set; }

        [DataMember( IsRequired = true )]
        public string Author { get; set; }

        [OnDeserializing]
        private void OnDeserializing( StreamingContext context )
        {
            if ( string.IsNullOrEmpty( Author ) )
            {
                Author = "Masoud Pakdel";
            }
        }
    }
حال اگر از سمت کلاینت کلاس Book دریافت شود که مقدار خاصیت Author آن برابر Null باشد توسط متد OnDeserializing مقدار پیش فرض به آن اعمال می‌شود.مثل تصویر زیر:

روش بعدی استفاده از اینترفیس IExtensibleDataObject  است. بعد از اینکه کلاس Book این اینترفیس را پیاده سازی کرد مشکل Versioning Round Trip حل می‌شود. به این صورت که سرویس یا کلاینتی که نسخه قدیمی را می‌شناسد اگر نسخه جدید را دریافت کند خصوصیاتی را که نمی‌شناسد مثل Author در خاصیت ExtensionData ذخیره می‌شود و هنگامی که کلاس Book برای سرویس یا کلاینتی که نسخه جدید را می‌شناسد DataContractSerializer اطلاعات مورد نظر را از خصوصیت ExtensionData بیرون می‌کشد و کلاس Book جدید را باز سازی می‌کند. بررسی کلاس ExtensionData توسط خود DataContractSreializer انجام می‌شود و نیاز به هیچ گونه ای کد نویسی ندارد.

[DataContract]
    public class Book : IExtensibleDataObject
    {
        [DataMember]
        public int Code { get; set; }
        [DataMember]
        public string Name { get; set; }

        [DataMember]
        public string Author { get; set; }
    
        public virtual ExtensionDataObject ExtensionData
        {
            get { return _extensionData; }
            set
            {
                _extensionData = value;
            }
        }
        private ExtensionDataObject _extensionData;
    }
اگر کد متد GetAll سمت سرور را به صورت زیر تغییر دهیم که خاصیت Author هم مقدار داشته باشد با استفاده از خاصیت ExtensionData کلاینت هم از این مقدار مطلع خواهد شد.
public IEnumerable<Book> GetAll()
        {
            ListOfBook.AddRange( new Book[] 
            {
                new Book(){Code=1 , Name="Book1", Author="Masoud Pakdel"},
                new Book(){Code=2 , Name="Book2" },
            } );
            return ListOfBook;
        }
کلاینت هم به صورت زیر :

همان طور که می‌بینید این نسخه از کلاینت هیچ گونه اطلاعی از وجود یک خاصیت به نام Author ندارد ولی از طریق ExtensionData متوجه می‌شود یک خاصیت به نام Author به مدل سمت سرور اضافه شده است.

اما در صورتی که قصد داشته باشیم که یک سرویس خاص از همان نسخه قدیمی کلاس Book استفاده کند و نیاز به نسخه جدید آن نداشته باشد می‌توانیم این کار را از طریق مقدار دهی True به خاصیت IgnoreExtensionDataObject  در ServiceBehaviorAttribute انجام داد. بدین شکل

 [ServiceBehavior( IgnoreExtensionDataObject = true )]
  public class SampleService : ISampleService
از این پس سرویس بالا از همان مدل Book بدون خاصیت Author استفاده می‌کند.

منابع :
مطالب
آشنایی با Refactoring - قسمت 14

در بسیاری از زبان‌های برنامه نویسی امکان null بودن Reference types وجود دارد. به همین جهت مرسوم است پیش از استفاده از آن‌ها، بررسی شود آیا شیء مورد استفاده نال است یا خیر و سپس برای مثال متد یا خاصیت مرتبط با آن فراخوانی گردد؛ در غیر اینصورت برنامه با یک استثناء خاتمه خواهد یافت.
مشکلی هم که با این نوع بررسی‌ها وجود دارد این است که پس از مدتی کد موجود را تبدیل به مخزنی از انبوهی از if و else ها خواهند کرد که هم درجه‌ی پیچیدگی متدها را افزایش می‌دهند و هم نگهداری ‌آن‌ها را در طول زمان مشکل می‌سازند. برای حل این مساله، الگوی استانداردی وجود دارد به نام null object pattern؛ به این معنا که بجای بازگشت دادن null و یا سبب بروز یک exception شدن، بهتر است واقعا مطابق شرایط آن متد یا خاصیت، «هیچ‌کاری» را انجام نداد. در ادامه، توضیحاتی در مورد نحوه‌ی پیاده سازی این «هیچ‌کاری» را انجام ندادن، ارائه خواهد شد.


الف) حین معرفی خاصیت‌ها از محافظ استفاده کنید.

برای مثال اگر قرار است خاصیتی به نام Name را تعریف کنید که از نوع رشته‌ است، حالت امن آن رشته بجای null بودن، «خالی» بودن است. به این ترتیب مصرف کننده مدام نگران این نخواهد بود که آیا الان این Name نال است یا خیر. مدام نیاز نخواهد داشت تا if و else بنویسد تا این مساله را چک کند. نحوه پیاده سازی آن هم ساده است و در ادامه بیان شده است:

private string name = string.Empty;
public string Name
{
    get { return this.name; }
    set
    {
        if (value == null)
        {
            this.name = "";
            return;
        }
        this.name = value;
    }
}

دقیقا در زمان انتساب مقداری به این خاصیت، بررسی می‌شود که آیا مثلا null است یا خیر. اگر بود، همینجا و نه در کل برنامه، مقدار آن «خالی» قرار داده می‌شود.

ب) سعی کنید در متدها تا حد امکان null بازگشت ندهید.

برای نمونه اگر متدی قرار است لیستی را بازگشت دهد:

public IList<string> GetCultures()
{
//...
}

و حین تهیه این لیست، عضوی مطابق منطق پیاده سازی آن یافت نشد، null را بازگشت ندهید؛ یک new List خالی را بازگشت دهید. به این ترتیب مصرف کننده دیگری نیازی به بررسی نال بودن خروجی این متد نخواهد داشت.


ج) از متدهای الحاقی بجای if و else استفاده کنید.

پیاده سازی حالت الف زمانی میسر خواهد بود که طراح اصلی ما باشیم و کدهای برنامه کاملا در اختیار ما باشند. اما در شرایطی که امکان دستکاری کدهای یک کتابخانه پایه را نداریم چه باید کرد؟ مثلا دسترسی به تعاریف کلاس XElement دات نت فریم ورک را نداریم (یا حتی اگر هم داریم، تغییر آن تا زمانیکه در کدهای پایه اعمال نشده باشد، منطقی نیست). در این حالت می‌شود یک یا چند extension method را طراحی کرد:

public static class LanguageExtender
{
public static string GetSafeStringValue(this XElement input)
{
return (input == null) ? string.Empty : input.Value;
}

public static DateTime GetSafeDateValue(this XElement input)
{
return (input == null) ? DateTime.MinValue : DateTime.Parse(input.Value);
}
}

به این ترتیب می‌توان امکانات کلاس پایه‌‌ای را بدون نیاز به دسترسی به کدهای اصلی آن مطابق نیاز‌های خود تغییر و توسعه داد.


