مطالب
امکان تعریف ساده‌تر کلاس‌های Immutable در C# 9.0 با معرفی نوع جدید record
در مطلب معرفی خواص init-only، با روش معرفی خواص immutable آشنا شدیم. نوع جدیدی که به C# 9.0 به نام record اضافه شده‌است، قسمتی از آن بر اساس همان خواص init-only کار می‌کند. به همین جهت مطالعه‌ی آن مطلب، پیش از ادامه‌ی بحث جاری، ضروری است.


چرا در C# 9.0 تا این اندازه بر روی سادگی ایجاد اشیاء Immutable تمرکز شده‌است؟

به شیءای Immutable گفته می‌شود که پس از وهله سازی ابتدایی آن، وضعیت آن دیگر قابل تغییر نباشد. همچنین به کلاسی Immutable گفته می‌شود که تمام وهله‌های ساخته شده‌ی از آن نیز Immutable باشند. نمونه‌ی یک چنین شیءای را از نگارش 1 دات نت در حال استفاده هستیم: رشته‌ها. رشته‌ها در دات نت غیرقابل تغییر هستند و هرگونه تغییری بر روی آن‌ها، سبب ایجاد یک رشته‌ی جدید (یک شیء جدید) می‌شود. نوع جدید record نیز به همین صورت عمل می‌کند.

مزایای وجود Immutability:

- اشیاء Immutable یا غیرقابل تغییر، thread-safe هستند که در نتیجه، برنامه نویسی همزمان و موازی را بسیار ساده می‌کنند؛ چون چندین thread می‌توانند با شیءای کار کنند که دسترسی به آن، تنها read-only است.
- اشیاء Immutable از اثرات جانبی، مانند تغییرات آن‌ها در متدهای مختلف در امان هستند. می‌توانید آن‌ها را به هر متدی ارسال کنید و مطمئن باشید که پس از پایان کار، این شیء تغییری نکرده‌است.
- کار با اشیاء Immutable، امکان بهینه سازی حافظه را میسر می‌کنند. برای مثال NET runtime.، هش رشته‌های تعریف شده‌ی در برنامه را در پشت صحنه نگهداری می‌کند تا مطمئن شود که تخصیص حافظه‌ی اضافی، برای رشته‌های تکراری صورت نمی‌گیرد. نمونه‌ی دیگر آن نمایش حرف "a" در یک ادیتور یا نمایشگر است. زمانیکه یک شیء Immutable حاوی اطلاعات حرف "a"، ایجاد شود، به سادگی می‌توان این تک وهله را جهت نمایش هزاران حرف "a" مورد استفاده‌ی مجدد قرار داد، بدون اینکه نگران مصرف حافظه‌ی بالای برنامه باشیم.
- کار با اشیاء Immutable به باگ‌های کمتری ختم می‌شود؛ چون همواره امکان تغییر حالت درونی یک شیء، توسط قسمت‌های مختلف برنامه، می‌تواند به باگ‌های ناخواسته‌ای منتهی شوند.
- Hash list‌ها که در جهت بهبود کارآیی برنامه‌ها بسیار مورد استفاده قرار می‌گیرند، بر اساس کلیدهایی Immutable قابل تشکیل هستند.


روش تعریف نوع‌های جدید record

کلاس ساده‌ی زیر را در نظر بگیرید:
public class User
{
   public string Name { set; get; }
}
برای تبدیل آن به یک نوع جدید record فقط کافی است واژه‌ی کلیدی class آن‌را با record جایگزین کنیم (به آن nominal record هم می‌گویند):
public record User
{
   public string Name { set; get; }
}
نحوه‌ی کار با آن و وهله سازی آن نیز دقیقا مانند کلاس‌ها است:
var user = new User();
user.Name = "User 1";
و ... در اینجا امکان انتساب مقداری به خاصیت Name وجود دارد؛ یعنی این خاصیت به صورت پیش‌فرض Immutable نیست.

روش تعریف دومی نیز در اینجا میسر است (به آن positional record هم می‌گویند):
public record User(string Name);
با این‌کار، به صورت خودکار یک record جدید تشکیل می‌شود که به همراه خاصیت Name است؛ چیزی شبیه به record قبلی که تعریف کردیم (به همین جهت نیاز است نام آن‌را شروع شده‌ی با حروف بزرگ درنظر بگیریم). با این تفاوت که این record، اینبار دارای سازنده است و همچنین خاصیت Name آن از نوع init-only است. در این حالت است که کل record به صورت immutable معرفی می‌شود؛ وگرنه روش تعریف یک خاصیت معمولی که از نوع init-only نیست (مانند مثال اول)، سبب بروز Immutability نخواهد شد.

