مطالب
مروری بر کاربردهای Action و Func - قسمت سوم
در ادامه مثال سوم قسمت قبل، در مورد حذف کدهای تکراری توسط Action و Func، در این قسمت به یک مثال نسبتا پرکاربرد دیگر آن جهت ساده سازی try/catch/finally اشاره خواهد شد.
احتمالا هزاران بار در کدهای خود چنین قطعه کدی را تکرار کرده‌اید:
try {
       // code
} catch(Exception ex) {
       // do something
}
این مورد را نیز می‌توان توسط Actionها کپسوله کرد و پیاده سازی قسمت بدنه try آن‌را به فراخوان واگذار نمود:
void Execute(Action action) {
    try {
       action();
    } catch(Exception ex) {
       // log errors
    }
}
و برای نمونه جهت استفاده از آن خواهیم داشت:
Execute(() => {open a file});

یا اگر عمل انجام شده باید خروجی خاصی را بازگرداند (برخلاف یک Action که خروجی از آن انتظار نمی‌رود)، می‌توان طراحی متد Execute را با Func انجام داد:
public static class SafeExecutor
{
    public static T Execute<T>(Func<T> operation)
    {
        try
        {
            return operation();
        }
        catch (Exception ex)
        {
            // Log Exception
        }
        return default(T);
    }
}
در این حالت فراخوانی متد Execute به نحو زیر خواهد بود:
var data = SafeExecutor.Execute<string>(() =>
{
    // do something
    return "result";
});
و اگر در این بین استثنایی رخ دهد، علاوه بر ثبت جزئیات خطای رخ داده شده، نال را بازگشت خواهد داد.

از همین دست می‌توان به کپسوله سازی منطق «سعی مجدد» در انجام کاری اشاره کرد:
public static class RetryHelper
{
   public static void RetryOperation(Action action, int numRetries, int retryTimeout)
   {
       if( action == null )
           throw new ArgumentNullException("action");

       do
       {
          try {  action(); return;  }
          catch
          { 
              if( numRetries <= 0 ) throw;
              else 
                 Thread.Sleep( retryTimeout );
           }
       } while( numRetries-- > 0 );
   }
}
برای مثال فرض کنید برنامه قرار است اطلاعاتی را از وب دریافت کند. ممکن است در سعی اول آن، خطای اتصال یا در دسترس نبودن لحظه‌ای سایت رخ دهد. در اینجا نیاز خواهد بود تا این عملیات چندین بار تکرار شود؛ که نمونه‌ای از آن‌را در ذیل ملاحظه می‌کنید:
RetryHelper.RetryOperation(() => SomeFunction(), 3, 1000);

مطالب
عبارت using و نحوه استفاده صحیح از آن
مثال ساده زیر را که در مورد تعریف یک کلاس Disposable و سپس استفاده از آن توسط عبارت using است را به همراه سه استثنایی که در این متدها تعریف شده است، در نظر بگیرید:
using System;

namespace TestUsing
{
    public class MyResource : IDisposable
    {
        public void DoWork()
        {
            throw new ArgumentException("A");
        }

        public void Dispose()
        {
            throw new ArgumentException("B");
        }
    }

    public static class TestClass
    {
        public static void Test()
        {
            using (MyResource r = new MyResource())
            {
                throw new ArgumentException("C");
                r.DoWork();
            }
        }
    }
}
به نظر شما قطعه کد زیر چه عبارتی را نمایش می‌دهد؟ C یا B یا A؟
try
{
     TestClass.Test();
}
catch (Exception ex)
{
    Console.WriteLine(ex.Message);
}

پاسخ: برخلاف تصور (که احتمالا C است؛ چون قبل از فراخوانی متد DoWork سبب بروز استثناء شده است)، فقط B را در خروجی مشاهده خواهیم کرد!
و این دقیقا مشکلی است که در حین کار با کتابخانه iTextSharp برای اولین بار با آن مواجه شدم. روش استفاده متداول از iTextSharp به نحو زیر است:
using (var pdfDoc = new Document(PageSize.A4))  
{  
   //todo: ...
}
در این بین هر استثنایی رخ دهد، در لاگ‌های خطای سیستم شما تنها خطاهای مرتبط با خود iTextSharp را مشاهده خواهید کرد و نه مشکل اصلی را که در کدهای ما وجود داشته است. البته این یک مشکل عمومی است و اگر «using statement and suppressed exceptions» را در گوگل جستجو کنید به نتایج مشابه زیادی خواهید رسید.
و خلاصه نتایج هم این است:
اگر به ثبت جزئیات خطاهای سیستم اهمیت می‌دهید (یکی از مهم‌ترین مزیت‌های دات نت نسبت به بسیاری از فریم ورک‌های مشابه که حداکثر خطای 0xABC12EF را نمایش می‌دهند)، از using استفاده نکنید! using در پشت صحنه به try/finally ترجمه می‌شود و بهتر است این مورد را دستی نوشت تا اینکه کامپایلر اینکار را به صورت خودکار انجام دهد.
در اینجا باز هم به یک سری کد تکراری try/finally خواهیم رسید و همانطور که در مباحث کاربردهای Action و Func در این سایت ذکر شد، می‌توان آن‌را تبدیل به کدهایی با قابلیت استفاده مجدد کرد. یک نمونه از پیاده سازی آن‌را در این سایت «C# Using Blocks can Swallow Exceptions » می‌توانید مشاهده کنید که خلاصه آن کلاس زیر است:
using System;

namespace Guard
{
    public static class SafeUsing
    {
        public static void SafeUsingBlock<TDisposable>(this TDisposable disposable, Action<TDisposable> action)
            where TDisposable : IDisposable
        {
            disposable.SafeUsingBlock(action, d => d);
        }

        internal static void SafeUsingBlock<TDisposable, T>(this TDisposable disposable, Action<T> action, Func<TDisposable, T> unwrapper)
            where TDisposable : IDisposable
        {
            try
            {
                action(unwrapper(disposable));
            }
            catch (Exception actionException)
            {
                try
                {
                    disposable.Dispose();
                }
                catch (Exception disposeException)
                {
                    throw new AggregateException(actionException, disposeException);
                }

                throw;
            }

            disposable.Dispose();
        }
    }
}
برای استفاده از کلاس فوق مثلا در حالت بکارگیری iTextSharp خواهیم داشت:
new Document(PageSize.A4).SafeUsingBlock(pdfDoc =>
{
  //todo: ...
});
علاوه بر اینکه SafeUsingBlock یک سری از اعمال تکراری را کپسوله می‌کند، از AggregateException نیز استفاده کرده است (معرفی شده در دات نت 4). به این صورت چندین استثنای رخ داده نیز در سطحی بالاتر قابل دریافت و بررسی خواهند بود و استثنایی در این بین از دست نخواهد رفت.
مطالب
پیاده سازی مکانیسم سعی مجدد (Retry)
فرض کنید در برنامه‌ای که نوشته‌اید، قصد فراخونی یک وب سرویس را دارید. به طور قطع نمی‌توان همیشه انتظار داشت این سرویس مورد نظر بدون هیچ مشکلی اجرا شود و خروجی مورد نظر را بدهد. برای نمونه ممکن است در لحظه فراخوانی متد مورد نظر، اختلالی در شبکه رخ دهد و فراخوانی سرویس شما با مشکل مواجه شود. در چنین مواقعی دو مورد را پیش‌رو داریم: 
- یک: اعلام نتیجه عدم موفق بودن فراخوانی.
- دو: یک (یا چند) بار دیگر، سعی در فراخوانی سرویس مورد نظر کنیم.
مکانیسم سعی مجدد فقط و فقط محدود به فراخوانی وب سرویس‌ها نمی‌شود. برای نمونه می‌توان به ارسال ایمیل، خطا در اجرای یک کوئری T_SQL و مورادی از این قبیل اشاره کرد.
چرا باید سعی مجدد را پیاده سازی کنیم؟ 
عدم وجود امکان سعی مجدد هیچ چیزی را از پروژه شما سلب نمیکند؛ ولی وجود آن یک امکان را به پروژه شما اضافه میکند که تا حدودی باعث سهولت در استفاده از نرم افزار شما خواهد شد.
نباید‌های مکانیسم سعی مجدد
با خواندن مطالب فوق شاید به این موضوع فکر کنید که مکانیسم سعی مجدد امکان خوبی برای پروژه است و همه بخش‌های پروژه را درگیر این مکانیز کنیم. واقعیت این است که استفاده از مکانیسم سعی مجدد بهتر است محدود به بخش هایی از پروژه شود و نه کل پروژه.
پیش نیاز‌ها
تا به این مرحله با «مکانیسم سعی مجدد» بیشتر آشنا شدیم. برای پیاده سازی یک «سعی مجدد» نیازمندیم یک سری موارد را بدانیم:
یک: میزان تعداد دفعات تلاش 
دو: اختلاف بین هر دو  تلاش مجدد (وقفه)
سه: مقدار افزایش وقفه
چهار: سعی مجدد بر اساس نوع Exception

