مطالب
جلوگیری از ارسال Spam در ASP.NET MVC
در هر وب‌سایتی که فرمی برای ارسال اطلاعات به سرور موجود باشد، آن وب سایت مستعد ارسال اسپم و بمباران درخواست‌های متعدد خواهد بود. در برخی موارد استفاده از کپچا می‌تواند راه خوبی برای جلوگیری از ارسال‌های مکرر و مخرب باشد، ولی گاهی اوقات سناریوی ما به شکلی است که امکان استفاده از کپچا، به عنوان یک مکانیزم امنیتی مقدور نیست.
اگر شما یک فرم تماس با ما داشته باشید استفاده از کپچا یک مکانیزم امنیتی معقول می‌باشد و همچنین اگر فرمی جهت ارسال پست داشته باشید. اما در برخی مواقع مانند فرمهای ارسال کامنت، پاسخ، چت و ... امکان استفاده از این روش وجود ندارد و باید به فکر راه حلی مناسب برای مقابل با درخواست‌های مخرب باشیم.
اگر شما هم به دنبال تامین امنیت سایت خود هستید و دوست ندارید که وب سایت شما (به دلیل کمبود پهنای باند یا ارسال مطالب نامربوط که گاهی اوقات به صدها هزار مورد می‌رسد) از دسترس خارج شود این آموزش را دنبال کنید.
برای این منظور ما از یک ActionFilter برای امضای ActionMethodهایی استفاده می‌کنیم که باید با ارسالهای متعدد از سوی یک کاربر مقابله کنند. این ActionFilter  باید قابلیت تنظیم حداقل زمان بین درخواستها را داشته باشد و اگر درخواستی در زمانی کمتر از مدت مجاز تعیین شده برسد، به نحوی مطلوبی به آن رسیدگی کند.
پس از آن ما نیازمند مکانیزمی هستیم تا درخواست‌های رسیده‌ی از سوی هرکاربر را به شکلی کاملا خاص و یکتا شناسایی کند. راه حلی که قرار است در این ActionFilter  از آن استفاده کنم به شرح زیر است:
ما به دنبال آن هستیم که یک شناسه‌ی منحصر به فرد را برای هر درخواست ایجاد کنیم. لذا از اطلاعات شیئ Request جاری برای این منظور استفاده می‌کنیم.
1) IP درخواست جاری (قابل بازیابی از هدر HTTP_X_FORWARDED_FOR یا REMOTE_ADDR)
2) مشخصات مرورگر کاربر (قابل بازیابی از هدر USER_AGENT)
3) آدرس درخواست جاری (برای اینکه شناسه‌ی تولیدی کاملا یکتا باشد، هرچند می‌توانید آن را حذف کنید)

اطلاعات فوق را در یک رشته قرار می‌دهیم و بعد Hash آن را حساب می‌کنیم. به این ترتیب ما یک شناسه منحصر فرد را از درخواست جاری ایجاد کرده‌ایم.

مرحله بعد پیاده سازی مکانیزمی برای نگهداری این اطلاعات و بازیابی آن‌ها در هر درخواست است. ما برای این منظور از سیستم Cache استفاده می‌کنیم؛ هرچند راه حل‌های بهتری هم وجود دارند.
بنابراین پس از ایجاد شناسه یکتای درخواست، آن را در Cache قرار می‌دهیم و زمان انقضای آن را هم پارامتری که ابتدای کار گفتم قرار می‌دهیم. سپس در هر درخواست Cache را برای این مقدار یکتا جستجو می‌کنیم. اگر شناسه پیدا شود، یعنی در کمتر از زمان تعیین شده، درخواست مجددی از سوی کاربر صورت گرفته است و اگر شناسه در Cache موجود نباشد، یعنی درخواست رسیده در زمان معقولی صادر شده است.
باید توجه داشته باشید که تعیین زمان بین هر درخواست به ازای هر ActionMethod خواهد بود و نباید آنقدر زیاد باشد که عملا کاربر را محدود کنیم. برای مثال در یک سیستم چت، زمان معقول بین هر درخواست 5 ثانیه است و در یک سیستم ارسال نظر یا پاسخ، 10 ثانیه. در هر حال بسته به نظر شما این زمان می‌تواند قابل تغییر باشد. حتی می‌توانید کاربر را مجبور کنید که در روز فقط یک دیدگاه ارسال کند!