مطالب
سرعت واکشی اطلاعات در List و Dictionary
دسترسی به داده‌ها پیش شرط انجام همه‌ی منطق‌های اکثر نرم افزار‌های تجاری می‌باشد. داده‌های ممکن در حافظه ، پایگاه داده ، فایل‌های فیزیکی و هر منبع دیگری قرار گرفته باشند.
هنگامی که حجم داده‌ها کم باشد شاید روش دسترسی و الگوریتم مورد استفاده اهمیتی نداشته باشد اما با افزایش حجم داده‌ها روش‌های بهینه‌تر تاثیر مستقیم در کارایی برنامه دارند.
در این مثال سعی بر این است که در یک سناریوی خاص تفاوت بین Dictionary و List را بررسی کنیم :
فرض کنید 2 کلاس Student  و Grade موجود است که وظیفه‌ی نگهداری اطلاعات دانش آموز و نمره را بر عهده دارند.
    public class Grade
    {
        public Guid StudentId { get; set; }
        public string Value { get; set; }

        public static IEnumerable<Grade> GetData()
        {
            for (int i = 0; i < 10000; i++)
            {
                yield return new Grade
                                 {
                                     StudentId = GuidHelper.ListOfIds[i], Value = "Value " + i
                                 };
            }
        }
    }

    public class Student
    {
        public Guid Id { get; set; }
        public string Name { get; set; }
        public string Grade { get; set; }

        public static IEnumerable<Student> GetStudents()
        {
            for (int i = 0; i < 10000; i++)
            {
                yield return new Student
                                 {
                                     Id = GuidHelper.ListOfIds[i],
                                     Name = "Name " + i
                                 };
            }
        }
    }
از کلاس GuidHelper برای تولید و نگهداری شناسه‌های یکتا برای دانش آموز کمک گرفته شده است :
    public class GuidHelper
    {
        public static List<Guid> ListOfIds=new List<Guid>();

        static GuidHelper()
        {
            for (int i = 0; i < 10000; i++)
            {
                ListOfIds.Add(Guid.NewGuid());
            }
        }
    }
سپس لیستی از دانش آموزان و نمرات را درون حافظه ایجاد کرده و با یک حلقه  نمره‌ی هر دانش آموز به Property مورد نظر مقدار داده می‌شود.

ابتدا از LINQ روی لیست برای پیدا کردن نمره‌ی مورد نظر استفاده کرده و در روش دوم برای پیدا کردن نمره‌ی هر دانش آموز از Dictionary  استفاده شده :
    internal class Program
    {
        private static void Main(string[] args)
        {
            var stopwatch = new Stopwatch();
            List<Grade> grades = Grade.GetData().ToList();
            List<Student> students = Student.GetStudents().ToList();

            stopwatch.Start();
            foreach (Student student in students)
            {
                student.Grade = grades.Single(x => x.StudentId == student.Id).Value;
            }
            stopwatch.Stop();
            Console.WriteLine("Using list {0}", stopwatch.Elapsed);
            stopwatch.Reset();
            students = Student.GetStudents().ToList();
            stopwatch.Start();
            Dictionary<Guid, string> dictionary = Grade.GetData().ToDictionary(x => x.StudentId, x => x.Value);

            foreach (Student student in students)
            {
                student.Grade = dictionary[student.Id];
            }
            stopwatch.Stop();
            Console.WriteLine("Using dictionary {0}", stopwatch.Elapsed);
            Console.ReadKey();
        }
    }
نتیجه‌ی مقایسه در سیستم من اینگونه می‌باشد :



همانگونه که مشاهده می‌شود در این سناریو خواندن نمره از روی Dictionary بر اساس 'کلید' بسیار سریع‌تر از انجام یک پرس و جوی LINQ روی لیست است.

زمانی که از LINQ on list
   student.Grade = grades.Single(x => x.StudentId == student.Id).Value;
برای پیدا کردن مقدار مورد نظر یک به یک روی اعضا لیست حرکت می‌کند تا به مقدار مورد نظر برسد در نتیجه پیچیدگی زمانی آن O n هست. پس هر چه میزان داده‌ها بیشتر باشد این روش کند‌تر می‌شود.

زمانی که از Dictonary
         student.Grade = dictionary[student.Id];
برای پیدا کردن مقدار استفاده می‌شود با اولین تلاش مقدار مورد نظر یافت می‌شود پس پیچیدگی زمانی آن O 1 می‌باشد.

در نتیجه اگر نیاز به پیدا کردن اطلاعات بر اساس یک مقدار یکتا یا کلید باشد تبدیل اطلاعات به Dictionary و خواندن از آن بسیار به صرفه‌تر است.

تفاوت این 2 روش وقتی مشخص می‌شود که میزان داده‌ها زیاد باشد.

در همین رابطه (1 ، 2

DictionaryVsList.zip
مطالب
نگاشت اشیاء در AutoMapper توسط Attribute ها #1
نگاشت اشیاء امری مفید و لذت بخش است. ولی بخاطر تنظیمات خاص آن و افزایش کدها، همیشه کمی دردسر ساز بوده است. استفاده از کلاس Profile راه کار مناسبی است؛ اما در این حالت کلاس مقصد (ViewModel) از تنظیمات نگاشت‌ها بی اطلاع می‌ماند و فقط حاوی داده خواهد بود. برای ادغام کلاس و تنظیمات نگاشت در اینجا راهکاری ارائه گردید که در ادامه و با الگو گیری از همین ایده، اقدام به ارائه‌ی روشی جدید می‌کنم که با استفاده از Attribute‌ها تنظیمات نگاشت اشیاء را در AutoMapper انجام می‌دهد.
در نهایت می‌خواهیم نگاشت‌ها را اینچنین تنظیم کنیم:
 [MapFrom(typeof (Student), ignoreAllNonExistingProperty: true, alsoCopyMetadata: true)]
 public class AdminStudentViewModel
 {
     // [IgnoreMap]
     public int Id { set; get; }

     [MapForMember("Name")]
     public string FirstName { set; get; }

     [MapForMember("Family")]
     public string LastName { set; get; }

     public string Email { set; get; }

     [MapForMember("RegisterDateTime")]
     public string RegisterDateTimePersian { set; get; }

     [UseValueResolver(typeof (BookCountValueResolver))]
     public int BookCounts { set; get; }

     [UseValueResolver(typeof (BookPriceValueResolver))]
     public decimal BookPrice { set; get; }
 };
  این سبک تنظیم کردن نگاشت‌های اشیاء به نظر بهتر از روش‌های دیگر است؛ چون کلاس‌های ویوومدل را معنادار کرده و همچنین برای برنامه نویسان EF و ASP.NET MVC استفاده‌ی از ویژگی‌ها، یک شیوه‌ی کاری معمول به حساب می‌آید. 
به تعریف و توضیح صفت‌های (ویژگی‌ها یا Attributes) مورد نیاز می‌پردازم:

صفت MapFromAttribute

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public class MapFromAttribute : Attribute
{
    public Type SourceType { get; private set; }
    public bool IgnoreAllNonExistingProperty { get; private set; }
    public bool AlsoCopyMetadata { get; private set; }    //Go to: https://www.dntips.ir/courses/topic/16/cb36bc2e-4263-431e-86a5-236322cb5576

    public MapFromAttribute(Type sourceType, bool ignoreAllNonExistingProperty = false,
        bool alsoCopyMetadata = false)
    {
        SourceType = sourceType;
        IgnoreAllNonExistingProperty = ignoreAllNonExistingProperty;
        AlsoCopyMetadata = alsoCopyMetadata;
    }
};
این صفت روی کلاس‌ها می‌نشیند و توسط آرگومان sourceType آن، نوع مبدأ را برای automapper مشخص می‌کند. در واقع همه چیز از اینجا شروع می‌شود. همچنین آرگومان ignoreAllNonExistingProperty مشخص می‌کند کلیه‌ی صفاتی که در مقصد هستند ولی معادل اسمی در مبدأ ندارند، بصورت خودکار رد (Ignore) شده و از آن‌ها صرف نظر شود تا از شکست متد AutoMapper.Mapper.AssertConfigurationIsValid جلوگیری کند (پرداخته شده در اینجا). آرگومان alsoCopyMetadata پیاده سازی نمی‌شود؛ ولی می‌تواند پرچمی باشد تا اجازه دهد  Data Annotations از مدل‌های ef به ViewModel انتقال یابند.


صفت IgnoreMapAttribute
[AttributeUsage(AttributeTargets.Property)]
public class IgnoreMapAttribute : Attribute {};
از این صفت برای رد کردن خصیصه‌‌ای در نگاشت‌ها استفاده می‌کنیم. لازم به ذکر است که صفتی مشابه در Automapper.IgnoreAttribute وجود دارد که می‌تواند به جای این صفت مورد استفاده قرار گیرد. «نگارنده جهت همخوانی با سایر صفات، اقدام به استفاده‌ی از این صفت می‌کند»


صفت MapForMemberAttribute
[AttributeUsage(AttributeTargets.Property)]
public class MapForMemberAttribute : Attribute
{
    public string MemberToMap { get; private set; }
    public MapForMemberAttribute(string memberToMap)
    {
        MemberToMap = memberToMap;
    }
};
اگر نام خصیصه‌ها در مبدأ و مقصد یکی نباشند، از این صفت برای همگام سازی این دو استفاده می‌کنیم.