سه مورد اول از لیست  بالا تقریبا برای یک پیاده سازی سعی مجدد پاسخگو می‌باشد. در ادامه ابتدا قصد داریم یک «سعی مجدد ساده» را نوشته و سپس به معرفی یکی از کتابخانه‌های پرکاربرد آن می‌پردازیم.
قطعه کد زیر را در نظر بگیرد که شبیه ساز ارسال ایمیل می‌باشد:
 public class Mailer
    {
        public static bool SendEmail()
        {
            Console.WriteLine("Sending Mail ...");

            // simulate error
            Random rnd = new Random();
            var rndNumber = rnd.Next(1, 10);
            if (rndNumber != 3) // *
                throw new SmtpFailedRecipientException();

            Console.WriteLine("Mail Sent successfully");
            return true;
        }
    }
خط *  برای شبیه  سازی وقوع یک خطا استفاده شده است.
 قطعه کد زیر برای پیاده سازی مکانیزم سعی مجدد می‌باشد:
 public static class Retry
    {
        public static void Do(Action action,TimeSpan retryInterval,int maxAttemptCount = 3)
        {
            Do<object>(() =>
            {
                action();
                return null;
            }, retryInterval, maxAttemptCount);
        }

        public static T Do<T>(Func<T> action,TimeSpan retryInterval,int maxAttemptCount = 3)
        {
            var exceptions = new List<Exception>();

            for (int attempted = 0; attempted < maxAttemptCount; attempted++)
            {
                try
                {
                    if (attempted > 0)
                    {
                        Thread.Sleep(retryInterval);
                    }
                    return action();
                }
                catch (Exception ex)
                {
                    exceptions.Add(ex);
                }
            }
            throw new AggregateException(exceptions);
        }
    }
قطعه کد فوق ساده‌ترین حالت پیاده سازی Retry می‌باشد که به تعداد MaxAttemptCount سعی در فراخوانی متد مورد نظر خواهد کرد.
یادآوری: متد Do با پارامتر Action در پارامتر اول جهت توابعی که مقدار خروجی ندارند می‌باشد.
همانطور که ذکر شد مقدار Interval بهتر است طبق یک مقدار از پیش تعیین شده افزایش یابد تا درخواست‌های ما با بازه زمانی خیلی کوتاهی نسبت به هم اجرا نشوند. برای رفع این مشکل بعد از Sleep می‌توان مقدار Interval را به صورت زیر افزایش داد:
retryInterval= retryInterval.Add(TimeSpan.FromSeconds(10));
همانطور که بیان کردیم ، قطعه کد نوشته شده فوق برای انجام یک Retry بسیار ساده می‌باشد. موارد دیگری را می‌توان به Retry فوق اضافه نمود. برای نمونه اگر Exception رخ داده شده از نوع مورد نظر ما بود، مجدد Retry کند، در غیر اینصورت از ادامه کار منصرف شود. برای نوشتن هندل کردن نوع Exception می‌توانیم از کتابخانه Polly استفاده کنیم.

کتابخانه Polly
Polly یکی از کتابخانه‌های پرکاربرد است و یکی از امکانات آن، «مکانیسم سعی مجدد» آن، به صورت زیر می‌باشد:


در ساده‌ترین حالت، استفاده از Polly همانند زیر است:

var policy = Policy.Handle<SmtpFailedRecipientException>().Retry();
            policy.Execute(Mailer.SendEmail);

متد Retry، دارای Overload‌های مختلفی است که یکی از آنها مقدار تعداد دفعات تلاش را دریافت می‌کند؛ همانند:

var policy = Policy.Handle<SmtpFailedRecipientException>().Retry(5);

لازم به ذکر است که باید دقیقا Exception مورد نظر را در بخش Config به کار ببرید. برای نمونه اگر کد فوق را همانند زیر به کار ببرید، در صورتیکه متد ارسال ایمیل با خطایی مواجه شود، هیچ تلاشی برای اجرای مجدد نخواهد کرد:

   var policy = Policy.Handle<SqlException>().Retry(5);

برای نمونه می‌توان از متد ForEver آن استفاده کرد تا زمانیکه متد مورد نظر Success نشده باشد، سعی در اجرای آن کند:

Policy
  .Handle<DivideByZeroException>()
  .RetryForever()

جهت کسب اطلاعات بیشتر می‌توانید در مخزن کد آن با سایر قابلیت‌های کتابخانه Polly بیشتر آشنا شوید: Github

نظرات مطالب
مروری بر کاربردهای Action و Func - قسمت دوم
یک نکته‌ی تکمیلی: امضای نگارش‌های Task دار و Async این متدها

در حالت اول، Task فراخوانی شده یک خروجی را باز می‌گرداند و در حالت دوم، خروجی آن void است:
    private async Task<T> doSomethingAsync<T>(Func<Task<T>> task)
    {
        var result = default(T);
        try
        {
            result = await task();
        }
        catch (Exception ex)
        {
            // todo: log
        }
        return result;
    }

    private async Task doSomethingAsync(Func<Task> task)
    {
        await task();
    }
با یک چنین کاربردهای نمونه‌ای
    public async Task ExampleAsync()
    {
        await doSomethingAsync<string>(() => Task.FromResult("...."));
        await doSomethingAsync(() => Task.Delay(1000));
    }
مطالب
C# 6 - Exception Filtering
سی‌شارپ نیز مانند بسیاری از زبان‌های شیءگرای دیگر، امکان فیلتر کردن استثناءها را بر اساس نوع آن‌ها، دارا است. برای مثال:
try
{
    // some code to check  ...
}
catch (InvalidOperationException ex)
{
    // do your handling for invalid operation ...
}
catch (IOException ex)
{
    // do your handling for IO error ...
}
در اینجا می‌توان بر اساس نوع استثنای مدنظر، چندین catch را نوشت و مدیریت کرد. اما گاهی از اوقات شاید بهتر باشد بجای مدیریت کلی یک نوع از استثناءها، فقط نوعی خاص را صرفا بر اساس شرایطی مشخص، مدیریت کرد. این قابلیت، تحت عنوان Exception Filtering به C# 6 اضافه شده‌است و شکل کلی آن به صورت ذیل است:
 catch (SomeException ex) when (someConditionIsMet)
{
    // Your handler logic
}
در این حالت ابتدا نوع استثناء بررسی می‌شود و سپس شرطی که در قسمت when ذکر شده‌است. اگر هر دو با هم برقرار بودند، آنگاه این استثنای خاص مدیریت خواهد شد؛ در غیر اینصورت، از مدیریت این نوع استثناء صرفنظر می‌گردد. این قابلیت، از ابتدای ارائه‌ی CLR وجود داشته‌است، اما C#6 تازه شروع به استفاده‌ی از آن کرده‌است (و VB.NET از چند نگارش قبل).

علاوه بر این در اینجا می‌توان چندین بدنه‌ی catch مجزا را به ازای یک نوع استثنای مشخص به همراه whenهای متفاوتی نیز تعریف کرد و از این لحاظ محدودیتی وجود ندارد. فقط در این حالت باید به تقدم و تاخرها دقت داشت. برای نمونه در مثال ذیل، ترکیب چندین شرط متفاوت را بر اساس یک نوع مشخص استثناء، مشاهده می‌کنید. در اینجا اگر برای نمونه شرط ذکر شده‌ی در قسمت when مربوط به catch اولی صادق باشد، همینجا کار خاتمه می‌یابد و سایر catchها بررسی نمی‌شوند:
 catch (SomeDependencyException ex) when (condition1 && condition2)
{
 
}
catch (SomeDependencyException ex) when (condition1)
{
 
}
catch (SomeDependencyException ex)
{
 
}
مورد آخر، حالت catch all را دارد و در صورت شکست دو catch قبلی اجرا می‌شود. اما باید دقت داشت که اگر این catch all بدون شرط و بدون قسمت when را در ابتدا ذکر کنیم، دیگر کار به بررسی سایر catchهای این نوع استثنای خاص نخواهد رسید:
 catch (SomeDependencyException ex)
{
 
}
catch (SomeDependencyException ex) when (condition1 && condition2)
{
 
}
catch (SomeDependencyException ex) when (condition1)
{
 
}
در مثال فوق هیچگاه دو catch تعریف شده‌ی پس از catch all اولی اجرا نمی‌شوند.