قبل از پیاده سازی سناریوی فوق، در مورد نقش گزینه‌ی سوم در شناسه‌ی درخواست، لازم است توضیحاتی بدهم. با استفاده از این خصوصیت (یعنی آدرس درخواست جاری) شدت سختگیری ما کمتر می‌شود. زیرا به ازای هر آدرس، شناسه‌ی تولیدی متفاوت خواهد بود. اگر فرد مهاجم، برنامه‌ای را که با آن اسپم می‌کند، طوری طراحی کرده باشد که مرتبا درخواست‌ها را به آدرس‌های متفاوتی ارسال کند، مکانیزم ما کمتر با آن مقابله خواهد کرد.
برای مثال فرد مهاجم می‌تواند در یک حلقه، ابتدا درخواستی را به AddComment بدهد، بعد AddReply و بعد SendMessage. پس همانطور که می‌بینید اگر از پارامتر سوم استفاده کنید، عملا قدرت مکانیزم ما به یک سوم کاهش می‌یابد.
نکته‌ی دیگری که قابل ذکر است اینست که این روش راهی برای تشخیص زمان بین درخواست‌های صورت گرفته از کاربر است و به تنهایی نمی‌تواند امنیت کامل را برای مقابله با اسپم‌ها، مهیا کند و باید به فکر مکانیزم دیگری برای مقابله با کاربری که درخواست‌های نامعقولی در مدت زمان کمی می‌فرستد پیاده کنیم (پیاده سازی مکانیزم تکمیلی را در آینده شرح خواهم داد).
اکنون نوبت پیاده سازی سناریوی ماست. ابتدا یک کلاس ایجاد کنید و آن را از ActionFilterAttribute مشتق کنید و کدهای زیر را وارد کنید:
using System;
using System.Linq;
using System.Web.Mvc;
using System.Security.Cryptography;
using System.Text;
using System.Web.Caching;

namespace Parsnet.Core
{
    public class StopSpamAttribute : ActionFilterAttribute
    {
        // حداقل زمان مجاز بین درخواست‌ها برحسب ثانیه
        public int DelayRequest = 10;

        // پیام خطایی که در صورت رسیدن درخواست غیرمجاز باید صادر کنیم
        public string ErrorMessage = "درخواست‌های شما در مدت زمان معقولی صورت نگرفته است.";

        //خصوصیتی برای تعیین اینکه آدرس درخواست هم به شناسه یکتا افزوده شود یا خیر
        public bool AddAddress = true;


        public override void OnActionExecuting(ActionExecutingContext filterContext)
        {
            // درسترسی به شئی درخواست
            var request = filterContext.HttpContext.Request;

            // دسترسی به شیئ کش
            var cache = filterContext.HttpContext.Cache;

            // کاربر IP بدست آوردن
            var IP = request.ServerVariables["HTTP_X_FORWARDED_FOR"] ?? request.UserHostAddress;

            // مشخصات مرورگر
            var browser = request.UserAgent;

            // در اینجا آدرس درخواست جاری را تعیین می‌کنیم
            var targetInfo = (this.AddAddress) ? (request.RawUrl + request.QueryString) : "";

            // شناسه یکتای درخواست
            var Uniquely = String.Concat(IP, browser, targetInfo);


            //در اینجا با کمک هش یک امضا از شناسه‌ی درخواست ایجاد می‌کنیم
            var hashValue = string.Join("", MD5.Create().ComputeHash(Encoding.ASCII.GetBytes(Uniquely)).Select(s => s.ToString("x2")));

            // ابتدا چک می‌کنیم که آیا شناسه‌ی یکتای درخواست در کش موجود نباشد
            if (cache[hashValue] != null)
            {
                // یک خطا اضافه می‌کنیم ModelState اگر موجود بود یعنی کمتر از زمان موردنظر درخواست مجددی صورت گرفته و به
                filterContext.Controller.ViewData.ModelState.AddModelError("ExcessiveRequests", ErrorMessage);
            }
            else
            {
                // اگر موجود نبود یعنی درخواست با زمانی بیشتر از مقداری که تعیین کرده‌ایم انجام شده
                // پس شناسه درخواست جدید را با پارامتر زمانی که تعیین کرده بودیم به شیئ کش اضافه می‌کنیم
                cache.Add(hashValue, true, null, DateTime.Now.AddSeconds(DelayRequest), Cache.NoSlidingExpiration, CacheItemPriority.Default, null);
            }

            base.OnActionExecuting(filterContext);
        }
    }
}
و حال برای استفاده از این مکانیزم امنیتی ActionMethod مورد نظر را با آن امضا می‌کنیم:
[HttpPost]
        [StopSpam(DelayRequest = 5)]
        [ValidateAntiForgeryToken]
        public virtual async Task<ActionResult> SendFile(HttpPostedFileBase file, int userid = 0)
        { 
        