صفت UseValueResolverAttribute
[AttributeUsage(AttributeTargets.Property)]
public class UseValueResolverAttribute : Attribute
{
    public IValueResolver ValueResolver { get; private set; }
    public UseValueResolverAttribute(Type valueResolver)
    {
        ValueResolver = valueResolver.GetConstructors()[0].Invoke(new object[] {}) as IValueResolver;
    }
};
استفاده از ValueResolver‌ها در اینجا ذکر شده است. از این صفت برای تنظیم این مقدار برای یک خصیصه استفاده می‌شود. برای مثال فیلد FullName را در مقصد درنظر بگیرد که از دو فیلد Name و Family در مبدأ تشکیل می‌شود.

تا اینجا صفات پیش نیاز کار فراهم شدند. حال باید این صفت‌ها را به نگاشت متناسبی در automapper تبدیل کنیم.
دریافت کدها
ادامه دارد...
نظرات مطالب
مروری سریع بر اصول مقدماتی MVVM
سلام.با تشکر از مطالب مفیدتون.راستش رو بخواین من نمیدونم باید اینجا سوالم رو مطرح کنم یانه؟چون تاپیک مرتبط‌تری پیدا نکردم.
من با الگوی MVVMکار میکنم.برای نمایش خطاهای اعتبار سنجی هم از IDataErrorInfo استفاده کردم.
مشکل من اینجاست که وقتی یک پروپرتی از نوع int رو به یکی از تکست باکسهام بایند میکنم و میخوام که کاربر مقدار اون فیلد رو همیشه پر کنه یعنی not nullable
هستش.وقتی متن داخل تکست باکس رو پاک میکنم بجای خطای در نظر گرفته شده براش عبارت زیر داخل tooltipنمایش داده میشه:
value "" could not be converted
ممنون میشم اگه راهنماییم کنین.
مطالب
اعتبارسنجی در فرم‌های ASP.NET MVC با Remote Validation

بعد از آمدن نسخه‌ی سوم ASP.NET MVC مکانیسمی به نام Remote Validation به آن اضافه شد که کارش اعتبارسنجی از راه دور بود. فرض کنید نیاز است در یک فرم، قبل از اینکه کل فرم به سمت سرور ارسال شود، مقداری بررسی شده و اعتبارسنجی آن انجام گیرد و این اعتبارسنجی چیزی نیست که بتوان سمت کاربر و بدون فرستاده شدن مقداری به سمت سرور صورت گیرد. نمونه بارز این مسئله صفحه عضویت اکثر سایت‌هایی هست که روزانه داریم با آن‌ها کار می‌کنیم. فیلد نام کاربری توسط شما پر شده و بعد از بیرون آمدن از آن فیلد، سریعا مشخص می‌شود که آیا این نام کاربری قابل استفاده برای شما هست یا خیر. به‌صورت معمول برای انجام این کار باید با جاوا اسکریپت، مدیریتی روی فیلد مربوطه انجام دهیم. مثلا با بیرون آمدن فوکوس از روی فیلد، با Ajax نام کاربری وارد شده را به سمت سرور بفرستیم، چک کنیم و بعد از اینکه جواب برگشت بررسی کنیم که الان آیا این نام کاربری قبلا گرفته شده یا نه.
انجام این کار به‌راحتی با مزین‌کردن خصوصیت (Property) مربوطه موجود در مدل برنامه به Attribute یا ویژگی Remote و داشتن یک Action در Controller مربوطه که کارش بررسی وجود یوزرنیم هست امکان پذیر است. ادامه بحث را با مثال همراه می‌کنم.
به عنوان مثال در سیستمی که قرار هست محصولات ما را ثبت کند، باید بیایم و قبل از اینکه محصول جدید به ثبت برسد این عملیات چک‌کردن را انجام دهیم تا کالای تکراری وارد سیستم نشود. شناسه اصلی که برای هر محصول وجود دارد بارکد هست و ما آن را میخواهیم مورد بررسی قرار دهیم.


مدل برنامه

    public class ProductModel
    {
        public int Id { get; set; }

        [Display(Name = "نام کالا")]
        [Required(ErrorMessage = "{0} یک فیلد اجباری است و باید آن را وارد کنید.")]
        [StringLength(50, ErrorMessage = "طول {0} باید کمتر از {1} کاراکتر باشد.")]
        public string Name { get; set; }

        [Display(Name = "قیمت")]
        [Required(ErrorMessage = "{0} یک فیلد اجباری است و باید آن را وارد کنید.")]
        [DataType(DataType.Currency)]
        public double Price { get; set; }

        [Display(Name = "بارکد")]
        [Required(ErrorMessage = "{0} یک فیلد اجباری است و باید آن را وارد کنید.")]
        [StringLength(50, ErrorMessage = "طول {0} باید کمتر از {1} کاراکتر باشد.")]
        [Remote("IsProductExist", "Product", HttpMethod = "POST", ErrorMessage = "این بارکد از قبل در سیستم وجود دارد.")]
        public string Barcode { get; set; }
    }

همونطور که می‌بینید خصوصیت Barcode را مزین کردیم به ویژگی Remote. این ویژگی دارای ورودی‌های خاص خودش هست. وارد کردن نام اکشن و کنترلر مربوطه برای انجام این چک‌کردن از مهم‌ترین قسمت‌های اصلی هست. چیزهایی دیگه‌ای هم هست که می‌توانیم آن‌ها را مقداردهی کنیم. مثل HttpMethod، ErrorMessage و یا AdditionFields. HttpMethod که همان طریقه‌ی ارسال درخواست به سرور هست. ErrorMessage هم همان خطایی هست که در زمان رخ‌داد قرار است نشان داده شود. AdditionFields هم خصوصیتی را مشخص می‌کند که ما می‌خوایم به‌همراه فیلد مربوطه به سمت سرور بفرستیم. مثلا می‌تونیم به‌همراه بارکد، نام کالا را هم برای بررسی‌های مورد نیازمان بفرستیم.


کنترلر برنامه

        [HttpPost]
        [OutputCache(Location = OutputCacheLocation.None, NoStore = true)]
        public ActionResult IsProductExist(string barcode)
        {
            if (barcode == "123456789") return Json(false); // اگر محصول وجود داشت
            return Json(true);
        }

در اینجا به نمایش قسمتی از کنترلر برنامه می‌پردازیم. اکشنی که مربوط می‌شود به چک‌کردن مقدارهای لازم و در پایان آن یک خروجی Json را برمی‌گردانیم که مقدار true یا false دارد. در حقیقت مقدار را به این صورت برمی‌گردانیم که اگر مقدار ورودی در پایگاه داده وجود دارد، false را برمی‌گرداند و اگر وجود نداشت true. همین‌طور آمدیم از کش شدن درخواست‌هایی که با Ajax آمده با ویژگی OutputCache جلوگیری کردیم.

مطالب
آشنایی با NHibernate - قسمت ششم

آشنایی با Automapping در فریم ورک Fluent NHibernate

اگر قسمت‌های قبل را دنبال کرده باشید، احتمالا به پروسه طولانی ساخت نگاشت‌ها توجه کرده‌اید. با کمک فریم ورک Fluent NHibernate می‌توان پروسه نگاشت domain model خود را به data model متناظر آن به صورت خودکار نیز انجام داد و قسمت عمده‌ای از کار به این صورت حذف خواهد شد. (این مورد یکی از تفاوت‌های مهم NHibernate با نمونه‌های مشابهی است که مایکروسافت تا تاریخ نگارش این مقاله ارائه داده است. برای مثال در نگار‌ش‌های فعلی LINQ to SQL یا Entity framework ، اول دیتابیس مطرح است و بعد ساخت کد از روی آن، در حالیکه در اینجا ابتدا کد و طراحی سیستم مطرح است و بعد نگاشت آن به سیستم داده‌ای و دیتابیس)

امروز قصد داریم یک سیستم ساده ثبت خبر را از صفر با NHibernate پیاده سازی کنیم و همچنین مروری داشته باشیم بر قسمت‌های قبلی.