لاگ کردن استثناءها در C# 6 بدون مدیریت آن‌ها

به مثال ذیل دقت کنید:
 try
{
    DoSomethingThatMightFail(s);
}
catch (Exception ex) when (Log(ex, "An error occurred"))
{
    // this catch block will never be reached
}

...

static bool Log(Exception ex, string message, params object[] args)
{
   Debug.Print(message, args);
   return false;
}
در قسمت when می‌توان هر متدی که true یا false را برگرداند، فراخوانی کرد. در این مثال، متدی تعریف شده‌است که false بر می‌گرداند. یعنی این استثناء کلی از نوع Exception هرچند به ظاهر دارای قسمت when است و مدیریت شده‌است، اما چون خروجی متد Log قسمت when آن مساوی false است، مدیریت نخواهد شد. یعنی در اینجا می‌توان بدون مدیریت یک استثناء، اطلاعات کامل آن‌را لاگ کرد!


تفاوت C# 6 - Exception Filtering با if/else نوشتن در بدنه‌ی catch چیست؟

تا اینجا به این نتیجه رسیدیم که کدهای if/else دار داخل بدنه‌ی catch کدهای قدیمی را مانند کد ذیل:
try
{
    var request = WebRequest.Create("http://www.google.coom/");
    var response = request.GetResponse();
}
catch (WebException we)
{
    if (we.Status == WebExceptionStatus.NameResolutionFailure)
    {
        //handle DNS error
        return;
    }
    if (we.Status == WebExceptionStatus.ConnectFailure)
    {
        //handle connection error
        return;
    }
 
    throw;
}
می‌توان به شکل جدید C# 6 به همراه when نوشت و تبدیل کرد:
try
{
    var request = WebRequest.Create("http://www.google.coom/");
    var response = request.GetResponse();
}
catch (WebException we) when (we.Status == WebExceptionStatus.NameResolutionFailure)
{
    //Handle NameResolutionFailure Separately
}
catch (WebException we) when (we.Status == WebExceptionStatus.ConnectFailure)
{
    //Handle ConnectFailure Separately
}
اما باید دقت داشت که تفاوت مهم قطعه کد دوم، در مباحث Stack unwinding است. در مثال اولی که if/else داخل بدنه‌ی catch نوشته شده‌است، اطلاعات local محل فراخوانی متدی را که سبب بروز استثناء شده‌است، از دست خواهیم داد؛ اما در مثال دوم خیر.
به این معنا که exception filters سبب Stack unwinding نمی‌شوند. با هربار ورود به بدنه‌ی catch، اصطلاحا عملیات Stack unwinding صورت می‌گیرد. یعنی اطلاعات stack مربوط به متدهای پیش از فراخوانی متدی که سبب بروز استثناء شده‌است، از بین می‌روند. به این ترتیب تشخیص مقادیر متغیرهایی که سبب بروز این استثناء شده‌اند نیز میسر نخواهد بود و دیگر نمی‌توان با قطعیت عنوان کرد که چه مقادیری و چه اطلاعاتی سبب بروز این مشکل شده‌اند. اما در حالت exception filters در قسمت when آن هنوز وارد بدنه‌ی catch نشده‌ایم. در اینجا دسترسی کاملی به اطلاعات stack جاری و مقادیر متغیرهای محلی که سبب بروز این استثناء شده‌اند وجود دارد.

تفاوت stack با stack trace چیست؟ stack قطعه‌ای از حافظه‌است که اطلاعاتی در مورد نحوه‌ی فراخوانی متدها، آدرس بازگشتی آن‌ها، آرگومان و همچنین متغیرهای محلی آن‌ها را دارا است. اما stack trace تنها یک رشته‌است و بیانگر نام متدهایی است که هم اکنون بر روی stack قرار دارند. احتمالا پیشتر خوانده بودید که فراخوانی throw داخل بدنه‌ی catch سبب حفظ stack trace می‌شود و اگر throw ex صورت گیرد، این اطلاعات از دست می‌روند و بازنویسی می‌شوند. اما در C# 6 امکان حفظ کل اطلاعات stack به همراه exception filtering میسر شده‌است.
نظرات مطالب
انجام کارهای زمانبندی شده در برنامه‌های ASP.NET توسط DNT Scheduler
یک متد الحاقی لاگ ELMAH را ایجاد کنید:
using System;
using System.Text;
using Elmah;

namespace Common.WebToolkit
{
    public static class ElmahLogEx
    {
        public static void LogException(this string ex)
        {
            if (string.IsNullOrWhiteSpace(ex))
                return;
            LogException(new Exception(ex));
        }

        public static void LogException(this Exception ex)
        {
            if (ex == null) return;
            try
            {
                ErrorSignal.FromCurrentContext().Raise(ex);
            }
            catch
            {
                ErrorLog.GetDefault(null).Log(new Error(ex));
            }
        }
    }
}
سپس
- در کتابخانه‌ی فوق به قسمت ScheduledTasksCoordinator.Current.OnUnexpectedException هم دقت داشته باشد؛ مطابق مثال ارائه شده. این موارد را هم لاگ کنید:
 ScheduledTasksCoordinator.Current.OnUnexpectedException =
                    (exception, scheduledTask) => (scheduledTask.Name + ":" + exception).LogException();
- ابتدا و انتهای هر Task را لاگ کنید (متد الحاقی فوق را به صورت معمولی و با پیام‌هایی مشخص، در ابتدا و انتهای هر Task فراخوانی کنید؛ تا در لاگ‌های ELMAH ظاهر شوند).
- شروع به کار برنامه و خاتمه‌ی آن‌را لاگ کنید (متد الحاقی فوق را با پیام‌هایی مشخص، در متدهای Application_Start و Application_End فایل Global.asax.cs فراخوانی کنید تا مشخص شود که آیا برنامه خاتمه یافته‌است یا خیر).
مطالب
طراحی و پیاده سازی زیرساختی برای مدیریت خطاهای حاصل از Business Rule Validationها در ServiceLayer
بعد از انتشار مطلب «Defensive Programming - بازگشت نتایج قابل پیش بینی توسط متدها»، بخصوص بخش نظرات آن و همچنین R&D در ارتباط با موضوع مورد بحث، در نهایت قصد دارم نتایج بدست آماده را به اشتراک بگذارم.

پیش نیازها
در بخش نهایی مطلب «Defensive Programming - بازگشت نتایج قابل پیش بینی توسط متدها » پیشنهادی را برای استفاده از استثناءها برای bubble up کردن یکسری پیغام از داخلی‌ترین یا پایین‌ترین لایه، تا لایه Presentation، ارائه دادیم:
استفاده از Exception برای نمایش پیغام برای کاربر نهایی 
با صدور یک استثناء و مدیریت سراسری آن در بالاترین (خارجی ترین) لایه و نمایش پیغام مرتبط با آن به کاربر نهایی، می‌توان از آن به عنوان ابزاری برای ارسال هر نوع پیغامی به کاربر نهایی استفاده کرد. اگر قوانین تجاری با موفقیت برآورده نشده‌اند یا لازم است به هر دلیلی یک پیغام مرتبط با یک اعتبارسنجی تجاری را برای کاربر نمایش دهید، این روش بسیار کارساز می‌باشد و با یکبار وقت گذاشتن برای توسعه زیرساخت برای این موضوع، به عنوان یک Cross Cutting Concern تحت عنوان Exception Management، آزادی عمل زیادی در ادامه توسعه سیستم خود خواهید داشت. 

اگر مطالب پیش نیاز را مطالعه کنید، قطعا روش مطرح شده را انتخاب نخواهید کرد؛ به همین دلیل به دنبال راه حل صحیح برخورد با این سناریوها بودم که نتیجه آن را در ادامه خواهیم دید.