        }

[HttpPost]
        [StopSpam(DelayRequest = 30, ErrorMessage = "زمان لازم بین ارسال هر مطلب 30 ثانیه است")]
        [ValidateAntiForgeryToken]
        public virtual async Task<ActionResult> InsertPost(NewPostModel model)
        {
     
        }

همانطور که گفتم این مکانیزم تنها تا حدودی با درخواست‌های اسپم مقابله میکند و برای تکمیل آن نیاز به مکانیزم دیگری داریم تا بتوانیم از ارسالهای غیرمجاز بعد از زمان تعیین شده جلوگیری کنیم.

به توجه به دیدگاه‌های مطرح شده اصلاحاتی در کلاس صورت گرفت و قابلیتی به آن اضافه گردید که بتوان مکانیزم اعتبارسنجی را کنترل کرد.
برای این منظور خصوصیتی به این ActionFilter افزوده شد تا هنگامیکه داده‌های فرم معتبر نباشند و در واقع هنوز چیزی ثبت نشده است این مکانیزم را بتوان کنترل کرد. خصوصیت CheckResult باعث میشود تا اگر داده‌های مدل ما در اعتبارسنجی، معتبر نبودند کلید افزوده شده به کش را حذف تا کاربر بتواند مجدد فرم را ارسال کند. مقدار آن به طور پیش فرض true است و اگر برابر false قرار بگیرد تا اتمام زمان تعیین شده در مکانیزم ما، کاربر امکان ارسال مجدد فرم را ندارد.
همچنین باید بعد از اتمام عملیات در صورت عدم موفقیت آمیز بودن آن به ViewBag یک خصوصیت به نام ExecuteResult اضافه کنید و مقدار آن را برابر false قرار دهید. تا کلید از کش حذف گردد.
نحوه استفاده آن هم به شکل زیر می‌باشد:
        [HttpPost]
        [StopSpam(AddAddress = true, DelayRequest = 20)]
        [ValidateAntiForgeryToken]
        public Task<ActionResult> InsertPost(NewPostModel model)
        {
            if (ModelState.IsValid)
            {
                var newPost = dbContext.InsertPost(model);
                if (newPost != null)
                {
                    ViewBag.ExecuteResult = true;
                }
            }

            if (ModelState.IsValidField("ExcessiveRequests") == true)
{
ViewBag.ExecuteResult = false;
}
return View(); }

فایل ضمیمه را می‌توانید از زیر دانلود کنید:
StopSpamAttribute.rar
مطالب دوره‌ها
گزارش درصد پیشرفت عملیات در اعمال غیرهمزمان
گزارش درصد پیشرفت عملیات در اعمال طولانی، امکان لغو هوشمندانه‌تری را برای کاربر فراهم می‌کند. در دات نت 4.5 دو روش برای گزارش درصد پیشرفت عملیات اعمال غیرهمزمان تدارک دیده شده‌اند:
- اینترفیس جنریک IProgress واقع در فضای نام System
- کلاس جنریک Progress واقع در فضای نام System

در اینجا وهله‌ی از پیاده سازی اینترفیس IProgress به Task ارسال می‌شود. در این بین، عملیات در حال انجام با فراخوانی متد Report آن می‌تواند در هر زمانیکه نیاز باشد، درصد پیشرفت کار را گزارش کند.
namespace System
{
  public interface IProgress<in T>
  {
      void Report( T value );
  }
}
البته برای اینکه کار تعریف و پیاده سازی اینترفیس IProgress اندکی کاهش یابد، کلاس توکار Progress برای اینکار تدارک دیده شده‌است. نکته‌ی مهم آن استفاده از Synchronization Context برای ارائه گزارش پیشرفت در ترد UI است تا به سادگی بتوان از نتایج دریافتی، در رابط کاربری استفاده کرد.
namespace System
{
  public class Progress<T> : IProgress<T>
  {
    public Progress();
    public Progress( Action<T> handler );
    protected virtual void OnReport( T value );
  }
}