مطابق کلاس دیاگرام فوق، این سیستم از سه کلاس خبر، کاربر ثبت کننده‌ی خبر و گروه خبری مربوطه تشکیل شده است.

ابتدا یک پروژه کنسول جدید را به نام NHSample2 آغاز کنید. سپس ارجاعاتی را به اسمبلی‌های زیر به آن اضافه نمائید:
FluentNHibernate.dll
NHibernate.dll
NHibernate.ByteCode.Castle.dll
NHibernate.Linq.dll
و ارجاعی به اسمبلی استاندارد System.Data.Services.dll دات نت فریم ورک سه و نیم

سپس پوشه‌ای را به نام Domain به این پروژه اضافه نمائید (کلیک راست روی نام پروژه در VS.Net و سپس مراجعه به منوی Add->New folder). در این پوشه تعاریف موجودیت‌های برنامه را قرار خواهیم داد. سه کلاس جدید Category ، User و News را در این پوشه ایجاد نمائید. محتویات این سه کلاس به شرح زیر هستند:

namespace NHSample2.Domain
{
public class User
{
public virtual int Id { get; set; }
public virtual string UserName { get; set; }
public virtual string Password { get; set; }
}
}


namespace NHSample2.Domain
{
public class Category
{
public virtual int Id { get; set; }
public virtual string CategoryName { get; set; }
}
}


using System;

namespace NHSample2.Domain
{
public class News
{
public virtual Guid Id { get; set; }
public virtual string Subject { get; set; }
public virtual string NewsText { get; set; }
public virtual DateTime DateEntered { get; set; }
public virtual Category Category { get; set; }
public virtual User User { get; set; }
}
}
همانطور که در قسمت‌های قبل نیز ذکر شد، تمام خواص پابلیک کلاس‌های Domain ما به صورت virtual تعریف شده‌اند تا lazy loading را در NHibernate فعال سازیم. در حالت lazy loading ، اطلاعات تنها زمانیکه به آن‌ها نیاز باشد بارگذاری خواهند شد. این مورد در حالتیکه نیاز به نمایش اطلاعات تنها یک شیء وجود داشته باشد بسیار مطلوب می‌باشد، یا هنگام ثبت و به روز رسانی اطلاعات نیز یکی از بهترین روش‌ها است. اما زمانیکه با لیستی از اطلاعات سروکار داشته باشیم باعث کاهش افت کارآیی خواهد شد زیرا برای مثال نمایش آن‌ها سبب خواهد شد که 100 ها کوئری دیگر جهت دریافت اطلاعات هر رکورد در حال نمایش اجرا شود (مفهوم دسترسی به اطلاعات تنها در صورت نیاز به آن‌ها). Lazy loading و eager loading (همانند مثال‌های قبلی) هر دو در NHibernate به سادگی قابل تنظیم هستند (برای مثال LINQ to SQL به صورت پیش فرض همواره lazy load است و تا این تاریخ راه استانداردی برای امکان تغییر و تنظیم این مورد پیش بینی نشده است).

اکنون کلاس جدید Config را به برنامه اضافه نمائید:

using FluentNHibernate.Automapping;
using FluentNHibernate.Cfg;
using FluentNHibernate.Cfg.Db;
using NHibernate;
using NHibernate.Cfg;
using NHibernate.Tool.hbm2ddl;

namespace NHSample2
{
class Config
{
public static Configuration GenerateMapping(IPersistenceConfigurer dbType)
{
var cfg = dbType.ConfigureProperties(new Configuration());

new AutoPersistenceModel()
.Where(x => x.Namespace.EndsWith("Domain"))
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly).Configure(cfg);

return cfg;
}

public static void GenerateDbScript(Configuration config, string filePath)
{
bool script = true;//فقط اسکریپت دیتابیس تولید گردد
bool export = false;//نیازی نیست بر روی دیتابیس هم اجرا شود
new SchemaExport(config).SetOutputFile(filePath).Create(script, export);
}

public static void BuildDbSchema(Configuration config)
{
bool script = false;//آیا خروجی در کنسول هم نمایش داده شود
bool export = true;//آیا بر روی دیتابیس هم اجرا شود
bool drop = false;//آیا اطلاعات موجود دراپ شوند
new SchemaExport(config).Execute(script, export, drop);
}

public static void CreateSQL2008DbPlusScript(string connectionString, string filePath)
{
Configuration cfg =
GenerateMapping(
MsSqlConfiguration
.MsSql2008
.ConnectionString(connectionString)
.ShowSql()
);
GenerateDbScript(cfg, filePath);
BuildDbSchema(cfg);
}

public static ISessionFactory CreateSessionFactory(IPersistenceConfigurer dbType)
{
return
Fluently.Configure().Database(dbType)
.Mappings(m => m.AutoMappings
.Add(
new AutoPersistenceModel()
.Where(x => x.Namespace.EndsWith("Domain"))
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly))
)
.BuildSessionFactory();
}
}
}

در متد GenerateMapping از قابلیت Automapping موجود در فریم ورک Fluent Nhibernate استفاده شده است (بدون نوشتن حتی یک سطر جهت تعریف این نگاشت‌ها). این متد نوع دیتابیس مورد نظر را جهت ساخت تنظیمات خود دریافت می‌کند. سپس با کمک کلاس AutoPersistenceModel این فریم ورک، به صورت خودکار از اسمبلی برنامه نگاشت‌های لازم را به کلاس‌های موجود در پوشه Domain ما اضافه می‌کند (مرسوم است که این پوشه در یک پروژه Class library مجزا تعریف شود که در این برنامه جهت سهولت کار در خود برنامه قرار گرفته است). قسمت Where ذکر شده به این جهت معرفی گردیده است تا Fluent Nhibernate برای تمامی کلاس‌های موجود در اسمبلی جاری، سعی در تعریف نگاشت‌های لازم نکند. این نگاشت‌ها تنها به کلاس‌های موجود در پوشه دومین ما محدود شده‌اند.
سه متد بعدی آن، جهت ایجاد اسکریپت دیتابیس از روی این نگاشت‌های تعریف شده و سپس اجرای این اسکریپت بر روی دیتابیس جاری معرفی شده، تهیه شده‌اند. برای مثال CreateSQL2008DbPlusScript یک مثال ساده از استفاده دو متد قبلی جهت ایجاد اسکریپت و دیتابیس متناظر اس کیوال سرور 2008 بر اساس نگاشت‌های برنامه است.
با متد CreateSessionFactory در قسمت‌های قبل آشنا شده‌اید. تنها تفاوت آن در این قسمت، استفاده از کلاس AutoPersistenceModel جهت تولید خودکار نگاشت‌ها است.

در ادامه دیتابیس متناظر با موجودیت‌های برنامه را ایجاد خواهیم کرد:

using System;

namespace NHSample2
{
class Program
{
static void Main(string[] args)
{
Config.CreateSQL2008DbPlusScript(
"Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true",
"db.sql");

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}

پس از اجرای برنامه، ابتدا فایل اسکریپت دیتابیس به نام db.sql در پوشه اجرایی برنامه تشکیل خواهد شد و سپس این اسکریپت به صورت خودکار بر روی دیتابیس معرفی شده اجرا می‌گردد. دیتابیس دیاگرام حاصل را در شکل زیر می‌توانید ملاحظه نمائید:



همچنین اسکریپت تولید شده آن، صرفنظر از عبارات drop اولیه، به صورت زیر است:

create table [Category] (
Id INT IDENTITY NOT NULL,
CategoryName NVARCHAR(255) null,
primary key (Id)
)

create table [User] (
Id INT IDENTITY NOT NULL,
UserName NVARCHAR(255) null,
Password NVARCHAR(255) null,
primary key (Id)
)

create table [News] (
Id UNIQUEIDENTIFIER not null,
Subject NVARCHAR(255) null,
NewsText NVARCHAR(255) null,
DateEntered DATETIME null,
Category_id INT null,
User_id INT null,
primary key (Id)
)

alter table [News]
add constraint FKE660F9E1C9CF79
foreign key (Category_id)
references [Category]

alter table [News]
add constraint FKE660F95C1A3C92
foreign key (User_id)

references [User]