برای کار با رکورد دومی که تعریف کردیم باید سازند‌ه‌ی این record را مقدار دهی کرد:
var user = new User("User 1");
// Error: Init-only property or indexer 'User.Name' can only be assigned
// in an object initializer, or on 'this' or 'base' in an instance constructor
// or an 'init' accessor. [CS9Features]csharp(CS8852)
user.Name = "User 1";
و همانطور که ملاحظه می‌کنید، چون خاصیت Name از نوع init-only است و در سازنده‌ی record تعریف شده مقدار دهی شده‌است، دیگر نمی‌توان آن‌را مقدار دهی مجدد کرد. همچنین در اینجا امکان استفاده‌ی از object initializers مانند new User { Name = "User 1" } نیز وجود ندارد؛ چون به همراه یک سازنده‌ی به صورت خودکار تولید شده‌است که خاصیتی init-only را مقدار دهی کرده‌است.


نوع جدید record چه اطلاعاتی را به صورت خودکار تولید می‌کند؟

روش دوم تعریف recordها اگر در نظر بگیریم:
public record User(string Name);
و در این حالت برنامه را کامپایل کنیم، به کدهای زیر که حاصل از دی‌کامپایل است، می‌رسیم:
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Text;
using CS9Features;

public class User : IEquatable<User>
{
 protected virtual Type EqualityContract
 {
  [System.Runtime.CompilerServices.NullableContext(1)]
  [CompilerGenerated]
  get
  {
   return typeof(User);
  }
 }

 public string Name
 {
  get;
  set/*init*/;
 }

 public User(string Name)
 {
  this.Name = Name;
  base..ctor();
 }

 public override string ToString()
 {
  StringBuilder stringBuilder = new StringBuilder();
  stringBuilder.Append("User");
  stringBuilder.Append(" { ");
  if (PrintMembers(stringBuilder))
  {
   stringBuilder.Append(" ");
  }
  stringBuilder.Append("}");
  return stringBuilder.ToString();
 }

 protected virtual bool PrintMembers(StringBuilder builder)
 {
  builder.Append("Name");
  builder.Append(" = ");
  builder.Append((object?)Name);
  return true;
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator !=(User? r1, User? r2)
 {
  return !(r1 == r2);
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator ==(User? r1, User? r2)
 {
  return (object)r1 == r2 || (r1?.Equals(r2) ?? false);
 }

 public override int GetHashCode()
 {
  return EqualityComparer<Type>.Default.GetHashCode(EqualityContract) * -1521134295 + EqualityComparer<string>.Default.GetHashCode(Name);
 }

 public override bool Equals(object? obj)
 {
  return Equals(obj as User);
 }

 public virtual bool Equals(User? other)
 {
  return (object)other != null && EqualityContract == other!.EqualityContract && EqualityComparer<string>.Default.Equals(Name, other!.Name);
 }

 public virtual User <Clone>$()
 {
  return new User(this);
 }

 protected User(User original)
 {
  Name = original.Name;
 }

 public void Deconstruct(out string Name)
 {
  Name = this.Name;
 }
}
این خروجی به صورت خودکار تولید شده‌ی توسط کامپایلر، چنین نکاتی را به همراه دارد:
- record‌ها هنوز هم در اصل همان class‌های استاندارد #C هستند (یعنی در اصل reference type هستند).
- این کلاس به همراه یک سازنده و یک خاصیت init-only است (بر اساس تعاریف ما).
- متد ToString آن بازنویسی شده‌است تا اگر آن‌را بر روی شیء حاصل، فراخوانی کردیم، به صورت خودکار نمایش زیبایی را از محتوای آن ارائه دهد.
- این کلاس از نوع  <IEquatable<User است که امکان مقایسه‌ی اشیاء record را به سادگی میسر می‌کند. برای این منظور متدهای GetHashCode و Equals آن به صورت خودکار بازنویسی و تکمیل شده‌اند (یعنی مقایسه‌ی آن شبیه به value-type است).
- این کلاس امکان clone کردن اطلاعات جاری را مهیا می‌کند.
- همچنین به همراه یک متد Deconstruct هم هست که جهت انتساب خواص تعریف شده‌ی در آن، به یک tuple مفید است.

بنابراین یک رکورد به همراه قابلیت‌هایی است که سال‌ها در زبان #C وجود داشته‌اند و شاید ما به سادگی حاضر به تشکیل و تکمیل آن‌ها نمی‌شدیم؛ اما اکنون کامپایلر زحمت کدنویسی خودکار آن‌ها را متقبل می‌شود!