یک مثال از گزارش درصد پیشرفت عملیات به همراه پشتیبانی از لغو آن

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Async09
{
    public class TestProgress
    {
        public async Task DoProcessingReportProgress()
        {
            var progress = new Progress<int>(percent =>
            {
                Console.WriteLine(percent + "%");
            });

            var cts = new CancellationTokenSource();

            // call some where cts.Cancel();

            try
            {
                await doProcessing(progress, cts.Token);
            }
            catch (OperationCanceledException ex)
            {
                //todo: handle cancellations
                Console.WriteLine(ex);
            }

            Console.WriteLine("Done!");
        }

        private static async Task doProcessing(IProgress<int> progress, CancellationToken ct)
        {
            await Task.Run(async () =>
            {
                for (var i = 0; i != 100; ++i)
                {
                    await Task.Delay(100, ct);
                    if (progress != null)
                        progress.Report(i);

                    ct.ThrowIfCancellationRequested();
                }
            }, ct);
        }
    }
}
متد private static async Task doProcessing طوری طراحی شده‌است که از مفاهیم لغو یک عملیات غیرهمزمان و همچنین گزارش درصد پیشرفت آن توسط اینترفیس IProgress پشتیبانی می‌کند. در اینجا هر زمانیکه نیاز به گزارش درصد پیشرفت باشد، متد Report وهله‌ی ارسالی به آرگومان progress فراخوانی خواهد شد.
برای تدارک این وهله، از کلاس توکار Progress دات نت در متد public async Task DoProcessingReportProgress استفاده شده‌است.
این متد جنریک بوده و برای مثال نوع آن در اینجا int تعریف شده‌است. سازنده‌ی آن می‌تواند یک callback را قبول کند. هر زمانیکه متد Report در متد doProcessing فراخوانی گردد، این callback در سمت کدهای استفاده کننده، فراخوانی خواهد شد. مثلا توسط مقدار آن می‌توان یک Progress bar را نمایش داد.
به علاوه روش دیگری را در مورد لغو یک عملیات در اینجا ملاحظه می‌کنید. متد ThrowIfCancellationRequested نیز سبب خاتمه‌ی عملیات می‌گردد؛ البته اگر در کدهای برنامه در جایی متد Cancel توکن، فراخوانی گردد. برای مثال یک دکمه‌ی لغو عملیات در صفحه قرارگیرد و کار آن صرفا فراخوانی cts.Cancel باشد.
نظرات مطالب
افزودن و اعتبارسنجی خودکار Anti-Forgery Tokens در برنامه‌های Angular مبتنی بر ASP.NET Core
یک چنین پیاده سازی خواهد داشت:
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web;
using System.Web.Helpers;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;
using System.Web.Mvc;
using ActionFilterAttribute = System.Web.Http.Filters.ActionFilterAttribute;

namespace NgxAntiforgeryWebApi.Providers
{
    public class XsrfCookieGeneratorAttribute : ActionFilterAttribute
    {
        public override void OnActionExecuted(HttpActionExecutedContext actionExecutedContext)
        {
            var xsrfTokenCookie = new HttpCookie("XSRF-TOKEN")
            {
                Value = ComputeXsrfTokenValue(),
                HttpOnly = false // Now JavaScript is able to read the cookie
            };
            HttpContext.Current.Response.AppendCookie(xsrfTokenCookie);
        }

        private string ComputeXsrfTokenValue()
        {
            string cookieToken, formToken;
            AntiForgery.GetTokens(null, out cookieToken, out formToken);
            return $"{cookieToken}:{formToken}";
        }
    }

    public class XsrfTokensValidationAttribute : ActionFilterAttribute
    {
        public override void OnActionExecuting(HttpActionContext actionContext)
        {
            IEnumerable<string> headerValues;
            if (!actionContext.Request.Headers.TryGetValues("X-XSRF-TOKEN", out headerValues))
            {
                actionContext.Response = new HttpResponseMessage(HttpStatusCode.BadRequest) { ReasonPhrase = "X-XSRF-TOKEN header is missing." };
                return;
            }

            if (headerValues == null)
            {
                actionContext.Response = new HttpResponseMessage(HttpStatusCode.BadRequest) { ReasonPhrase = "X-XSRF-TOKEN header value is empty." };
                return;
            }