اکنون یک سری گروه خبری، کاربر و خبر را به دیتابیس خواهیم افزود:

using System;
using FluentNHibernate.Cfg.Db;
using NHibernate;
using NHSample2.Domain;

namespace NHSample2
{
class Program
{
static void Main(string[] args)
{
using (ISessionFactory sessionFactory = Config.CreateSessionFactory(
MsSqlConfiguration
.MsSql2008
.ConnectionString("Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true")
.ShowSql()
))
{
using (ISession session = sessionFactory.OpenSession())
{
using (ITransaction transaction = session.BeginTransaction())
{
//با توجه به کلیدهای خارجی تعریف شده ابتدا باید گروه‌ها را اضافه کرد
Category ca = new Category() { CategoryName = "Sport" };
session.Save(ca);
Category ca2 = new Category() { CategoryName = "IT" };
session.Save(ca2);
Category ca3 = new Category() { CategoryName = "Business" };
session.Save(ca3);

//سپس یک کاربر را به دیتابیس اضافه می‌کنیم
User u = new User() { Password = "123$5@1", UserName = "VahidNasiri" };
session.Save(u);

//اکنون می‌توان یک خبر جدید را ثبت کرد

News news = new News()
{
Category = ca,
User = u,
DateEntered = DateTime.Now,
Id = Guid.NewGuid(),
NewsText = "متن خبر جدید",
Subject = "عنوانی دلخواه"
};
session.Save(news);

transaction.Commit(); //پایان تراکنش
}
}
}

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}
جهت بررسی انجام عملیات ثبت هم می‌توان به دیتابیس مراجعه کرد، برای مثال:



و یا می‌توان از LINQ استفاده کرد:
برای مثال کاربر VahidNasiri تعریف شده را یافته، اطلاعات آن‌را نمایش دهید؛ سپس نام او را به Vahid ویرایش کرده و دیتابیس را به روز کنید.

برای اینکه کوئری‌های LINQ ما شبیه به LINQ to SQL شوند، کلاس NewsContext را به صورت ذیل تشکیل می‌دهیم. این کلاس از کلاس پایه NHibernateContext مشتق شده و سپس به ازای تمام موجودیت‌های برنامه، یک متد از نوع IOrderedQueryable را تشکیل خواهیم داد.

using System.Linq;
using NHibernate;
using NHibernate.Linq;
using NHSample2.Domain;

namespace NHSample2
{
class NewsContext : NHibernateContext
{
public NewsContext(ISession session)
: base(session)
{ }

public IOrderedQueryable<News> News
{
get { return Session.Linq<News>(); }
}

public IOrderedQueryable<Category> Categories
{
get { return Session.Linq<Category>(); }
}

public IOrderedQueryable<User> Users
{
get { return Session.Linq<User>(); }
}
}
}
اکنون جهت یافتن کاربر و به روز رسانی اطلاعات او در دیتابیس خواهیم داشت:

using System;
using FluentNHibernate.Cfg.Db;
using NHibernate;
using System.Linq;
using NHSample2.Domain;

namespace NHSample2
{
class Program
{
static void Main(string[] args)
{
using (ISessionFactory sessionFactory = Config.CreateSessionFactory(
MsSqlConfiguration
.MsSql2008
.ConnectionString("Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true")
.ShowSql()
))
{
using (ISession session = sessionFactory.OpenSession())
{
using (ITransaction transaction = session.BeginTransaction())
{
using (NewsContext db = new NewsContext(session))
{
var query = from x in db.Users
where x.UserName == "VahidNasiri"
select x;

//اگر چیزی یافت شد
if (query.Any())
{
User vahid = query.First();
//نمایش اطلاعات کاربر
Console.WriteLine("Id: {0}, UserName: {0}", vahid.Id, vahid.UserName);
//به روز رسانی نام کاربر
vahid.UserName = "Vahid";
session.Update(vahid);

transaction.Commit(); //پایان تراکنش
}
}
}
}
}

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}
مباحث تکمیلی AutoMapping

اگر به اسکریپت دیتابیس تولید شده دقت کرده باشید، عملیات AutoMapping یک سری پیش فرض‌هایی را اعمال کرده است. برای مثال فیلد Id را از نوع identity و به صورت کلید تعریف کرده، یا رشته‌ها را به صورت nvarchar با طول 255 ایجاد نموده است. امکان سفارشی سازی این موارد نیز وجود دارد.

مثال:

using FluentNHibernate.Conventions.Helpers;

public static Configuration GenerateMapping(IPersistenceConfigurer dbType)
{
var cfg = dbType.ConfigureProperties(new Configuration());

new AutoPersistenceModel()
.Conventions.Add()
.Where(x => x.Namespace.EndsWith("Domain"))
.Conventions.Add(
PrimaryKey.Name.Is(x => "ID"),
DefaultLazy.Always(),
ForeignKey.EndsWith("ID"),
Table.Is(t => "tbl" + t.EntityType.Name)
)
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly)
.Configure(cfg);

return cfg;
}

تابع GenerateMapping معرفی شده را اینجا با قسمت Conventions.Add تکمیل کرده‌ایم. به این صورت دقیقا مشخص شده است که فیلدهایی با نام ID باید primary key در نظر گرفته شوند، همواره lazy loading صورت گیرد و نام کلید خارجی به ID ختم شود. همچنین نام جداول با tbl شروع گردد.
روش دیگری نیز برای معرفی این قرار دادها و پیش فرض‌ها وجود دارد. فرض کنید می‌خواهیم طول رشته پیش فرض را از 255 به 500 تغییر دهیم. برای اینکار باید اینترفیس IPropertyConvention را پیاده سازی کرد:

using FluentNHibernate.Conventions;
using FluentNHibernate.Conventions.Instances;

namespace NHSample2.Conventions
{
class MyStringLengthConvention : IPropertyConvention
{
public void Apply(IPropertyInstance instance)
{
instance.Length(500);
}
}
}
سپس نحوه‌ی معرفی آن به صورت زیر خواهد بود:

public static Configuration GenerateMapping(IPersistenceConfigurer dbType)
{
var cfg = dbType.ConfigureProperties(new Configuration());

new AutoPersistenceModel()
.Conventions.Add()
.Where(x => x.Namespace.EndsWith("Domain"))
.Conventions.Add<MyStringLengthConvention>()
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly)
.Configure(cfg);

return cfg;
}

نکته:
اگر برای یافتن اطلاعات بیشتر در این مورد در وب جستجو کنید، اکثر مثال‌هایی را که مشاهده خواهید کرد بر اساس نگارش بتای fluent NHibernate هستند و هیچکدام با نگارش نهایی این فریم ورک کار نمی‌کنند. در نگارش رسمی نهایی ارائه شده، تغییرات بسیاری صورت گرفته که آن‌ها را در این آدرس می‌توان مشاهده کرد.

دریافت سورس برنامه قسمت ششم


ادامه دارد ...