راه حل صحیح برای برخورد با این سناریوها بازگشت یک Result می‌باشد که در مطلب قبلی هم تحت عنوان OperationResult مطرح شد. 


کلاس Result
    public class Result
    {
        private static readonly Result SuccessResult = new Result(true, null);

        protected Result(bool succeeded, string message)
        {
            if (succeeded)
            {
                if (message != null)
                    throw new ArgumentException("There should be no error message for success.", nameof(message));
            }
            else
            {
                if (message == null)
                    throw new ArgumentNullException(nameof(message), "There must be error message for failure.");
            }

            Succeeded = succeeded;
            Error = message;
        }

        public bool Succeeded { get; }
        public string Error { get; }

        [DebuggerStepThrough]
        public static Result Success()
        {
            return SuccessResult;
        }

        [DebuggerStepThrough]
        public static Result Failed(string message)
        {
            return new Result(false, message);
        }

        [DebuggerStepThrough]
        public static Result<T> Failed<T>(string message)
        {
            return new Result<T>(default, false, message);
        }

        [DebuggerStepThrough]
        public static Result<T> Success<T>(T value)
        {
            return new Result<T>(value, true, string.Empty);
        }

        [DebuggerStepThrough]
        public static Result Combine(string seperator, params Result[] results)
        {
            var failedResults = results.Where(x => !x.Succeeded).ToList();

            if (!failedResults.Any())
                return Success();

            var error = string.Join(seperator, failedResults.Select(x => x.Error).ToArray());
            return Failed(error);
        }

        [DebuggerStepThrough]
        public static Result Combine(params Result[] results)
        {
            return Combine(", ", results);
        }

        [DebuggerStepThrough]
        public static Result Combine<T>(params Result<T>[] results)
        {
            return Combine(", ", results);
        }

        [DebuggerStepThrough]
        public static Result Combine<T>(string seperator, params Result<T>[] results)
        {
            var untyped = results.Select(result => (Result) result).ToArray();
            return Combine(seperator, untyped);
        }

        public override string ToString()
        {
            return Succeeded
                ? "Succeeded"
                : $"Failed : {Error}";
        }
    }

مشابه کلاس بالا، در فریمورک ASP.NET Identity کلاسی تحت عنوان IdentityResult برای همین منظور در نظر گرفته شده‌است.

پراپرتی Succeeded نشان دهنده موفقت آمیز بودن یا عدم موفقیت عملیات (به عنوان مثال یک متد ApplicationService) می‌باشد. پراپرتی Error دربرگیرنده پیغام خطایی می‌باشد که قبلا از طریق Message مربوط به یک استثناء صادر شده، در اختیار بالاترین لایه قرار می‌گرفت. با استفاده از متد Combine، امکان ترکیب چندین Result حاصل از عملیات مختلف را خواهید داشت. متدهای استاتیک Failed و Success هم برای درگیر نشدن برای وهله سازی از کلاس Result در نظر گرفته شده‌اند.

متد GetForEdit مربوط به MeetingService را در نظر بگیرید. به عنوان مثال وظیفه این متد بازگشت یک MeetingEditModel می‌باشد؛ اما با توجه به یکسری قواعد تجاری، به‌عنوان مثال «امکان ویرایش جلسه‌ای که پابلیش نهایی شده‌است، وجود ندارد و ...» لازم است خروجی این متد نیز در صورت Fail شدن، دلیل آن را به مصرف کننده ارائه دهد. از این رو کلاس جنریک Result را به شکل زیر خواهیم داشت:

    public class Result<T> : Result
    {
        private readonly T _value;

        protected internal Result(T value, bool succeeded, string error)
            : base(succeeded, error)
        {
            _value = value;
        }

        public T Value
        {
            get
            {
                if (!Succeeded)
                    throw new InvalidOperationException("There is no value for failure.");

                return _value;
            }
        }
    }
حال با استفاده از کلاس بالا امکان مهیا کردن خروجی به همراه نتیجه اجرای متد را خواهیم داشت.
در ادامه با استفاده از تعدادی متد الحاقی بر فراز کلاس Result، روش Railway-oriented Programming را که یکی از روش‌های برنامه نویسی تابعی برای مدیریت خطاها است، در سی شارپ اعمال خواهیم کرد. 
    public static class ResultExtensions
    {
        public static Result<TK> OnSuccess<T, TK>(this Result<T> result, Func<T, TK> func)
        {
            return !result.Succeeded ? Result.Failed<TK>(result.Error) : Result.Success(func(result.Value));
        }

        public static Result<T> Ensure<T>(this Result<T> result, Func<T, bool> predicate, string message)
        {
            if (!result.Succeeded)
                return Result.Failed<T>(result.Error);

            return !predicate(result.Value) ? Result.Failed<T>(message) : Result.Success(result.Value);
        }

        public static Result<TK> Map<T, TK>(this Result<T> result, Func<T, TK> func)
        {
            return !result.Succeeded ? Result.Failed<TK>(result.Error) : Result.Success(func(result.Value));
        }

        public static Result<T> OnSuccess<T>(this Result<T> result, Action<T> action)
        {
            if (result.Succeeded) action(result.Value);

            return result;
        }

        public static T OnBoth<T>(this Result result, Func<Result, T> func)
        {
            return func(result);
        }

        public static Result OnSuccess(this Result result, Action action)
        {
            if (result.Succeeded) action();

            return result;
        }

        public static Result<T> OnSuccess<T>(this Result result, Func<T> func)
        {
            return !result.Succeeded ? Result.Failed<T>(result.Error) : Result.Success(func());
        }

        public static Result<TK> OnSuccess<T, TK>(this Result<T> result, Func<T, Result<TK>> func)
        {
            return !result.Succeeded ? Result.Failed<TK>(result.Error) : func(result.Value);
        }

        public static Result<T> OnSuccess<T>(this Result result, Func<Result<T>> func)
        {
            return !result.Succeeded ? Result.Failed<T>(result.Error) : func();
        }

        public static Result<TK> OnSuccess<T, TK>(this Result<T> result, Func<Result<TK>> func)
        {
            return !result.Succeeded ? Result.Failed<TK>(result.Error) : func();
        }

        public static Result OnSuccess<T>(this Result<T> result, Func<T, Result> func)
        {
            return !result.Succeeded ? Result.Failed(result.Error) : func(result.Value);
        }

        public static Result OnSuccess(this Result result, Func<Result> func)
        {
            return !result.Succeeded ? result : func();
        }

        public static Result Ensure(this Result result, Func<bool> predicate, string message)
        {
            if (!result.Succeeded)
                return Result.Failed(result.Error);

            return !predicate() ? Result.Failed(message) : Result.Success();
        }

        public static Result<T> Map<T>(this Result result, Func<T> func)
        {
            return !result.Succeeded ? Result.Failed<T>(result.Error) : Result.Success(func());
        }


        public static TK OnBoth<T, TK>(this Result<T> result, Func<Result<T>, TK> func)
        {
            return func(result);
        }

        public static Result<T> OnFailure<T>(this Result<T> result, Action action)
        {
            if (!result.Succeeded) action();

            return result;
        }

        public static Result OnFailure(this Result result, Action action)
        {
            if (!result.Succeeded) action();

            return result;
        }

        public static Result<T> OnFailure<T>(this Result<T> result, Action<string> action)
        {
            if (!result.Succeeded) action(result.Error);

            return result;
        }

        public static Result OnFailure(this Result result, Action<string> action)
        {
            if (!result.Succeeded) action(result.Error);

            return result;
        }
    }
OnSuccess برای انجام عملیاتی در صورت موفقیت آمیز بودن نتیجه یک متد، OnFailed برای انجام عملیاتی در صورت عدم موفقت آمیز بودن نتیجه یک متد و OnBoth در هر صورت، عملیات مورد نظر شما را اجرا خواهد کرد. به عنوان مثال:
[HttpPost, AjaxOnly, ValidateAntiForgeryToken, ValidateModelState]
public virtual async Task<ActionResult> Create([Bind(Prefix = "Model")]MeetingCreateModel model)
{
    var result = await _service.CreateAsync(model);

    return result.OnSuccess(() => { })
                 .OnFailure(() => { })
                 .OnBoth(r => r.Succeeded ? InformationNotification("Messages.Save.Success") : ErrorMessage(r.Error));