ساخت یک وهله‌ی جدید از یک record با clone کردن آن

اگر به کدهای حاصل از دی‌کامپایل فوق دقت کنید، یک قسمت جدید clone هم با syntax خاصی در آن ظاهر شده‌است:
public virtual User <Clone>$()
{
  return new User(this);
}
زمانیکه یک شیء Immutable است، دیگر نمی‌توان مقادیر خواص آن‌را در ادامه تغییر داد. اما اگر نیاز به اینکار وجود داشت، باید چکار کنیم؟ در C# 9.0 برای ایجاد وهله‌ی جدید معادلی از یک record، واژه‌ی کلیدی جدیدی را به نام with، اضافه کرده‌اند. برای نمونه اگر record زیر را در نظر بگیریم که دارای دو خاصیت نام و سن است:
public record User(string Name, int Age);
وهله سازی متداول آن به صورت زیر خواهد بود:
var user1 = new User("User 1", 21);
اما اگر خواستیم خاصیت سن آن‌را تغییر دهیم، می‌توان با استفاده از واژه‌ی کلیدی with، به صورت زیر عمل کرد:
var user2 = user1 with { Age = 31 };
کاری که در اصل در اینجا انجام می‌شود، ابتدا clone کردن شیء user1 است (یعنی دقیقا یک وهله‌ی جدید از user1 را با تمام اطلاعات قبلی آن در اختیار ما قرار می‌دهد که این وهله، ارجاعی را به شیء قبلی ندارد و از آن منقطع است). بنابراین نام user2، دقیقا همان "User 1" است که پیشتر تنظیم کردیم؛ با این تفاوت که اینبار مقدار سن آن متفاوت است. با استفاده از cloning، هنوز شیء user1 که immutable است، دست نخورده باقی مانده‌است و توسط with می‌توان خواص آن‌را تغییر داد و حاصل کار، یک شیء کاملا جدید است که مکان آن در حافظه، با مکان شیء user1 در حافظه، یکی نیست.


مقایسه‌ی نوع‌های record

در کدهای حاصل از دی‌کامپایل فوق، قسمت عمده‌ای از آن به تکمیل اینترفیس <IEquatable<User پرداخته شده بود. به همین جهت اکنون دو رکورد با مقادیر خواص یکسانی را ایجاد می‌کنیم:
var user1 = new User("User 1", 21);
var user2 = new User("User 1", 21);
سپس یکبار آن‌ها را از طریق عملگر == و بار دیگر به کمک متد Equals، مقایسه می‌کنیم:
Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
خروجی هر دو حالت، True است:
user1.Equals(user2) -> True
user1 == user2 -> True
این مورد، یکی از مهم‌ترین تفاوت‌های recordها با classها هستند.
- زمانیکه عملگر == را بر روی شیء user1 و user2 اعمال می‌کنیم، اگر User، از نوع کلاس معمولی باشد، حاصل آن false خواهد بود؛ چون این دو، به یک مکان از حافظه اشاره نمی‌کنند، حتی با اینکه مقادیر خواص هر دو شیء یکی است.
- اما اگر به قطعه کد دی‌کامپایل شده دقت کنید، در یک رکورد که هر چند در اصل یک کلاس است، حتی عملگر == نیز بازنویسی شده‌است تا در پشت صحنه همان متد Equals را فراخوانی کند و این متد با توجه به پیاده سازی اینترفیس <IEquatable<User، اینبار دقیقا مقادیر خواص رکورد را یک به یک مقایسه کرده و نتیجه‌ی حاصل را باز می‌گرداند:
public virtual bool Equals(User? other)
{
   return (object)other != null &&
 EqualityContract == other!.EqualityContract &&
 EqualityComparer<string>.Default.Equals(Name, other!.Name) && 
EqualityComparer<int>.Default.Equals(Age, other!.Age);
}
این متدی است که به صورت خودکار توسط کامپایلر جهت مقایسه‌ی مقادیر خواص رکورد جدید تعریف شده، تشکیل شده‌است. به عبارتی recordها از لحاظ مقایسه، شبیه به value objects عمل می‌کنند؛ هرچند در اصل یک کلاس هستند.

یک نکته: بازنویسی عملگر == در SDK نگارش rc2 فعلی رخ‌داده‌است و در نگارش‌های قبلی preview، اینگونه نبود.


امکان ارث‌بری در recordها

دو رکورد زیر را در نظر بگیرید که اولی به همراه Name است و نمونه‌ی مشتق شده‌ی از آن، خاصیت init-only سن را نیز به همراه دارد:
    public record User
    {
        public string Name { get; init; }

        public User(string name)
        {
            Name = name;
        }
    }

    public record UserWithAge : User
    {
        public int Age { get; init; }

        public UserWithAge(string name, int age) : base(name)
        {
            Age = age;
        }
    }
در اینجا روش دیگر تعریف recordها را ملاحظه می‌کنید که شبیه به کلاس‌ها است و خواص آن init-only هستند. در این حالت اگر مقایسه‌ی زیر را انجام دهیم:
var user1 = new User("User 1");
var user2 = new UserWithAge("User 1", 21);

Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
به خروجی زیر خواهیم رسید:
user1.Equals(user2) -> False
user1 == user2 -> False
علت آن را هم پیشتر بررسی کردیم. تساوی رکوردها بر اساس مقایسه‌ی مقدار تک تک خواص آن‌ها صورت می‌گیرد و چون user1 به همراه سن نیست، مقایسه‌ی این دو، false را بر می‌گرداند.