بازخوردهای دوره
ایجاد یک کلاس جدید پویا و وهله‌ای از آن در زمان اجرا توسط Reflection.Emit
- در متن فوق جایی عنوان نشده که تنها اگر تعداد فیلدها از قبل مشخص بود، اینکار قابل انجام است. همچنین اگر به مثال بحث دقت کنید، پارامتر name رشته‌ای است. یعنی هر نام خاصیت دلخواهی قابل تعریف است. نوع آن نیز قابل مقدار دهی و تغییر است.
- در حلقه‌ای که نوشتید، کدهای «افزودن فیلد خصوصی» مثال بحث، «تعریف خاصیت رشته‌ای نام» ، «اتصال گت متد به خاصیت رشته‌ای نام» و «تعریف بدنه گت متد» باید به ازای هر خاصیت، تکرار شوند (پارامتر name را با نام خاصیت‌ها جایگزین کنید؛ نوع آن هم قابل تغییر است). اگر set هم دارد، علاوه بر متد گت، متد set_XYZ هم باید اضافه شود و روش کار یکی است.
مطالب
خروجی Excel با حجم بالا در برنامه‌های ‌ASP.NET Core با استفاده از MiniExcel

امکان خروجی اکسل از گزارشات سیستم، یکی از بایدهای بیشتر سیستم‌های اطلاعاتی می‌باشد؛ یکی از چالش‌های اصلی در تولید این نوع خروجی، افزایش مصرف حافظه متناسب با افزایش حجم دیتا می‌باشد. از آنجایی‌که بیشتر راهکارهای موجود از جمله ClosedXml یا Epplus کل ساختار را ابتدا تولید کرده و اصطلاحا خروجی مورد نظر را بافر می‌کنند، برای حجم بالای اطلاعات مناسب نخواهند بود. راهکار برای خروجی CSV به عنوان مثال خیلی سرراست می‌باشد و می‌توان با چند خط کد، به نتیجه دلخواه از طریق مکانیزم Streaming رسید؛ ولی ساختار Excel به سادگی فرمت CSV نیست و برای مثال فرمت Excel Workbook با پسوند xlsx یک بسته Zip شده‌ای از فایل‌های XML می‌باشد.

معرفی MiniExcel

MiniExcel یک کتابخانه سورس باز با هدف به حداقل رساندن مصرف حافظه در زمان پردازش فایل‌های Excel در دات نت می‌باشد. در مقایسه با Aspose از منظر امکانات شاید حرفی برای گفتن نداشته باشد، ولی از جهت خواندن اطلاعات فایل‌های Excel با قابلیت پشتیبانی از ‌LINQ و Deferred Execution در کنار مصرف کم حافظه و جلوگیری از مشکل OOM خیلی خوب عمل می‌کند. در تصویر زیر مشخص است که برای عمده عملیات پیاده‌سازی شده، از استریم‌ها بهره برده شده است.

همچنین در زیر مقایسه‌ای روی خروجی ۱ میلیون رکورد با تعداد ۱۰ ستون در هر ردیف انجام شده‌است که قابل توجه می‌باشد:

Logic : create a total of 10,000,000 "HelloWorld" excel
LibraryMethodMax Memory UsageMean
MiniExcel'MiniExcel Create Xlsx'15 MB11.53181 sec
Epplus'Epplus Create Xlsx'1,204 MB22.50971 sec
OpenXmlSdk'OpenXmlSdk Create Xlsx'2,621 MB42.47399 sec
ClosedXml'ClosedXml Create Xlsx'7,141 MB140.93992 sec

به شدت API خوش دستی برای استفاده دارد و شاید مطالعه سورس کد آن از جهت طراحی نیز درس آموزی داشته باشد. در ادامه چند مثال از مستندات آن را می‌توانید ملاحظه کنید:

var path = Path.Combine(Path.GetTempPath(), $"{Guid.NewGuid()}.xlsx");
MiniExcel.SaveAs(path, new[] {
    new { Column1 = "MiniExcel", Column2 = 1 },
    new { Column1 = "Github", Column2 = 2}
});

// DataReader export multiple sheets (recommand by Dapper ExecuteReader)

using (var cnn = Connection)
{
    cnn.Open();
    var sheets = new Dictionary<string,object>();
    sheets.Add("sheet1", cnn.ExecuteReader("select 1 id"));
    sheets.Add("sheet2", cnn.ExecuteReader("select 2 id"));
    MiniExcel.SaveAs("Demo.xlsx", sheets);
}

طراحی یک ActionResult سفارشی برای استفاده از MiniExcel

برای این منظور نیاز است تا Stream مربوط به Response درخواست جاری را در اختیار این کتابخانه قرار دهیم و از سمت دیگر دیتای مورد نیاز را به نحوی که بافر نشود و از طریق مکانیزم Streaming در EF (استفاده از Deferred Execution و Enumerableها) مهیا کنیم. برای امکان تعویض پذیری (این سناریو در پروژه واقعی و باتوجه به جهت وابستگی‌ها می‌تواند ضروری باشد) از دو واسط زیر استفاده خواهیم کرد:

public interface IExcelDocumentFactory
{
    ILargeExcelDocument CreateLargeDocument(IEnumerable<ExcelColumn> headers, Stream stream);
}


public interface ILargeExcelDocument : IAsyncDisposable, IDisposable
{
    Task Write<T>(
        PaginatedEnumerable<T> items,
        int count,
        int sizeLimit,
        CancellationToken cancellationToken = default) where T : notnull;
}

متد CreateLargeDocument یک وهله از ILargeExcelDocument را در اختیار مصرف کننده قرار می‌دهد که قابلیت نوشتن روی آن از طریق متد Write را خواهد داشت. روش واکشی دیتا از طریق Delegate تعریف شده با نام PaginatedEnumerable به مصرف کننده محول شده‌است که در ادامه امضای آن را می‌توانید مشاهده کنید:

public delegate IEnumerable<T> PaginatedEnumerable<out T>(int page, int pageSize);

در ادامه پیاده‌سازی واسط ILargeExcelDocument برای MiniExcel به شکل زیر خواهد بود:

internal sealed class MiniExcelDocument(Stream stream, IEnumerable<ExcelColumn> columns) : ILargeExcelDocument
{
    private const int SheetLimit = 1_048_576;
    private bool _disposedValue;

    public async Task Write<T>(
        PaginatedEnumerable<T> items,
        int count,
        int sizeLimit,
        CancellationToken cancellationToken = default)
        where T : notnull
    {
        ThrowIfDisposed();
        
        // TODO: apply sizeLimit
        var properties = FastReflection.Instance.GetProperties(typeof(T))
            .ToDictionary(p => p.Name, StringComparer.OrdinalIgnoreCase);

        var sheets = new Dictionary<string, object>();
        var index = 1;
        while (count > 0)
        {
            cancellationToken.ThrowIfCancellationRequested();

            IEnumerable<Dictionary<string, object>> reader = items(index, SheetLimit)
                .Select(item =>
                {
                    cancellationToken.ThrowIfCancellationRequested();
                    return columns.ToDictionary(h => h.Title, h => ValueOf(item, h.Name, properties));
                });

            sheets.Add($"sheet_{index}", reader);
            count -= SheetLimit;
            index++;
        }

        // This part is forward-only, and we are pretty sure that streaming will happen without buffering.
        await stream.SaveAsAsync(sheets, cancellationToken: cancellationToken);
    }

    private void Dispose(bool disposing)
    {
        if (!_disposedValue)
        {
            if (disposing)
            {
                // TODO: dispose managed state (managed objects)
            }

            // TODO: free unmanaged resources (unmanaged objects) and override finalizer
            // TODO: set large fields to null
            _disposedValue = true;
        }
    }

    ~MiniExcelDocument()
    {
        Dispose(disposing: false);
    }

    public void Dispose()
    {
        // Do not change this code. Put cleanup code in 'Dispose(bool disposing)' method
        Dispose(disposing: true);
        GC.SuppressFinalize(this);
    }

    public async ValueTask DisposeAsync()
    {
        Dispose();
        await ValueTask.CompletedTask;
    }

    private void ThrowIfDisposed()
    {
        if (!_disposedValue) return;
        
        throw new ObjectDisposedException(nameof(MiniExcelDocument));
    }
    private static object ValueOf<T>(T record, string prop, IDictionary<string, FastPropertyInfo> properties)
        where T : notnull
    {
        var property = properties[prop] ??
                       throw new InvalidOperationException($"There is no property with given name [{prop}]");

        return NormalizeValue(property.GetValue?.Invoke(record));
    }

    private static object NormalizeValue(object? value)
    {
        if (value == null) return null!;

        return value switch
        {
            DateTime dateTime => dateTime.ToShortPersianDateTimeString(),
            TimeSpan time => time.ToString(@"hh\:mm\:ss"),
            DateOnly dateTime => dateTime.ToShortPersianDateString(false),
            TimeOnly time => time.ToString(@"hh\:mm\:ss"),
            bool boolean => boolean ? "بلی" : "خیر",
            IEnumerable<object> values => string.Join(',', values.Select(NormalizeValue).ToList()),
            Enum enumField => enumField.GetEnumStringValue(),
            _ => value
        };
    }
}