}

یا در حالت‌های پیچیده تر:

var result = await _service.CreateAsync(new TenantAwareEntityCreateModel());

return Result.Combine(result, Result.Success(), Result.Failed("نتیجه یک متد دیگر به عنوان مثال"))
    .OnSuccess(() => { })
    .OnFailure(() => { })
    .OnBoth(r => r.Succeeded ? Json("OK") : Json(r.Error));


ترکیب با الگوی Maybe یا Option

قبلا مطلبی در رابطه با الگوی Maybe در سایت منتشر شده‌است. در نظرات آن مطلب، یک پیاده سازی به شکل زیر مطرح کردیم:
    public struct Maybe<T> : IEquatable<Maybe<T>>
        where T : class
    {
        private readonly T _value;

        private Maybe(T value)
        {
            _value = value;
        }

        public bool HasValue => _value != null;
        public T Value => _value ?? throw new InvalidOperationException();
        public static Maybe<T> None => new Maybe<T>();


        public static implicit operator Maybe<T>(T value)
        {
            return new Maybe<T>(value);
        }

        public static bool operator ==(Maybe<T> maybe, T value)
        {
            return maybe.HasValue && maybe.Value.Equals(value);
        }

        public static bool operator !=(Maybe<T> maybe, T value)
        {
            return !(maybe == value);
        }

        public static bool operator ==(Maybe<T> left, Maybe<T> right)
        {
            return left.Equals(right);
        }

        public static bool operator !=(Maybe<T> left, Maybe<T> right)
        {
            return !(left == right);
        }

        /// <inheritdoc />
        /// <summary>
        ///     Avoid boxing and Give type safety
        /// </summary>
        /// <param name="other"></param>
        /// <returns></returns>
        public bool Equals(Maybe<T> other)
        {
            if (!HasValue && !other.HasValue)
                return true;

            if (!HasValue || !other.HasValue)
                return false;

            return _value.Equals(other.Value);
        }

        /// <summary>
        ///     Avoid reflection
        /// </summary>
        /// <param name="obj"></param>
        /// <returns></returns>
        public override bool Equals(object obj)
        {
            if (obj is T typed)
            {
                obj = new Maybe<T>(typed);
            }

            if (!(obj is Maybe<T> other)) return false;

            return Equals(other);
        }

        /// <summary>
        ///     Good practice when overriding Equals method.
        ///     If x.Equals(y) then we must have x.GetHashCode()==y.GetHashCode()
        /// </summary>
        /// <returns></returns>
        public override int GetHashCode()
        {
            return HasValue ? _value.GetHashCode() : 0;
        }

        public override string ToString()
        {
            return HasValue ? _value.ToString() : "NO VALUE";
        }
    }

متد الحاقی زیر را در نظر بگیرید:
public static Result<T> ToResult<T>(this Maybe<T> maybe, string message)
    where T : class
{
    return !maybe.HasValue ? Result.Failed<T>(message) : Result.Success(maybe.Value);
}

فرض کنید خروجی متدی که در لایه سرویس مورد استفاده قرار می‌گیرد، Maybe باشد. در این حالت می‌توان با متد الحاقی بالا آن را به یک Result تبدیل کرد و در اختیار لایه بالاتر قرار داد. 
Result<Customer> customerResult = _customerRepository.GetById(model.Id)
    .ToResult("Customer with such Id is not found: " + model.Id);

همچنین متدهای الحاقی زیر را نیز برای ساختار داده Maybe می‌توان در نظر گرفت:

        public static T GetValueOrDefault<T>(this Maybe<T> maybe, T defaultValue = default)
            where T : class
        {
            return maybe.GetValueOrDefault(x => x, defaultValue);
        }

        public static TK GetValueOrDefault<T, TK>(this Maybe<T> maybe, Func<T, TK> selector, TK defaultValue = default)
            where T : class
        {
            return maybe.HasValue ? selector(maybe.Value) : defaultValue;
        }

        public static Maybe<T> Where<T>(this Maybe<T> maybe, Func<T, bool> predicate)
            where T : class
        {
            if (!maybe.HasValue)
                return default(T);

            return predicate(maybe.Value) ? maybe : default(T);
        }

        public static Maybe<TK> Select<T, TK>(this Maybe<T> maybe, Func<T, TK> selector)
            where T : class
            where TK : class
        {
            return !maybe.HasValue ? default : selector(maybe.Value);
        }

        public static Maybe<TK> Select<T, TK>(this Maybe<T> maybe, Func<T, Maybe<TK>> selector)
            where T : class
            where TK : class
        {
            return !maybe.HasValue ? default(TK) : selector(maybe.Value);
        }

        public static void Execute<T>(this Maybe<T> maybe, Action<T> action)
            where T : class
        {
            if (!maybe.HasValue)
                return;

            action(maybe.Value);
        }
    }

پیشنهادات
  • استفاده از الگوی Specification برای زمانیکه منطقی قرار است هم برای اعتبارسنجی درون حافظه‌ای استفاده شود و همچنین برای اعمال فیلتر برای واکشی داده‌ها؛ در واقع دو Use-case استفاده از این الگو حداقل یکجا وجود داشته باشد. استفاده از این مورد برای Domain Validation در سناریوهای پیچیده بسیار پیشنهاد می‌شود.
  • استفاده از Domain Eventها برای اعمال اعتبارسنجی‌های مرتبط با قواعد تجاری تنها در شرایط inter-application communication و در شرایط inner-application communication به صورت صریح، اعتبارسنجی‌های مرتبط با قواعد تجاری را در جریان اصلی برنامه پیاده سازی کنید. 

با تشکر از آقای «محسن خان»
نظرات مطالب
بررسی اینترفیس ICommand در WPF
برای عمومی‌تر کردن پیاده سازی ICommand یک چنین کلاسی را می‌توان تدارک دید:
using System;
using System.Windows.Input;

namespace Common.Mvvm
{
    public class DelegateCommand<T> : ICommand
    {
        readonly Func<T, bool> _canExecute;
        readonly Action<T> _executeAction;

        public DelegateCommand(Action<T> executeAction, Func<T, bool> canExecute = null)
        {
            if (executeAction == null)
                throw new ArgumentNullException("executeAction");

            _executeAction = executeAction;
            _canExecute = canExecute;
        }

        public event EventHandler CanExecuteChanged
        {
            add { if (_canExecute != null) CommandManager.RequerySuggested += value; }
            remove { if (_canExecute != null) CommandManager.RequerySuggested -= value; }
        }

        public bool CanExecute(object parameter)
        {
            return _canExecute == null || _canExecute((T)parameter);
        }

        public void Execute(object parameter)
        {
            _executeAction((T)parameter);
        }
    }
}
و بعد برای استفاده‌ی از آن، به صورت یک خاصیت عمومی در سطح ViewModel تعریف می‌شود:
public DelegateCommand<object> DoCopyAllLines { set; get; }
سپس وهله سازی آن در سازنده‌ی کلاس:
DoCopyAllLines = new DelegateCommand<object>(CopyAllLines, info => true);
و بعد برای پیاده سازی متد execute آن:
private void CopyAllLines(object data)
{
   // ...
}
مطالب دوره‌ها
مدیریت استثناءها در حین استفاده از واژه‌های کلیدی async و await
زمانیکه یک متد async، یک Task یا Task of T (نسخه‌ی جنریک Task) را باز می‌گرداند، کامپایلر سی‌شارپ به صورت خودکار تمام استثناءهای رخ داده درون متد را دریافت کرده و از آن برای تغییر حالت Task به اصطلاحا faulted state استفاده می‌کند. همچنین زمانیکه از واژه‌ی کلیدی await استفاده می‌شود، کدهایی که توسط کامپایلر تولید می‌شوند، عملا مباحث Continue موجود در TPL یا Task parallel library معرفی شده در دات نت 4 را پیاده سازی می‌کنند و نهایتا نتیجه‌ی Task را در صورت وجود، دریافت می‌کند. زمانیکه نتیجه‌ی یک Task مورد استفاده قرار می‌گیرد، اگر استثنایی وجود داشته باشد، مجددا صادر خواهد شد. برای مثال اگر خروجی یک متد async از نوع Task of T باشد، امکان استفاده از خاصیتی به نام Result نیز برای دسترسی به نتیجه‌ی آن وجود دارد:
using System.Threading.Tasks;