امکان تعریف ارث‌بری رکوردها به صورت زیر نیز وجود دارد و الزاما نیازی به روش تعریف کلاس مانند آن‌ها، مانند مثال فوق نیست:
public abstract record Food(int Calories);
public record Milk(int C, double FatPercentage) : Food(C);


رکوردها متد ToString را بازنویسی می‌کنند

در مثال قبلی اگر یک ToString را بر روی اشیاء تشکیل شده فراخوانی کنیم:
Console.WriteLine(user1.ToString());
Console.WriteLine(user2.ToString());
به این خروجی‌ها می‌رسیم:
User { Name = User 1 }
UserWithAge { Name = User 1, Age = 21 }
که حاصل بازنویسی خودکار متد ToString در پشت صحنه است.


امکان استفاده‌ی از Deconstruct در رکوردها

دو روش برای تعریف رکوردها وجود دارند؛ یکی شبیه به تعریف کلاس‌ها است و دیگری تعریف یک سطری، که positional record نیز نامیده می‌شود:
public record Person(string Name, int Age);
 فقط در حالت تعریف یک سطری positional record فوق است که خروجی خودکار نهایی تولیدی، به همراه public void Deconstruct نیز خواهد بود:
public void Deconstruct(out string Name, out int Age)
{
  Name = this.Name;
  Age = this.Age;
}
در این حالت می‌توان از tuples نیز برای کار با آن استفاده کرد:
var (name, age) = new Person("User 1", 21);
واژه‌ی «positional» نیز دقیقا به همین قابلیت اشاره می‌کند که بر اساس موقعیت خواص تعریف شده‌ی در رکورد، امکان Deconstruct آن‌ها به متغیرهای یک tuple وجود دارد. حالت تعریف کلاس مانند رکوردها، nominal نام دارد.


امکان استفاده‌ی از نوع‌های record در ASP.NET Core 5x

سیستم model binding در ASP.NET Core 5x، از نوع‌های record نیز پشتیبانی می‌کند؛ یک مثال:
 public record Person([Required] string Name, [Range(0, 150)] int Age);

 public class PersonController
 {
   public IActionResult Index() => View();

   [HttpPost]
   public IActionResult Index(Person person)
   {
    // ...
   }
 }


پرسش و پاسخ

آیا نوع‌های record به صورت value type معرفی می‌شوند؟
پاسخ: خیر. رکوردها در اصل reference type هستند؛ اما از لحاظ مقایسه، شبیه به value types عمل می‌کنند.

آیا می‌توان در یک کلاس، خاصیتی از نوع رکورد را تعریف کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان در رکوردها، از struct و یا کلاس‌ها جهت تعریف خواص استفاده کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان از واژه‌ی کلیدی with با کلاس‌ها و یا structها استفاده کرد؟
پاسخ: خیر. این واژه‌ی کلیدی در C# 9.0 مختص به رکوردها است.

آیا رکوردها به صورت پیش‌فرض Immutable هستند؟
پاسخ: اگر آن‌ها را به صورت positional records تعریف کنید، بله. چون در این حالت خواص تشکیل شده‌ی توسط آن‌ها از نوع init-only هستند. در غیراینصورت، می‌توان خواص غیر init-only را نیز به تعریف رکوردها اضافه کرد.
مطالب
ایجاد توالی‌ها در Reactive extensions
در مطلب «معرفی Reactive extensions» با نحوه‌ی تبدیل IEnumerable‌ها به نمونه‌های Observable آشنا شدیم. اما سایر حالات چطور؟ آیا Rx صرفا محدود است به کار با IEnumerableها؟ در ادامه نگاهی خواهیم داشت به نحوه‌ی تبدیل بسیاری از منابع داده دیگر به توالی‌های Observable قابل استفاده در Rx.


روش‌های متفاوت ایجاد توالی (sequence) در Rx

الف) استفاده از متدهای Factory

1) Observable.Create
نمونه‌ای از استفاده از آن‌را در مطلب «معرفی Reactive extensions» مشاهده کردید.
 var query = Enumerable.Range(1, 5).Select(number => number);
var observableQuery = query.ToObservable();
var observer = Observer.Create<int>(onNext: number => Console.WriteLine(number));
observableQuery.Subscribe(observer);
کار آن، تدارک delegate ایی است که توسط متد Subscribe، به ازای هربار پردازش مقدار موجود در توالی معرفی شده به آن، فراخوانی می‌گردد و هدف اصلی از آن این است که به صورت دستی اینترفیس IObservable را پیاده سازی نکنید (امکان پیاده سازی inline یک اینترفیس توسط Actionها).
البته در این مثال فقط delegate مربوط به onNext را ملاحظه می‌کند. توسط سایر overloadهای آن امکان ذکر delegate‌های OnError/OnCompleted نیز وجود دارد.