            var xsrfTokensValue = headerValues.FirstOrDefault();
            if (string.IsNullOrEmpty(xsrfTokensValue) || !xsrfTokensValue.Contains(":"))
            {
                actionContext.Response = new HttpResponseMessage(HttpStatusCode.BadRequest) { ReasonPhrase = "X-XSRF-TOKEN header value is null." };
                return;
            }

            var values = xsrfTokensValue.Split(':');
            if (values.Length != 2)
            {
                actionContext.Response = new HttpResponseMessage(HttpStatusCode.BadRequest) { ReasonPhrase = "X-XSRF-TOKEN header value is malformed." };
                return;
            }

            var cookieToken = values[0];
            var formToken = values[1];

            try
            {
                AntiForgery.Validate(cookieToken, formToken);
            }
            catch (HttpAntiForgeryException ex)
            {
                actionContext.Response = new HttpResponseMessage(HttpStatusCode.BadRequest) {  ReasonPhrase = ex.Message };
            }
        }
    }
}
XsrfCookieGeneratorAttribute کار تولید کوکی مخصوص Angular را انجام می‌دهد (می‌تواند به عنوان فیلتر سراسری معرفی شود و یا فقط یکبار پس از لاگین، کوکی آن‌را به روشی که عنوان شده، تولید کنید؛ بدون نیاز به تولید هرباره‌ی آن با هر درخواستی) و XsrfTokensValidationAttribute بجای ValidateAntiForgeryToken اصلی بکار خواهد رفت.
مطالب
عبارات باقاعده و نیاز به Timeout

یکبار سعی کنید مثال ساده زیر را اجرا کنید:

using System;
using System.Text.RegularExpressions;

namespace RegexLoop
{
class Program
{
static void Main(string[] args)
{
var emailAddressRegex = new Regex(@"^[A-Za-z0-9]([_\.\-]?[A-Za-z0-9]+)*\@[A-Za-z0-9]([_\.\-]?[A-Za-z0-9]+)*\.[A-Za-z0-9]([_\.\-]?[A-Za-z0-9]+)*$|^$");
if (emailAddressRegex.IsMatch("an.infinite.loop.sample.just_for.test"))
{
Console.WriteLine("Matched!");
}

var input = "The quick brown fox jumps";
var pattern = @"([a-z ]+)*!";
if (Regex.IsMatch(input, pattern))
{
Console.WriteLine("Matched!");
}
}
}
}


پس از اجرا، برنامه هنگ خواهد کرد یا به عبارتی برنامه در یک حلقه بی‌نهایت قرار می‌گیرد (در هر دو مثال؛ اطلاعات بیشتر و آنالیز کامل در اینجا). بنابراین نیاز به مکانیزمی امنیتی جهت محافظت در برابر این نوع ورودی‌ها وجود خواهد داشت؛ مثلا یک Timeout . اگر تا 2 ثانیه به جواب نرسیدیم، اجرای Regex متوقف شود. تا دات نت 4، چنین timeout ایی پیش بینی نشده؛ اما در دات نت 4 و نیم آرگومانی جهت تعریف حداکثر مدت زمان قابل قبول اجرای یک عبارت باقاعده در نظر گرفته شده است (^) و اگر در طی مدت زمان مشخص شده، کار انجام محاسبات به پایان نرسد، استثنای RegexMatchTimeoutException صادر خواهد شد.
خیلی هم خوب. به این ترتیب کسی نمی‌تونه با یک ورودی ویژه، CPU Usage سیستم رو تا مدت زمان نامحدودی به 100 درصد برساند و عملا استفاده از سیستم رو غیرممکن کنه.
اما تا قبل از دات نت 4 و نیم چکار باید کرد؟ روش کلی حل این مساله به این ترتیب است که باید اجرای Regex را به یک ترد دیگر منتقل کرد؛ اگر مدت اجرای عملیات، از زمان تعیین شده بیشتر گردید، آنگاه می‌شود ترد را Abort کرد و به عملیات خاتمه داد. روش پیاده سازی و نحوه استفاده از آن‌را در ادامه ملاحظه خواهید نمود:

using System;
using System.Text.RegularExpressions;
using System.Threading;

namespace RegexLoop
{
public static class TimedRunner
{
public static R RunWithTimeout<R>(Func<R> proc, TimeSpan duration)
{
using (var waitHandle = new AutoResetEvent(false))
{
var ret = default(R);
var thread = new Thread(() =>
{
ret = proc();
waitHandle.Set();
}) { IsBackground = true };
thread.Start();