namespace Async05
{
    class Program
    {
        static void Main(string[] args)
        {
            var res = doSomethingAsync().Result;
        }

        static async Task<int> doSomethingAsync()
        {
            await Task.Delay(1);
            return 1;
        }
    }
}
در این مثال یکی از روش‌های استفاده از متدهای async را در یک برنامه‌ی کنسول مشاهده می‌کنید. هر چند خروجی متد doSomethingAsync از نوع Task of int است، اما مستقیما یک int بازگشت داده شده است. تبدیلات نهایی در اینجا توسط کامپایلر انجام می‌شود. همچنین نحوه‌ی استفاده از خاصیت Result را نیز در متد Main مشاهده می‌کنید.
البته باید دقت داشت، زمانیکه از خاصیت Result استفاده می‌شود، این متد همزمان عمل خواهد کرد و نه غیرهمزمان (ترد جاری را بلاک می‌کند؛ یکی از موارد مجاز استفاده از آن در متد Main برنامه‌های کنسول است). همچنین اگر در متد doSomethingAsync استثنایی رخ داده باشد، این استثناء زمان استفاده از Result، به صورت یک AggregateException مجددا صادر خواهد شد. وجود کلمه‌ی Aggregate در اینجا به علت امکان استفاده‌ی تجمعی و ترکیب چندین Task باهم و داشتن چندین شکست و استثنای ممکن است.
همچنین اگر از کلمه‌ی کلیدی await بر روی یک faulted task استفاده کنیم، AggregateException صادر نمی‌شود. در این حالت کامپایلر AggregateException را بررسی کرده و آن‌را تبدیل به یک Exception متداول و معمول کدهای دات نت می‌کند. به عبارتی سعی شده‌است در این حالت، رفتار کدهای async را شبیه به رفتار کدهای متداول همزمان شبیه سازی کنند.


یک مثال

در اینجا توسط متد getTitleAsync، اطلاعات یک صفحه‌ی وب به صورت async دریافت شده و سپس عنوان آن استخراج می‌شود. در متد showTitlesAsync نیز از آن استفاده شده و در طی یک حلقه، چندین وب سایت مورد بررسی قرار خواهند گرفت. چون متد getTitleAsync از نوع async تعریف شده‌است، فراخوان آن نیز باید async تعریف شود تا بتوان از واژه‌ی کلیدی  await برای کار با آن استفاده کرد.
نهایتا در متد Main برنامه، وظیفه‌ی غیرهمزمان showTitlesAsync اجرا شده و تا پایان عملیات آن صبر می‌شود. چون خروجی آن از نوع Task است و نه Task of T، در اینجا دیگر خاصیت Result قابل دسترسی نیست. متد Wait نیز ترد جاری را همانند خاصیت Result بلاک می‌کند.
using System;
using System.Collections.Generic;
using System.Net;
using System.Text.RegularExpressions;
using System.Threading.Tasks;

namespace Async05
{
    class Program
    {
        static void Main(string[] args)
        {
            var task = showTitlesAsync(new[]
            {
                "http://www.google.com",
                "https://www.dntips.ir"
            });
            task.Wait();

            Console.WriteLine();
            Console.WriteLine("Press any key to exit...");
            Console.ReadKey();
        }

        static async Task showTitlesAsync(IEnumerable<string> urls)
        {
            foreach (var url in urls)
            {
                var title = await getTitleAsync(url);
                Console.WriteLine(title);
            }
        }

        static async Task<string> getTitleAsync(string url)
        {
            var data = await new WebClient().DownloadStringTaskAsync(url);
            return getTitle(data);
        }

        private static string getTitle(string data)
        {
            const string patternTitle = @"(?s)<title>(.+?)</title>";
            var regex = new Regex(patternTitle);
            var mc = regex.Match(data);
            return mc.Groups.Count == 2 ? mc.Groups[1].Value.Trim() : string.Empty;
        }
    }
}
کلیه عملیات مبتنی برشبکه، همیشه مستعد به بروز خطا هستند. قطعی ارتباط یا حتی کندی آن می‌توانند سبب بروز استثناء شوند.
برنامه را در حالت عدم اتصال به اینترنت اجرا کنید. استثنای صادر شده، در متد task.Wait ظاهر می‌شود (چون متدهای async ترد جاری را خالی کرده‌اند):


و اگر در اینجا بر روی لینک View details کلیک کنیم، در inner exception حاصل، خطای واقعی قابل مشاهده است:


همانطور که ملاحظه می‌کنید، استثنای صادر شده از نوع System.AggregateException است. به این معنا که می‌تواند حاوی چندین استثناء باشد که در اینجا تعداد آن‌ها با عدد یک مشخص شده‌است. بنابراین در این حالات، بررسی inner exception را فراموش نکنید.

در ادامه داخل حلقه‌ی foreach متد showTitlesAsync، یک try/catch قرار می‌دهیم:
        static async Task showTitlesAsync(IEnumerable<string> urls)
        {
            foreach (var url in urls)
            {
                try
                {
                    var title = await getTitleAsync(url);
                    Console.WriteLine(title);
                }
                catch (Exception ex)
                {
                    Console.WriteLine(ex);
                }
            }
        }
اینبار اگر برنامه را اجرا کنیم، خروجی ذیل را در صفحه می‌توان مشاهده کرد:
 System.Net.WebException: The remote server returned an error: (502) Bad Gateway.
System.Net.WebException: The remote server returned an error: (502) Bad Gateway.

Press any key to exit...
در اینجا دیگر خبری از AggregateException نبوده و استثنای واقعی رخ داده در متد await شده بازگشت داده شده‌است. کار واژه‌ی کلیدی await در اینجا، بررسی استثنای رخ داده در متد async فراخوانی شده و بازگشت آن به جریان متداول متد جاری است؛ تا نتیجه‌ی عملیات همانند یک کد کامل همزمان به نظر برسد. به این ترتیب کامپایلر توانسته است رفتار بروز استثناءها را در کدهای همزمان و غیرهمزمان یک دست کند. دقیقا مانند حالتی که یک متد معمولی در این بین فراخوانی شده و استثنایی در آن رخ داده‌است.


مدیریت تمام inner exceptionهای رخ داده در پردازش‌های موازی

همانطور که عنوان شد، await تنها یک استثنای حاصل از Task در حال اجرا را به کد فراخوان بازگشت می‌دهد. در این حالت اگر این Task، چندین شکست را گزارش دهد، چطور باید برای دریافت تمام آن‌ها اقدام کرد؟ برای مثال استفاده از Task.WhenAll می‌تواند شامل چندین استثنای حاصل از چندین Task باشد، ولی await تنها اولین استثنای دریافتی را بازگشت می‌دهد. اما اگر از خاصیتی مانند Result یا متد Wait استفاده شود، یک AggregateException حاصل تمام استثناءها را دریافت خواهیم کرد. بنابراین هرچند await تنها اولین استثنای دریافتی را بازگشت می‌دهد، اما می‌توان به Taskهای مرتبط مراجعه کرد و سپس بررسی نمود که آیا استثناهای دیگری نیز وجود دارند یا خیر؟
برای نمونه در مثال فوق، حلقه‌ی foreach تشکیل شده آنچنان بهینه نیست. از این جهت که هر بار تنها یک سایت را بررسی می‌کند، بجای اینکه مانند مرورگرها چندین ترد را به یک یا چند سایت باز کرده و نتایج را دریافت کند.
البته انجام کارها به صورت موازی همیشه ایده‌ی خوبی نیست ولی حداقل در این حالت خاص که با یک یا چند سرور راه دور کار می‌کنیم، درخواست‌های همزمان دریافت اطلاعات، سبب کارآیی بهتر برنامه و بالا رفتن سرعت اجرای آن می‌شوند. اما مثلا در حالتیکه با سخت دیسک سیستم کار می‌کنیم، اجرای موازی کارها نه تنها کمکی نخواهد کرد، بلکه سبب خواهد شد تا مدام drive head در مکان‌های مختلفی مشغول به حرکت شده و در نتیجه کارآیی آن کاهش یابد.
برای ترکیب چندین Task، ویژگی خاصی به زبان سی‌شارپ اضافه نشده‌، زیرا نیازی نبوده است. برای این حالت تنها کافی است از متد Task.WhenAll، برای ساخت یک Task مرکب استفاده کرد. سپس می‌توان واژه‌ی کلیدی await را بر روی این Task مرکب فراخوانی کرد.
همچنین می‌توان از متد ContinueWith یک Task مرکب نیز برای جلوگیری از بازگشت صرفا اولین استثنای رخ داده توسط کامپایلر، استفاده کرد. در این حالت امکان دسترسی به خاصیت Result آن به سادگی میسر می‌شود که حاوی AggregateException کاملی است.