2) Observable.Return
برای ایجاد یک خروجی Observable از یک مقدار مشخص، می‌توان از متد جنریک Observable.Return استفاده کرد. برای مثال:
 var observableValue1 = Observable.Return("Value");
var observableValue2 = Observable.Return(2);
در ادامه نحوه‌ی پیاده سازی این متد را توسط Observable.Create مشاهده می‌کنید:
        public static IObservable<T> Return<T>(T value)
        {
            return Observable.Create<T>(o =>
            {
                o.OnNext(value);
                o.OnCompleted();
                return Disposable.Empty;
            });
        }
البته دو سطر نوشته شده در اصل معادل هستند با سطرهای ذیل؛ که ذکر نوع جنریک آن‌ها ضروری نیست. زیرا به صورت خودکار از نوع آرگومان معرفی شده، تشخیص داده می‌شود:
 var observableValue1 = Observable.Return<string>("Value");
var observableValue2 = Observable.Return<int>(2);

3) Observable.Empty
برای بازگشت یک توالی خالی که تنها کار اطلاع رسانی onCompleted  را انجام می‌دهد.
 var emptyObservable = Observable.Empty<string>();
در کدهای ذیل، پیاده سازی این متد را توسط Observable.Create مشاهده می‌کنید:
        public static IObservable<T> Empty<T>()
        {
            return Observable.Create<T>(o =>
            {
                o.OnCompleted();
                return Disposable.Empty;
            });
        }

4) Observable.Never
برای بازگشت یک توالی بدون قابلیت اطلاع رسانی و notification
 var neverObservable = Observable.Never<string>();
این متد به نحو زیر توسط Observable.Create پیاده سازی شده‌است:
        public static IObservable<T> Never<T>()
        {
            return Observable.Create<T>(o =>
            {
                return Disposable.Empty;
            });
        }

5) Observable.Throw
برای ایجاد یک توالی که صرفا کار اطلاع رسانی OnError را توسط استثنای معرفی شده به آن انجام می‌دهد.
 var throwObservable = Observable.Throw<string>(new Exception());
در ادامه نحوه‌ی پیاده سازی این متد را توسط Observable.Create مشاهده می‌کنید:
        public static IObservable<T> Throws<T>(Exception exception)
        {
            return Observable.Create<T>(o =>
            {
                o.OnError(exception);
                return Disposable.Empty;
            });
        }

6) توسط Observable.Range
به سادگی می‌توان بازه‌ی Observable ایی را ایجاد کرد:
 var range = Observable.Range(10, 15);
range.Subscribe(Console.WriteLine, () => Console.WriteLine("Completed"));

7) Observable.Generate
اگر بخواهیم عملیات Observable.Range را پیاده سازی کنیم، می‌توان از متد Observable.Generate استفاده کرد:
        public static IObservable<int> Range(int start, int count)
        {
            var max = start + count;
            return Observable.Generate(
                initialState: start,
                condition: value => value < max,
                iterate: value => value + 1,
                resultSelector: value => value);
        }
توسط پارامتر initialState، مقدار آغازین را دریافت می‌کند. پارامتر condition، مشخص می‌کند که توالی چه زمانی باید خاتمه یابد. در پارامتر iterate، مقدار جاری دریافت شده و مقدار بعدی تولید می‌شود. resultSelector کار تبدیل و بازگشت مقدار خروجی را به عهده دارد.

8) Observable.Interval
عموما از انواع و اقسام تایمرهای موجود در دات نت مانند System.Timers.Timer ، System.Threading.Timer و System.Windows.Threading.DispatcherTimer برای ایجاد یک توالی از رخ‌دادها استفاده می‌شود. تمام این‌ها را به سادگی می‌توان توسط متد Observable.Interval‌، که قابل انتقال به تمام پلتفرم‌هایی است که Rx برای آن‌ها تهیه شده‌است، جایگزین کرد:
 var interval = Observable.Interval(period: TimeSpan.FromMilliseconds(250));
interval.Subscribe(Console.WriteLine, () => Console.WriteLine("completed"));
در اینجا تایمر تهیه شده، هر 450 میلی‌ثانیه یکبار اجرا می‌شود. برای خاتمه‌ی آن باید شیء interval را Dispose کنید.
Overload دوم این متد، امکان معرفی scheduler و اجرای بر روی تردی دیگر را نیز میسر می‌کند.