bool timedOut = !waitHandle.WaitOne(duration, false);
waitHandle.Close();

if (timedOut)
{
try
{
thread.Abort();
}
catch { }
return default(R);
}
return ret;
}
}
}

class Program
{
static void Main(string[] args)
{
var emailAddressRegex = new Regex(@"^[A-Za-z0-9]([_\.\-]?[A-Za-z0-9]+)*\@[A-Za-z0-9]([_\.\-]?[A-Za-z0-9]+)*\.[A-Za-z0-9]([_\.\-]?[A-Za-z0-9]+)*$|^$");
if (TimedRunner.RunWithTimeout(
() => emailAddressRegex.IsMatch("an.infinite.loop.sample.just_for.test"),
TimeSpan.FromSeconds(2)))
{
Console.WriteLine("Matched!");
}

var input = "The quick brown fox jumps";
var pattern = @"([a-z ]+)*!";
if (TimedRunner.RunWithTimeout(() => Regex.IsMatch(input, pattern), TimeSpan.FromSeconds(2)))
{
Console.WriteLine("Matched!");
}
}
}
}

اینبار به هر کدام از عبارات باقاعده 2 ثانیه زمان برای اتمام کار داده شده است. در غیراینصورت مقدار پیش فرض خروجی متد فراخوانی شده، بازگشت داده می‌شود که در اینجا false است.

مطالب
بررسی روش تعریف انقیاد دو طرفه‌ی سفارشی در کامپوننت‌های Angular
برخلاف AngularJS، در برنامه‌های Angular امکانات two way data binding به صورت پیش‌فرض ارائه نمی‌شوند تا از تمام مشکلات آن مانند digest cycle ،watchers و غیره خبری نباشد. اما گاهی از اوقات نیاز است انقیاد دو طرفه‌ی سفارشی را بین دو کامپوننت ایجاد کنیم. در این مطلب روش ایجاد یک چنین انقیادهایی را بررسی خواهیم کرد و در اینجا در ابتدا نیاز است دو پیشنیاز Property Binding و Event Binding را بررسی کنیم که از جمع آن‌ها two way data binding حاصل می‌شود:


البته Angular به همراه دایرکتیو ویژه‌ای به نام ngModel است که two-way data binding را با import ماژول ویژه‌ی فرم‌ها میسر می‌کند:


که آن نیز در اصل از جمع Property Binding و Event Binding تشکیل شده‌است:
<input [ngModel]="username" (ngModelChange)="username = $event">
و یا به صورت خلاصه:
<input [(ngModel)]='username' />
در اینجا می‌خواهیم یک چنین امکانی را بدون استفاده از ngModel و ماژول فرم‌ها پیاده سازی کنیم.


انقیاد به خواص یا Property binding

فرض کنید دو کامپوننت والد و فرزند را ایجاد کرده‌ایم:


در کامپوننت والد، مقداری را توسط متد deposit هربار 100 آیتم افزایش می‌دهیم:
import { Component, OnInit } from "@angular/core";

@Component({
  selector: "app-parent",
  templateUrl: "./parent.component.html",
  styleUrls: ["./parent.component.css"]
})
export class ParentComponent implements OnInit {

  amount = 500;

  constructor() { }

  ngOnInit() {
  }

  deposit() {
    this.amount += 100;
  }
}
با این قالب:
<h2>Custom two way data binding</h2>

<div class="panel panel-primary">
  <div class="panel-heading">
    <h2 class="panel-title">Parnet Component</h2>
  </div>
  <div class="panel-body">
    <label>Available amount:</label> {{amount}}
    <button (click)="deposit()" class="btn btn-success">Deposit 100</button>
    <div>
      <app-child [amount]="amount"> </app-child>
    </div>
  </div>
</div>
که در آن مقدار amount کامپوننت والد نمایش داده شده‌است و همچنین این مقدار به خاصیت ورودی کامپوننتی به نام app-child نیز نسبت داده شده‌است.