اعتبارسنجی آرگومان‌های ارسالی به یک متد async

زمان اعتبارسنجی آرگومان‌های ارسالی به متدهای async مهم است. بعضی از مقادیر را نمی‌توان بلافاصله اعتبارسنجی کرد؛ مانند مقادیری که نباید نال باشند. تعدادی دیگر نیز پس از انجام یک Task زمانبر مشخص می‌شوند که معتبر بوده‌اند یا خیر. همچنین فراخوان‌های این متدها انتظار دارند که متدهای async بلافاصله بازگشت داده شده و ترد جاری را خالی کنند. بنابراین اعتبارسنجی‌های آن‌ها باید با تاخیر انجام شود. در این حالات، دو نوع استثنای آنی و به تاخیر افتاده را شاهد خواهیم بود. استثنای آنی زمان شروع به کار متد صادر می‌شود و استثنای به تاخیر افتاده در حین دریافت نتایج از آن دریافت می‌گردد. باید دقت داشت کلیه استثناهای صادر شده در بدنه‌ی یک متد async، توسط کامپایلر به عنوان یک استثنای به تاخیر افتاده گزارش داده می‌شود. بنابراین اعتبارسنجی‌های آرگومان‌ها را بهتر است در یک متد سطح بالای غیر async انجام داد تا بلافاصله بتوان استثناءهای حاصل را دریافت نمود.


از دست دادن استثناءها

فرض کنید مانند مثال قسمت قبل، دو وظیفه‌ی async آغاز شده و نتیجه‌ی آن‌ها پس از await هر یک، با هم جمع زده می‌شوند. در این حالت اگر کل عملیات را داخل یک قطعه کد try/catch قرار دهیم، اولین await ایی که یک استثناء را صادر کند، صرفنظر از وضعیت await دوم، سبب اجرای بدنه‌ی catch می‌شود. همچنین انجام این عملیات بدین شکل بهینه نیست. زیرا ابتدا باید صبر کرد تا اولین Task تمام شود و سپس دومین Task شروع گردد و به این ترتیب پردازش موازی Taskها را از دست خواهیم داد. در یک چنین حالتی بهتر است از متد await Task.WhenAll استفاده شود. در اینجا دو Task مورد نیاز، تبدیل به یک Task مرکب می‌شوند. این Task مرکب تنها زمانی خاتمه می‌یابد که هر دوی Task اضافه شده به آن، خاتمه یافته باشند. به این ترتیب علاوه بر اجرای موازی Taskها، امکان دریافت استثناءهای هر کدام را نیز به صورت تجمعی خواهیم داشت.
مشکل! همانطور که پیشتر نیز عنوان شد، استفاده از await در اینجا سبب می‌شود تا کامپایلر تنها اولین استثنای دریافتی را بازگشت دهد و نه یک AggregateException نهایی را. روش حل آن‌را نیز عنوان کردیم. در این حالت بهتر است از متد ContinueWith و سپس استفاده از خاصیت Result آن برای دریافت کلیه استثناءها کمک گرفت.
حالت دوم از دست دادن استثناءها زمانی‌است که یک متد async void را ایجاد می‌کنید. در این حالات بهتر است از یک Task بجای بازگشت void استفاده شود. تنها علت وجودی async voidها، استفاده از آن‌ها در روال‌های رویدادگردان UI است (در سایر حالات code smell درنظر گرفته می‌شود).
public async Task<double> GetSum2Async()
        {
            try
            {
                var task1 = GetNumberAsync();
                var task2 = GetNumberAsync();

                var compositeTask = Task.WhenAll(task1, task2);
                await compositeTask.ContinueWith(x => { });

                return compositeTask.Result[0] + compositeTask.Result[1];
            }
            catch (Exception ex)
            {
                //todo: log ex
                throw;
            }
        }
در مثال فوق، نحوه‌ی ترکیب دو Task را توسط Task.WhenAll جهت اجرای موازی و سپس اعمال نکته‌ی یک ContinueWith خالی و در ادامه استفاده از Result نهایی را جهت دریافت تمامی استثناءهای حاصل، مشاهده می‌کنید.
در این مثال دیگر مانند مثال قسمت قبل
        public async Task<double> GetSumAsync()
        {
            var leftOperand = await GetNumberAsync();
            var rightOperand = await GetNumberAsync();

            return leftOperand + rightOperand;
        }
هر بار صبر نشده‌است تا یک Task تمام شود و سپس Task بعدی شروع گردد.
با کمک متد Task.WhenAll ترکیب آن‌ها ایجاد و سپس با فراخوانی await، سبب اجرای موازی چندین Task با هم شده‌ایم.


مدیریت خطاهای مدیریت نشده

ابتدا مثال زیر را در نظر بگیرید:
using System;
using System.Threading.Tasks;

namespace Async01
{
    class Program
    {
        static void Main(string[] args)
        {
            Test2();
            Test();
            Console.ReadLine();

            GC.Collect();
            GC.WaitForPendingFinalizers();

            Console.ReadLine();
        }

        public static async Task Test()
        {
            throw new Exception();
        }

        public static async void Test2()
        {
            throw new Exception();
        }
    }
}
در این مثال دو متد که یکی async Task و دیگری async void است، تعریف شده‌اند.
اگر برنامه را کامپایل کنید، کامپایلر بر روی سطر فراخوانی متد Test اخطار زیر را صادر می‌کند. البته برنامه بدون مشکل کامپایل خواهد شد.
 Warning  1  Because this call is not awaited, execution of the current method continues before the call is completed.
Consider applying the 'await' operator to the result of the call.
اما چنین اخطاری در مورد async void صادر نمی‌شود. بنابراین ممکن است جایی در کدها، فراخوانی await فراموش شود. اگر خروجی متد شما ازنوع Task و مشتقات آن باشد، کامپایلر حتما اخطاری را جهت رفع آن گوشزد خواهد کرد؛ اما نه در مورد متدهای void که صرفا جهت کاربردهای UI و روال‌های رخدادگردان آن طراحی شده‌اند.
همچنین اگر برنامه را اجرا کنید استثنای صادر شده در متد async void سبب کرش برنامه می‌شود؛ اما نه استثنای صادر شده در متد async Task. متدهای async void چون دارای Synchronization Context نیستند، استثنای صادره را به Thread pool برنامه صادر می‌کنند. به همین جهت در همان لحظه نیز سبب کرش برنامه خواهند شد. اما در حالت async Task به این نوع استثناءها اصطلاحا Unobserved Task Exception گفته شده و سبب بروز  faulted state در Task تعریف شده می‌گردند.
برای مدیریت آن‌ها در سطح برنامه باید در ابتدای کار و در متد Main، توسط TaskScheduler.UnobservedTaskException روال رخدادگردانی را برای مدیریت اینگونه استثناءها تدارک دید. زمانیکه GC شروع به آزاد سازی منابع می‌کند، این استثناءها نیز درنظر گرفته شده و سبب کرش برنامه خواهند شد. با استفاده از متد SetObserved همانند قطعه کد زیر، می‌توان از کرش برنامه جلوگیری کرد:
using System;
using System.Threading.Tasks;

namespace Async01
{
    class Program
    {
        static void Main(string[] args)
        {
            TaskScheduler.UnobservedTaskException += TaskScheduler_UnobservedTaskException;

            //Test2();
            Test();
            Console.ReadLine();

            GC.Collect();
            GC.WaitForPendingFinalizers();

            Console.ReadLine();
        }

        private static void TaskScheduler_UnobservedTaskException(object sender, UnobservedTaskExceptionEventArgs e)
        {
            e.SetObserved();
            Console.WriteLine(e.Exception);
        }

        public static async Task Test()
        {
            throw new Exception();
        }

        public static async void Test2()
        {
            throw new Exception();
        }
    }
}
البته لازم به ذکر است که این رفتار در دات نت 4.5 به این شکل تغییر کرده است تا کار با متدهای async ساده‌تر شود. در دات نت 4، یک چنین استثناءهای مدیریت نشده‌ای،‌بلافاصله سبب بروز استثناء و کرش برنامه می‌شدند.
به عبارتی رفتار قطعه کد زیر در دات نت 4 و 4.5 متفاوت است:
Task.Factory.StartNew(() => { throw new Exception(); });

Thread.Sleep(100);
GC.Collect();
GC.WaitForPendingFinalizers();
در دات نت 4  اگر این برنامه را خارج از VS.NET اجرا کنیم، برنامه کرش می‌کند؛ اما در دات نت 4.5 خیر و آن‌ها به UnobservedTaskException یاد شده هدایت خواهند شد. اگر می‌خواهید این رفتار را به همان حالت دات نت 4 تغییر دهید، تنظیم زیر را به فایل config برنامه اضافه کنید:
 <configuration>
    <runtime>
      <ThrowUnobservedTaskExceptions enabled="true"/>
    </runtime>
</configuration>


یک نکته‌ی تکمیلی: ممکن است عبارات lambda مورد استفاده، از نوع async void باشد.