9) Observable.Timer
تفاوت Observable.Timer با Observable.Interval در مفهوم پارامتر ارسالی به آن‌ها است:
 var timer = Observable.Timer(dueTime: TimeSpan.FromSeconds(1));
 timer.Subscribe(Console.WriteLine, () => Console.WriteLine("completed"));
یکی due time دارد (مدت زمان صبر کردن تا تولید اولین خروجی) و دیگری period (به صورت متوالی تکرار می‌شود).  
خروجی Observable.Interval مثال زده شده به نحو زیر است و خاتمه‌‌ای ندارد:
0
1
2
3
4
5

اما خروجی Observable.Timer به نحو ذیل  بوده و پس از یک ثانیه، خاتمه می‌یابد:
0
completed

متد Observable.Timer دارای هفت overload متفاوت است که توسط آن‌ها dueTime (مدت زمان صبر کردن تا تولید اولین خروجی)، period (کار Observable.Timer را به صورت متوالی در بازه‌ی زمانی مشخص شده تکرار می‌کند) و scheduler (تعیین ترد اجرایی عملیات) قابل مقدار دهی هستند.
اگر می‌خواهید Observable.Timer بلافاصله شروع به کار کند، مقدار dueTime آن‌را مساوی TimeSpan.Zero قرار دهید. به این ترتیب یک Observable.Interval را به وجود آورده‌اید که بلافاصله شروع به کار کرده است و تا مدت زمان مشخص شده‌ای جهت اجرای اولین callback خود صبر نمی‌کند.



ب) تبدیلگرهایی که خروجی IObservable ایجاد می‌کنند

برای تبدیل مدل‌های برنامه نویسی Async قدیمی دات نت مانند APM، رخدادها و امثال آن به معادل‌های Rx، متدهای الحاقی خاصی تهیه شده‌اند.

1) تبدیل delegates به معادل Observable
متد Observable.Start، امکان تبدیل یک Func یا Action زمانبر را به یک توالی observable میسر می‌کند. در این حالت به صورت پیش فرض، پردازش عملیات بر روی یکی از تردهای ThreadPool انجام می‌شود.
        static void StartAction()
        {
            var start = Observable.Start(() =>
            {
                Console.Write("Observable.Start");
                for (int i = 0; i < 10; i++)
                {
                    Thread.Sleep(100);
                    Console.Write(".");
                }
            });
            start.Subscribe(
               onNext: unit => Console.WriteLine("published"),
               onCompleted: () => Console.WriteLine("completed"));
        }

        static void StartFunc()
        {
            var start = Observable.Start(() =>
            {
                Console.Write("Observable.Start");
                for (int i = 0; i < 10; i++)
                {
                    Thread.Sleep(100);
                    Console.Write(".");
                }
                return "value";
            });
            start.Subscribe(
               onNext: Console.WriteLine,
               onCompleted: () => Console.WriteLine("completed"));
        }
در اینجا دو مثال از بکارگیری Action و Func‌ها را توسط Observable.Start مشاهده می‌کنید.
زمانیکه از Func استفاده می‌شود، تابع یک خروجی را ارائه داده و سپس توالی خاتمه می‌یابد. اگر از Action استفاده شود، نوع Observable بازگشت داده شده از نوع Unit است که در برنامه نویسی functional معادل void است و هدف از آن مشخص سازی پایان عملیات Action می‌باشد. Unit دارای مقداری نبوده و صرفا سبب اجرای اطلاع رسانی OnNext می‌شود.
تفاوت مهم Observable.Start و Observable.Return در این است که Observable.Start مقدار تابع را به صورت تنبل (lazily) پردازش می‌کند، اما Observable.Return پردازش حریصانه‌ای (eagrly) را به همراه خواهد داشت. به این ترتیب Observable.Start بسیار شبیه به یک Task (پردازش‌های غیرهمزمان) عمل می‌کند.
در اینجا شاید این سؤال مطرح شود که استفاده از قابلیت‌های Async سی‌شارپ 5 برای اینگونه کارها مناسب است یا Rx؟ قابلیت‌های Async بیشتر به اعمال مخصوص IO bound مانند کار با شبکه، دریافت فایل از اینترنت، کار با یک بانک اطلاعاتی خارج از مرزهای سیستم، مرتبط می‌شوند؛ اما اعمال CPU bound مانند محاسبات سنگین حاصل از توالی‌های observable را به خوبی می‌توان توسط Rx مدیریت کرد.