کامپوننت فرزند به صورت ذیل تعریف می‌شود:
import { Component, OnInit, Input } from "@angular/core";

@Component({
  selector: "app-child",
  templateUrl: "./child.component.html",
  styleUrls: ["./child.component.css"]
})
export class ChildComponent implements OnInit {

  @Input() amount: number;

  constructor() { }

  ngOnInit() {
  }

  withdraw() {
    this.amount -= 100;
  }
}
که در آن خاصیت amount، از والد آن، توسط ویژگی Input دریافت می‌شود. سپس در متد withdraw هربار می‌توان 100 آیتم را از آن کسر کرد.
با این قالب:
<div class="panel panel-default">
  <div class="panel-heading">
    <h2 class="panel-title">Child Component</h2>
  </div>
  <div class="panel-body">
    <label>Amount available: </label> {{amount}}

    <button (click)="withdraw()" class="btn btn-danger">Withdraw 100</button>
  </div>
</div>
که در آن مقدار amount فرزند نمایش داده شده‌است و همچنین امکان فراخوانی متد withdraw وجود دارد.

در اینجا زمانیکه data binding را به صورت ذیل تعریف می‌کنیم:
<app-child [amount]="amount"> </app-child>
روش مقدار دهی خاصیت amount داخل [] ، انقیاد به خواص نامیده می‌شود و سمت راست آن نیز یک خاصیت درنظر گرفته می‌شود. یعنی مقدار خاصیت amount والد (درون "") به مقدار خاصیت amount فرزند (درون []) نسبت داده خواهد شد.
این ارتباط نیز یک طرفه‌است. برای مثال اگر بر روی دکمه‌ی Deposit والد کلیک کنیم:


مقدار افزایش یافته‌ی در والد، به فرزند نیز منتقل می‌شود و نمایش داده خواهد شد. اما اگر بر روی دکمه‌ی withdraw فرزند کلیک کنیم:


تغییر صورت گرفته، به والد انعکاس پیدا نمی‌کند. برای اطلاع رسانی به والد، به انقیاد به رخ‌دادها نیاز داریم.


انقیاد به رخ‌دادها یا Event binding

یک کامپوننت می‌تواند به رخ‌دادهای صادر شده‌ی توسط کامپوننتی دیگر گوش فرا دهد:
import { Component, OnInit, Input, Output, EventEmitter } from "@angular/core";

@Component({
  selector: "app-child",
  templateUrl: "./child.component.html",
  styleUrls: ["./child.component.css"]
})
export class ChildComponent implements OnInit {

  @Input() amount: number;
  @Output() amountChange = new EventEmitter();

  constructor() { }

  ngOnInit() {
  }

  withdraw() {
    this.amount -= 100;
    this.amountChange.emit(this.amount);
  }
}
برای این منظور در کامپوننت فرزند، یک خاصیت Output را به نام amountChange از نوع EventEmitter تعریف می‌کنیم. سپس جایی که قرار است کار کاهش amount صورت گیرد، با صدور رخ‌دادی (this.amountChange.emit)، این مقدار را به والد اعلام می‌کنیم.
اکنون در قالب کامپوننت والد، این رخ‌داد را درون یک () معرفی خواهیم کرد:
<app-child [amount]="amount" (amountChange)="this.amount= $event"> </app-child>
به این ترتیب زمانیکه کامپوننت فرزند، مقدار amount را تغییر می‌دهد، این مقدار توسط this.amountChange.emit به والد منتشر خواهد شد و می‌توان در سمت والد توسط event$ به آن دسترسی یافته و آن‌را به خاصیت this.amount کامپوننت والد نسبت دهیم.
اکنون اگر برنامه را آزمایش کنیم، با کلیک بر روی دکمه‌ی withdraw فرزند، مقدار کاهش یافته به والد نیز منعکس می‌شود:



پیاده سازی syntax ویژه‌ی Banana in a box

تا اینجا پیاده سازی two way data-binding سفارشی به پایان می‌رسد. اما تعریف طولانی:
<app-child [amount]="amount" (amountChange)="this.amount= $event"> </app-child>
به صورت ذیل هم قابل نوشتن و ساده سازی است:
<app-child [(amount)]="amount"> </app-child>
که به آن syntax ویژه Banana in a box نیز گفته می‌شود.
نکته‌ی ویژه‌ی آن، وجود پسوند Change در نام رخ‌داد تعریف شده‌است:
  @Input() amount: number;
  @Output() amountChange = new EventEmitter();
 اگر نام خاصیت Input مساوی x باشد، باید جهت فعالسازی syntax ویژه Banana in a box، نام رخ‌داد متناظر با آن دقیقا مساوی xChange انتخاب شود. مانند amount ورودی در اینجا و amountChange خروجی تعریف شده.