همانطور که عنوان شد باید از async void منهای مواردی که کار مدیریت رویدادهای عناصر UI را انجام می‌دهند (مانند برنامه‌های ویندوز 8)، اجتناب کرد. چون پایان کار آن‌ها را نمی‌توان تشخیص داد و همچنین کامپایلر نیز اخطاری را در مورد استفاده ناصحیح از آن‌ها بدون await تولید نمی‌کند (چون نوع void اصطلاحا awaitable نیست). به علاوه بروز استثناء در آن‌ها، بلافاصله سبب خاتمه برنامه می‌شود. بنابراین اگر جایی در برنامه متد async void وجود دارد، قرار دادن try/catch داخل بدنه‌ی آن ضروری است.
protected override void LoadState(Object navigationParameter, Dictionary<String, Object> pageState)
{
    try
    {
        ClickMeButton.Tapped += async (sender, args) =>
        {
             throw new Exception();        

        };
    }
    catch (Exception ex)
    {
        // This won’t catch exceptions!
        TextBlock1.Text = ex.Message;
    }
}
در این مثال خاص ویندوز 8، شاید به نظر برسد که try/catch تعریف شده سبب مهار استثنای صادر شده می‌شود؛ اما خیر!
 public delegate void TappedEventHandler(object sender, TappedRoutedEventArgs e);
امضای متد TappedEventHandler از نوع delegate void است. بنابراین try/catch را باید داخل بدنه‌ی روال رویدادگردان تعریف شده قرار داد و نه خارج از آن.
نظرات مطالب
مقایسه بین حلقه های تکرار (Lambda ForEach و for و foreach)
"این آزمایشات رو اگر در هر سیستم دیگر با هر Config اجرا کنید نتیجه کلی تغییر نخواهد کرد و فقط از نظر زمان اجرا تفاوت خواهیم داشت نه در نتیجه کلی." 
این مطلب لزوما صحیح نیست. یک بنچمارک میتونه تو مجموعه سخت افزارهای مختلف، نتایج کاملا متفاوتی داشته باشه. مثلا سوالی در همین زمینه آقای شهروز جعفری تو StackOverflow پرسیدن که در جوابش دو نفر نتایج متفاوتی ارائه دادن.
معمولا برای بیان نتایج تستهای بنچمارک ابتدا مشخصات سخت افزاری ارائه میشه مخصوصا وقتیکه نتایج دقیق (و نه کلی) نشون داده میشه. مثل همین نتایج دقیق زمانهای اجرای حلقه‌ها.
نکته ای که من درکامنتم اشاره کردم صرفا درباره تست "سرعت اجرای" انواع حلقه‌ها بود که ممکنه با تست کارایی حلقه‌ها در اجرای یک کد خاص فرق داشته باشه.
نکته دیگه هم اینکه نمیدونم که آیا شما از همون متد Console.WriteLine در حلقه‌ها برای اجرای تستون استفاده کردین یا نه. فقط باید بگم که به خاطر مسائل و مشکلات مختلفی که استفاده از این متد به همراه داره، به نظر من بکارگیری اون تو این جور تست‌ها اصلا مناسب نیست و باعث دور شدن زیاد نتایج از واقعیت میشه. مثلا من تست کردم و هر دفعه یه نتیجه‌ای می‌داد که نمیشه بر اساس اون نتیجه‌گیری کرد. 

مورد دیگه ای هم که باید اضافه کنم اینه که بهتر بود شما کد کامل تست خودتون رو هم برای دانلود میذاشتین تا دیگران هم بتونن استفاده کنن. اینجوری خیلی بهتر میشه نتایج مختلف رو با هم مقایسه کرد. این مسئله برای تستای بنچمارک نسبتا رایج هست. مثل کد زیر که من آماده کردم:
static void Main(string[] args)
{
  //Action<int> func = Console.WriteLine;
  Action<int> func = number => number++;
  do
  {
    try
    {
      Console.Write("Iteration: ");
      var iterations = Convert.ToInt32(Console.ReadLine());
      Console.Write("Loop Type (for:0, foreach:1, List.ForEach:2, Array.ForEach:3): ");
      var loopType = Console.ReadLine();
      switch (loopType)
      {
        case "0":
          Console.WriteLine("FOR loop test for {0} iterations", iterations.ToString("0,0"));
          TestFor(iterations, func);
          break;
        case "1":
          Console.WriteLine("FOREACH loop test for {0} iterations", iterations.ToString("0,0"));
          TestForEach(iterations, func);
          break;
        case "2":
          Console.WriteLine("LIST.FOREACH test for {0} iterations", iterations.ToString("0,0"));
          TestListForEach(iterations, func);
          break;
        case "3":
          Console.WriteLine("ARRAY.FOREACH test for {0} iterations", iterations.ToString("0,0"));
          TestArrayForEach(iterations, func);
          break;
      }
    }
    catch (Exception ex)
    {
      Console.WriteLine(ex);
    }
    Console.Write("Continue?(Y/N)");
    Console.WriteLine("");
  } while (Console.ReadKey(true).Key != ConsoleKey.N);

  Console.WriteLine("Press any key to exit");
  Console.ReadKey();
}


static void TestFor(int iterations, Action<int> func)
{
  StartupTest(func);

  var watch = Stopwatch.StartNew();
  for (int i = 0; i < iterations; i++)
  {
    func(i);
  }
  watch.Stop();
  ShowResults("for loop test: ", watch);
}

static void TestForEach(int iterations, Action<int> func)
{
  StartupTest(func);
  var list = Enumerable.Range(0, iterations);

  var watch = Stopwatch.StartNew();
  foreach (var item in list)
  {
    func(item);
  }
  watch.Stop();
  ShowResults("foreach loop test: ", watch);
}

static void TestListForEach(int iterations, Action<int> func)
{
  StartupTest(func);
  var list = Enumerable.Range(0, iterations).ToList();

  var watch = Stopwatch.StartNew();
  list.ForEach(func);
  watch.Stop();
  ShowResults("list.ForEach test: ", watch);
}

static void TestArrayForEach(int iterations, Action<int> func)
{
  StartupTest(func);
  var array = Enumerable.Range(0, iterations).ToArray();

  var watch = Stopwatch.StartNew();
  Array.ForEach(array, func);
  watch.Stop();
  ShowResults("Array.ForEach test: ", watch);
}

static void StartupTest(Action<int> func)
{
  // clean up
  GC.Collect();
  GC.WaitForPendingFinalizers();
  GC.Collect();

  // warm up
  func(0);
}
static void ShowResults(string description, Stopwatch watch)
{
  Console.Write(description);
  Console.WriteLine(" Time Elapsed {0} ms", watch.ElapsedMilliseconds);
}
قبل از اجرای تست بهتره برنامه رو برای نسخه Release بیلد کنیم. ساده‌ترین روشش در تصویر زیر نشون داده شده:

پس از این تغییر و بیلد پروژه نتایج رو مقایسه میکنیم. نتایج اجرای این تست در همون سیستمی که قبلا تستای StringBuilder و Microbenchmark رو انجام دادم (یعنی لپ تاپ msi GE 620 با Core i7-2630QM) بصورت زیر:

البته نتایج این تستها مطلق نیستن. نکاتی که در کامنت قبلی اشاره کردم از عوامل تاثیرگذار هستن.
موفق باشین.