2) تبدیل Events به معادل Observable

دات نت از روزهای اول خود به همراه یک event driven programming model بوده‌است. Rx متدهایی را برای دریافت یک رخداد و تبدیل آن به یک توالی Observable ارائه داده‌است. برای نمونه ObservableCollection زیر را درنظر بگیرید
 var items = new System.Collections.ObjectModel.ObservableCollection<string>
  {
          "Item1", "Item2", "Item3"
  };
اگر بخواهیم مانند روش‌های متداول، حذف شدن آیتم‌های آن‌را تحت نظر قرار دهیم، می‌توان نوشت:
            items.CollectionChanged += (sender, ea) =>
            {
                if (ea.Action == NotifyCollectionChangedAction.Remove)
                {
                    foreach (var oldItem in ea.OldItems.Cast<string>())
                    {
                        Console.WriteLine("Removed {0}", oldItem);
                    }
                }
            };
این نوع کدها در WPF زیاد کاربرد دارند. اکنون معادل کدهای فوق با Rx به صورت زیر هستند:
            var removals =
                Observable.FromEventPattern<NotifyCollectionChangedEventHandler, NotifyCollectionChangedEventArgs>
                (
                    addHandler: handler => items.CollectionChanged += handler,
                    removeHandler: handler => items.CollectionChanged -= handler
                )
                .Where(e => e.EventArgs.Action == NotifyCollectionChangedAction.Remove)
                .SelectMany(c => c.EventArgs.OldItems.Cast<string>());

            var disposable = removals.Subscribe(onNext: item => Console.WriteLine("Removed {0}", item));
با استفاده از متد Observable.FromEventPattern می‌توان معادل Observable رخ‌داد CollectionChanged را تهیه کرد. پارامتر اول جنریک آن، نوع رخداد است و پارامتر اختیاری دوم آن، EventArgs این رخداد. همچنین با توجه به قسمت Where نوشته شده، در این بین مواردی را که Action مساوی حذف شدن را دارا هستند، فیلتر کرده و نهایتا لیست Observable آن‌ها بازگشت داده می‌شوند. اکنون می‌توان با استفاده از متد Subscribe، این تغییرات را دریافت کرد. برای مثال با فراخوانی
 items.Remove("Item1");
بلافاصله خروجی Removed item1 ظاهر می‌شود.


3) تبدیل Task به معادل Observable

متد ToObservable واقع در فضای نام System.Reactive.Threading.Tasks را بر روی یک Task نیز می‌توان فراخوانی کرد:
 var task = Task.Factory.StartNew(() => "Test");
var source = task.ToObservable();
source.Subscribe(Console.WriteLine, () => Console.WriteLine("completed"));
البته باید دقت داشت استفاده از Task دات نت 4.5 که بیشتر جهت پردازش‌های async اعمال I/O-bound طراحی شده‌است، بر IObservable مقدم است. صرفا اگر نیاز است این Task را با سایر observables ادغام کنید از متد ToObservable برای کار با آن استفاده نمائید.


4) تبدیل IEnumerable به معادل Observable
با این مورد تاکنون آشنا شده‌اید. فقط کافی است متد ToObservable را بر روی یک IEnumerable، جهت تهیه خروجی Observable فراخوانی کرد.


5) تبدیل APM به معادل Observable

APM یا Asynchronous programming model، همان روش کار با متدهای Async با نام‌های BeginXXX و EndXXX است که از نگارش‌های آغازین دات نت به همراه آن بوده‌اند. کار کردن با آن مشکل است و مدیریت آن به همراه پراکندگی‌های بسیاری جهت کار با callbacks آن است. برای تبدیل این نوع روش برنامه نویسی به روش Rx نیز متدهایی پیش بینی شده‌است؛ مانند Observable.FromAsyncPattern.

یک نکته
کتابخانه‌ای به نام Rxx بسیاری از این محصور کننده‌ها را تهیه کرده‌است:
http://Rxx.codeplex.com

ابتدا بسته‌ی نیوگت آن‌را نصب کنید:
 PM> Install-Package Rxx
سپس برای نمونه، برای کار با یک فایل استریم خواهیم داشت:
 using (new FileStream("file.txt", FileMode.Open)
                 .ReadToEndObservable()
                 .Subscribe(x => Console.WriteLine(x.Length)))
{
         Console.ReadKey();
}
متد ReadToEndObservable یکی از متدهای الحاقی کتابخانه‌ی Rxx است.
بازخوردهای دوره
تزریق وابستگی‌ها در فیلترهای ASP.NET MVC
با تشکر از زحمات فراوان شما، راه حل دیگر :
public class StructureMapGlobalFilterProvider : IFilterProvider
    {
        public StructureMapGlobalFilterProvider(IContainer container, GlobalFilterRegistrationList filterList)
        {
            _container = container;
            _filterList = filterList;
        }

        private IContainer _container;
        private GlobalFilterRegistrationList _filterList;

        public IEnumerable<Filter> GetFilters(ControllerContext controllerContext, ActionDescriptor actionDescriptor)
        {
            var filters = new List<Filter>();
            if (_filterList == null || _filterList.Count == 0)
                return filters;
            foreach (GlobalFilterRegistration registration in _filterList)
            {
                var actionFilter = _container.GetInstance(registration.Type);
                var filter = new Filter(actionFilter, FilterScope.Global, registration.Order);
                filters.Add(filter);
            }
            return filters;
        }
    }

    public class GlobalFilterRegistration
    {
        public Type Type { get; set; }
        public int? Order { get; set; }
    }

    public class GlobalFilterRegistrationList : List<GlobalFilterRegistration>
    {
    }