در بدنه متد Write باتوجه به تعداد کل رکوردها، یک کوئری برای هر شیت از طریق فراخوانی متد منتسب به پارامتر items اجرا خواهد شد؛ توجه کنید که اجرای این کوئری مشخصا به تعویق افتاده و تا زمان اولین MoveNext، اجرایی صورت نخواهد گرفت (مفهوم Deferred Execution). به این ترتیب باقی کارها از جمله فرمت کردن مقادیر در سمت برنامه و از طریق Linq To Object انجام خواهد شد. همچنین پیاده‌سازی Factory مرتبط با آن به شکل زیر خواهد بود:

internal sealed class ExcelDocumentFactory : IExcelDocumentFactory
{
    public ILargeExcelDocument CreateLargeDocument(IEnumerable<ExcelColumn> columns, Stream stream)
    {
        return new MiniExcelDocument(stream, columns);
    }
}

در ادامه ActionResult سفارشی برای گرفتن خروجی اکسل را به شکل زیر می توان پیاده‌سازی کرد:

public class ExcelExportResult<T>(PaginatedEnumerable<T> items, int count, ExportMetadata metadata) : ActionResult
    where T : notnull
{
    private const string ContentType = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet";
    private const string Extension = ".xlsx";
    private const int SizeLimit = int.MaxValue;

    private readonly IReadOnlyList<FastPropertyInfo> _properties = FastReflection.Instance.GetProperties(typeof(T));

    public override async Task ExecuteResultAsync(ActionContext context)
    {
        var sp = context.HttpContext.RequestServices;
        var factory = sp.GetRequiredService<IExcelDocumentFactory>();

        var disposition = new ContentDispositionHeaderValue(DispositionTypeNames.Attachment);
        disposition.SetHttpFileName(MakeFilename());

        context.HttpContext.Response.Headers[HeaderNames.ContentDisposition] = disposition.ToString();
        context.HttpContext.Response.Headers.Append(HeaderNames.ContentType, ContentType);
        context.HttpContext.Response.StatusCode = StatusCodes.Status200OK;

        //TODO: deal with exception, because our global exception handling cannot take into account while the response is started.

        await using var bodyStream = context.HttpContext.Response.BodyWriter.AsStream();
        await context.HttpContext.Response.StartAsync(context.HttpContext.RequestAborted);
        await using (var document = factory.CreateLargeDocument(MakeColumns(), bodyStream))
        {
            await document.Write(items, count, SizeLimit, context.HttpContext.RequestAborted);
        }

        await context.HttpContext.Response.CompleteAsync();
    }

    private string MakeFilename()
    {
        return
            $"{metadata.Title} - {DateTime.UtcNow.ToEpochSeconds()}{Extension}";
    }

    private IEnumerable<ExcelColumn> MakeColumns()
    {
        var types = _properties.ToDictionary(p => p.Name, p => p.PropertyType, StringComparer.OrdinalIgnoreCase);
        return metadata.Fields.Select(f =>
        {
            var type = types[f.Name];

            type = Nullable.GetUnderlyingType(type) ?? type;

            if (type.IsEnum ||
                type == typeof(DateOnly) ||
                type == typeof(TimeOnly) ||
                type == typeof(bool) ||
                type == typeof(TimeSpan) ||
                type == typeof(DateTime))
            {
                type = typeof(string);
            }

            return new ExcelColumn(f.Name, f.Title, type);
        });
    }
}

در اینجا از طریق ExportMetadata که از سمت کاربر تعیین می‌شود، مشخص خواهد شد که کدام فیلدها در فایل نهایی حضور داشته باشند. در بدنه متد ExecuteResultAsync یکسری هدر مرتبط با کار با فایل‌ها تنظیم شده‌است و سپس از طریق BodyWriter و متد AsStream به استریم مورد نظر دست یافته و در اختیار متد Write مربوط به document ایجاد شده، قرار داده‌ایم. یک نمونه استفاده از آن برای موجودیت فرضی مشتری می تواند به شکل زیر باشد:

[ApiController, Route("api/customers")]
public class CustomersController(IDbContext dbContext) : ControllerBase
{
    [HttpGet("export")]
    public async Task<ActionResult> ExportCustomers([FromQuery] ExportMetadata metadata,
        CancellationToken cancellationToken)
    {
        var count = await dbContext.Set<Customer>().CountAsync(cancellationToken);
        return this.Export(
            (page, pageSize) => dbContext.Set<Customer>()
                .OrderBy(c => c.Id)
                .Skip((page - 1) * pageSize)
                .Take(pageSize)
                .AsNoTracking()
                .AsEnumerable(), // Enable streaming instead of buffering through deferred execution
            count,
            metadata);
    }
}

در اینجا از طریق Extension Method مهیا شده روش کوئری کردن برای هر شیت را مشخص کرده‌ایم؛ نکته مهم در ایجاد استفاده از ‌متد AsEnumerable می باشد که در عمل یک Type Casting انجام می دهد که باقی متدهای استفاده شده روی خروجی، از طریق Linq To Object اعمال شود و همچنین نیاز به استفاده از ToList و یا موارد مشابه را نخواهیم داشت. نمونه درخواست GET برای این API می تواند به شکل زیر باشد:

http://localhost:5118/api/customers/export?Title=Test&Fields[0].Name=FirstName&Fields[0].Title=First name&Fields[1].Name=LastName&Fields[1].Title=Last name&Fields[2].Name=BirthDate&Fields[2].Title=BirthDate

سورس کد مثال قابل اجرا از طریق مخزن زیر قابل دسترس می باشد:

https://github.com/rabbal/large-excel-streaming

در این مثال در زمان آغاز برنامه، ۱۰ میلیون رکورد در جدول Customer ثبت خواهد شد که در ادامه می توان از آن خروجی Excel تهیه کرد.

نکته مهم: توجه داشته باشید که استفاده از این روش قابلیت از سرگیری مجدد برای دانلود را نخواهد داشت و شاید بهتر است این فرآیند را از طریق یک Job انجام داده و با استفاده از قابلیت‌های Multipart Upload مربوط به یک BlobStroage مانند Minio، خروجی مورد نظر از قبل ذخیره کرده و لینک دانلودی را در اختیار کاربر قرار دهید.

مطالب
C# 8.0 - Default implementations in interfaces
اگر مطلب «تفاوت بین Interface و کلاس Abstract در چیست؟» را مطالعه کرده باشید، به این نتیجه می‌رسید که طراحی یک کتابخانه‌ی عمومی با اینترفیس‌ها، بسیار شکننده‌است. اگر عضو جدیدی را به یک اینترفیس عمومی اضافه کنیم، تمام پیاده سازی کننده‌های آن‌را از درجه‌ی اعتبار ساقط می‌کند و آن‌ها نیز باید این عضو را حتما پیاده سازی کنند تا برنامه‌ای که پیش از این به خوبی کار می‌کرده، باز هم بدون مشکل کامپایل شده و کار کند. هدف از ویژگی جدید «پیاده سازی‌های پیش‌فرض در اینترفیس‌ها» در C# 8.0، پایان دادن به این مشکل مهم است. با استفاده از این ویژگی جدید، می‌توان یک عضو جدید را با پیاده سازی پیش‌فرضی داخل خود اینترفیس قرار داد. به این ترتیب تمام برنامه‌هایی که از کتابخانه‌های عمومی شما استفاده می‌کنند، با به روز رسانی آن، به یکباره از کار نخواهند افتاد.
همچنین مزیت دیگر آن، انتقال ساده‌تر کدهای جاوا به سی‌شارپ است؛ از این لحاظ که ویژگی مشابهی در زبان جاوا تحت عنوان «Default Methods» سال‌ها است که وجود دارد.