و تنظیمات Global:
 var globalFilterRegistrationList = new GlobalFilterRegistrationList
                {
                    new GlobalFilterRegistration
                    {
                        Type = typeof (LogAttribute),
                        Order
                            = 1
                    }
                };
                container.Configure(x =>
                {
                    x.For<IFilterProvider>().Use<StructureMapGlobalFilterProvider>();
                    x.For<GlobalFilterRegistrationList>().Use(globalFilterRegistrationList);
                });
مطالب دوره‌ها
کتابخانه‌ی FastReflection
در حین توسعه‌ی کتابخانه‌ی PdfReport نیاز به یک کتابخانه‌ی Reflection سریع با پشتیبانی از خواصی خصوصا تو در تو بود. حاصل مطلب « دسترسی سریع به مقادیر خواص توسط Reflection.Emit » تبدیل به کتابخانه‌ی FastReflection ذیل شد که هم اکنون در PdfReport مورد استفاده است:
FastReflection.zip

            // کار با یک لیست جنریک تو در تو
            var list = new List<User>();
            for (int i = 0; i < 100; i++)
            {
                list.Add(new User
                {
                    Id = i+1,
                    Name = "name "+i,
                    Address = new Address
                    {
                        Address1 = "Addr1- "+i,
                        Address2 = "Addr2- "+i
                    }
                });
            }
            foreach (var item in list)
            {
                var propertyValues = new DumpNestedProperties().DumpPropertyValues(item, dumpLevel: 2);
                foreach (var result in propertyValues)
                {
                    Console.WriteLine(result.PropertyName + " -> " + result.PropertyValue);
                }
                Console.WriteLine();
            }
متد DumpPropertyValues ، توسط روش‌های Reflection.Emit تا تعداد سطحی را که مشخص می‌کنید، از شیء ارسالی به آن استخراج می‌کند. مباحث caching و استفاده مجدد از کدهای پویای تولید شده، در آن لحاظ شده و همچنین dumpLevel آن، از stack overflow در حین کار با پروکسی‌های پویای Entity framework جلوگیری می‌کند.
نظرات مطالب
IdentityServer قسمت اول
برای نگارش 4 آن:
.AddOpenIdConnect("oidc", options =>
{
   options.RequireHttpsMetadata = false;
// ...

.AddIdentityServerAuthentication(options =>
{
   options.RequireHttpsMetadata = false;
// ...
برای نگارش 3 آن:
var options = new IdentityServerOptions
            {
                RequireSsl = false
            };
app.UseIdentityServer(options);
نظرات مطالب
خودکارسازی فرآیند نگاشت اشیاء در AutoMapper
یک نکته‌ی تکمیلی
در نگارش‌های جدید AutoMapper می‌توان متد LoadStandardMappings را حذف و با خاصیت CreateMissingTypeMaps جایگزین کرد (نیازی هم به اینترفیس خالی IMapFrom نیست):
var config = new MapperConfiguration(cfg =>
{
    cfg.CreateMissingTypeMaps = true;
نظرات مطالب
ارتقاء به ASP.NET Core 1.0 - قسمت 6 - سرویس‌ها و تزریق وابستگی‌ها
یک نکته‌ی تکمیلی
یک populate اضافی در اینجا باید حذف شود:
private IServiceProvider IocConfig(IServiceCollection services)
        {
            var container = new Container();
            container.Configure(config =>
            {
                //config.Populate(services); ---> اضافی است
            });
            container.Populate(services);
            return container.GetInstance<IServiceProvider>();
        }
نظرات مطالب
EF Code First #3
سلام
آیا روش دیگه برای درج کلید خارجی هست بدون اینکه یک select انجام بدیم و اونو از دیتابیس بخونیم به صورت زیر؟
var user = db.Users.FirstOrDefault(x=>x.UserName == "hamid");

db.Post.Add(new Post
{
      Title = txtTitle.Text,
      Content = txtContent.Text,
      User = user
}
db.SaveChanges();
نظرات مطالب
ASP.NET MVC #8
سورس کامل مثال‌های این سری رو دریافت کنید: MVC_Samples  
جایی که وهله‌ای از اشیاء به View متناظر ارسال می‌شود در اکشن متد مشخص شده است (return View):
public ActionResult Index()
{
    var products = new Products();
    return View(products);  
}
نظرات مطالب
ASP.NET MVC #9
خیر. مشکلی نداره. Guid قابل حدس زدن نیست. همچنین زمان دریافت آن، برای تعیین اعتبار ورودی دریافتی، از نکته زیر استفاده کنید:
var code = new Guid(inputGuid);
اگر معتبر نباشد و فرمت صحیحی نداشته باشد یک exception صادر خواهد شد که ... خوب است چون ادامه پروسه و پردازش رو متوقف خواهد کرد.