یک مثال از ویژگی «پیاده سازی‌های پیش‌فرض در اینترفیس‌ها»

interface ILogger
{
    void Log(string message);
}

class ConsoleLogger : ILogger
{
    public void Log(string message)
    {
        Console.WriteLine(message);
    }
}
فرض کنید کتابخانه‌ی شما، اینترفیس ILogger را ارائه داده‌است و در برنامه‌ای دیگر، استفاده کننده، کلاس ConsoleLogger را بر مبنای آن پیاده سازی و استفاده کرده‌است.
مدتی بعد بر اساس نیازمندی‌های مشخصی به این نتیجه خواهید رسید که بهتر است overload دیگری را برای متد Log در اینترفیس ILogger، درنظر بگیریم. مشکلی که این تغییر به همراه دارد، کامپایل نشدن کلاس ConsoleLogger در یک برنامه‌ی ثالث است و این کلاس باید الزاما این overload جدید را پیاده سازی کند؛ در غیراینصورت قادر به کامپایل برنامه‌ی خود نخواهد شد. اکنون در C# 8.0 می‌توان برای این نوع تغییرات، در همان اینترفیس اصلی، یک پیاده سازی پیش‌فرض را نیز قرار داد:
interface ILogger
{
    void Log(string message);
    void Log(Exception exception) => Console.WriteLine(exception);
}
به این ترتیب استفاده کنندگان از این اینترفیس، برای کامپایل برنامه‌ی خود به مشکلی برنخواهند خورد و اگر از این overload جدید استفاده کنند، از همان پیاده سازی پیش‌فرض آن بهره خواهند برد. بدیهی است هنوز هم پیاده سازی کننده‌های اینترفیس ILogger می‌توانند پیاده سازی‌های سفارشی خودشان را در مورد این overload جدید ارائه دهند. در این حالت از پیاده سازی پیش‌فرض صرفنظر خواهد شد.


ویژگی «پیاده سازی‌های پیش‌فرض در اینترفیس‌ها» چگونه پیاده سازی شده‌است؟

واقعیت این است که امکان پیاده سازی این ویژگی، سال‌ها است که در سطح کدهای IL دات نت وجود داشته (از زمان دات نت 2) و اکنون از طریق کدهای برنامه با بهبود کامپایلر آن، قابل دسترسی شده‌است.


تاثیر زمینه‌ی کاری بر روی دسترسی به پیاده سازی‌های پیش‌فرض

مثال زیر را درنظر بگیرید:
    interface IDeveloper
    {
        void LearnNewLanguage(string language, DateTime dueDate);

        void LearnNewLanguage(string language)
        {
            // default implementation
            LearnNewLanguage(language, DateTime.Now.AddMonths(6));
        }
    }

    class BackendDev : IDeveloper // compiles OK
    {
        public void LearnNewLanguage(string language, DateTime dueDate)
        {
            // Learning new language...
        }
    }
در اینجا اینترفیس IDeveloper، به همراه یک پیاده سازی پیش‌فرض است و بر این اساس، کلاس BackendDev پیاده سازی کننده‌ی آن، دیگر نیازی به پیاده سازی اجباری متد LearnNewLanguage ای که تنها یک رشته را می‌پذیرد، ندارد.
سؤال: به نظر شما اکنون کدامیک از کاربردهای زیر از کلاس BackendDev، کامپایل می‌شود و کدامیک خیر؟
IDeveloper dev1 = new BackendDev();
dev1.LearnNewLanguage("Rust");

var dev2 = new BackendDev();
dev2.LearnNewLanguage("Rust");
پاسخ: فقط مورد اول. مورد دوم با خطای کامپایلر زیر مواجه خواهد شد:
 There is no argument given that corresponds to the required formal parameter 'dueDate' of 'BackendDev.LearnNewLanguage(string, DateTime)' (CS7036) [ConsoleApp]
به این معنا که اگر کلاس BackendDev را به خودی خود (دقیقا از نوع BackendDev) و بدون معرفی آن از نوع اینترفیس IDeveloper، بکار بگیریم، فقط همان متدهایی که داخل این کلاس تعریف شده‌اند، قابل دسترسی می‌باشند و نه متدهای پیش‌فرض تعریف شده‌ی در اینترفیس مشتق شده‌ی از آن.


ارث‌بری چندگانه چطور؟

احتمالا حدس زده‌اید که این قابلیت ممکن است ارث‌بری چندگانه را که در سی‌شارپ ممنوع است، میسر کند. تا C# 8.0، یک کلاس تنها از یک کلاس دیگر می‌تواند مشتق شود؛ اما این محدودیت در مورد اینترفیس‌ها وجود ندارد. به علاوه تاکنون اینترفیس‌ها مانند کلاس‌ها، امکان تعریف پیاده سازی خاصی را نداشتند و صرفا یک قرارداد بیشتر نبودند. بنابراین اکنون این سؤال مطرح می‌شود که آیا می‌توان با ارائه‌ی پیاده سازی پیش‌فرض متدها در اینترفیس‌ها، ارث‌بری چندگانه را در سی‌شارپ پیاده سازی کرد؛ مانند مثال زیر؟!
using System;

namespace ConsoleApp
{
    public interface IDev
    {
        void LearnNewLanguage(string language) => Console.Write($"Learning {language} in a default way.");
    }

    public interface IBackendDev : IDev
    {
        void LearnNewLanguage(string language) => Console.Write($"Learning {language} in a backend way.");
    }

    public interface IFrontendDev : IDev
    {
        void LearnNewLanguage(string language) => Console.Write($"Learning {language} in a frontend way.");
    }

    public interface IFullStackDev : IBackendDev, IFrontendDev { }

    public class Dev : IFullStackDev { }
}
سؤال: کد فوق بدون مشکل کامپایل می‌شود. اما در فراخوانی زیر، دقیقا از کدام متد LearnNewLanguage استفاده خواهد شد؟ آیا پیاده سازی آن از IBackendDev فراهم می‌شود و یا از IFrontendDev؟
IFullStackDev dev = new Dev();
dev.LearnNewLanguage("TypeScript");
پاسخ: هیچکدام! برنامه با خطای زیر کامپایل نخواهد شد:
The call is ambiguous between the following methods or properties: 'IBackendDev.LearnNewLanguage(string)' and 'IFrontendDev.LearnNewLanguage(string)' (CS0121)
کامپایلر سی‌شارپ در این مورد خاص از قانونی به نام «the most specific override rule» استفاده می‌کند. یعنی اگر برای مثال در IFullStackDev متد LearnNewLanguage به صورت صریحی بازنویسی و تامین شد، آنگاه امکان استفاده‌ی از آن وجود خواهد داشت. یا حتی می‌توان این پیاده سازی را در کلاس Dev نیز ارائه داد و از نوع آن (بجای نوع اینترفیس) استفاده کرد.


تفاوت امکانات کلاس‌های Abstract با متدهای پیش‌فرض اینترفیس‌ها چیست؟

اینترفیس‌ها هنوز نمی‌توانند مانند کلاس‌ها، سازنده‌ای را تعریف کنند. نمی‌توانند متغیرها/فیلدهایی را در سطح اینترفیس داشته باشند. همچنین در اینترفیس‌ها همه‌چیز public است و امکان تعریف سطح دسترسی دیگری وجود ندارد.
بنابراین باید بخاطر داشت که هدف از تعریف اینترفیس‌ها، ارائه‌ی «یک رفتار» است و هدف از تعریف کلاس‌ها، ارائه «یک حالت».


یک نکته: در نگارش‌های پیش از C# 8.0 هم می‌توان ویژگی «متدهای پیش‌فرض» را شبیه سازی کرد

واقعیت این است که توسط ویژگی «متدهای الحاقی»، سال‌ها است که امکان افزودن «متدهای پیش‌فرضی» به اینترفیس‌ها در زبان سی‌شارپ وجود دارد:
namespace MyNamespace
{
    public interface IMyInterface
    {
        IList<int> Values { get; set; }
    }

    public static class MyInterfaceExtensions
    {
        public static int CountGreaterThan(this IMyInterface myInterface, int threshold)
        {
            return myInterface.Values?.Where(p => p > threshold).Count() ?? 0;
        }
    }
}
و در این حالت هرچند به نظر اینترفیس IMyInterface دارای متدی نیست، اما فراخوانی زیر مجاز است:
var myImplementation = new MyInterfaceImplementation();
// Note that there's no typecast to IMyInterface required
var countGreaterThanFive = myImplementation.CountGreaterThan(5);