بنابراین به صورت خلاصه جهت تعریف یک انقیاد دو طرفه سفارشی:
- ابتدا باید انقیاد به یک خاصیت ورودی x را تعریف کرد.
- سپس نیاز است انقیاد به یک رخ‌داد خروجی هم‌نام، که نام آن، پسوند Change را اضافه‌تر دارد، یعنی xChange را تعریف کرد.
- اکنون می‌توان two-way data binding syntax ویژه‌ای را به نام banana in a box بر روی این‌دو تعریف کرد[(x)].


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید.
نظرات مطالب
ASP.NET MVC #8
بهتر است از UrlHelper استفاده کنید:
var urlHelper = new UrlHelper(htmlHelper.ViewContext.RequestContext);
var url = urlHelper.Content("~/stuff/");
مطالب
آشنایی با تست واحد و استفاده از کتابخانه Moq
تست واحد چیست؟

تست واحد ابزاری است برای مشاهده چگونگی عملکرد یک متد که توسط خود برنامه نویس نوشته میشود. به این صورت که پارامتر‌های ورودی، برای یک متد ساخته شده و آن متد فراخوانی و خروجی متد بسته به حالت مطلوب بررسی میشود. چنانچه خروجی مورد نظر مطلوب باشد تست واحد با موفقیت انجام میشود.


اهمیت انجام تست واحد چیست؟

درستی یک متد، مهمترین مسئله برای بررسی است و بارها مشاهده شده، استثناهایی رخ میدهند که توان تولید را به دلیل فرسایش تکراری رخداد میکاهند. نوشتن تست واحد منجر به این می‌شود چناچه بعدها تغییری در بیزنس متد ایجاد شود و ورودی و خروجی‌ها تغییر نکند، صحت این تغییر بیزنس، توسط تست بررسی مشود؛ حتی میتوان این تست‌ها را در build پروژه قرار داد و در ابتدای اجرای یک Solution تمامی تست‌ها اجرا و درستی بخش به بخش اعضا چک شوند.


شروع تست واحد:

یک پروژه‌ی ساده را داریم برای تعریف حساب‌های بانکی شامل نام مشتری، مبلغ سپرده، وضعیت و 3 متد واریز به حساب و برداشت از حساب و تغییر وضعیت حساب که به صورت زیر است:
    /// <summary>
    /// حساب بانکی
    /// </summary>
    public class Account
    {
        /// <summary>
        /// مشتری
        /// </summary>
        public string Customer { get; set; }
        /// <summary>
        /// موجودی حساب
        /// </summary>
        public float Balance { get; set; }
        /// <summary>
        /// وضعیت
        /// </summary>
        public bool Active { get; set; }

        public Account(string customer, float balance)
        {
            Customer = customer;
            Balance = balance;
            Active = true;
        }
        /// <summary>
        /// افزایش موجودی / واریز به حساب
        /// </summary>
        /// <param name="amount">مبلغ واریز</param>
        public void Credit(float amount)
        {
            if (!Active)
                throw new Exception("این حساب مسدود است.");
            if (amount < 0)
                throw new ArgumentOutOfRangeException("amount");
            Balance += amount;
        }
        /// <summary>
        /// کاهش موجودی / برداشت از حساب
        /// </summary>
        /// <param name="amount">مبلغ برداشت</param>
        public void Debit(float amount)
        {
            if (!Active)
                throw new Exception("این حساب مسدود است.");
            if (amount < 0)
                throw new ArgumentOutOfRangeException("amount");
            if (Balance < amount)
                throw new ArgumentOutOfRangeException("amount");
            Balance -= amount;
        }
        /// <summary>
        /// انسداد / رفع انسداد
        /// </summary>
        public void ChangeStateAccount()
        {
            Active = !Active;
        }
    }
تابع اصلی نیز به صورت زیر است:
    class Program
    {
        static void Main(string[] args)
        {
            var account = new Account("Ali",1000);

            account.Credit(4000);
            account.Debit(2000);
            Console.WriteLine("Current balance is ${0}", account.Balance);
            Console.ReadKey();
        }
    }
به Solution، یک پروژه از نوع تست واحد اضافه میکنیم.
در این پروژه ابتدا Reference ایی از پروژه‌ای که مورد تست هست میگیریم. سپس در کلاس تست مربوطه شروع به نوشتن متدی برای انواع تست متدهای پروژه اصلی میکنیم.
توجه داشته باشید که Data Annotation‌های بالای کلاس تست و متدهای تست، در تعیین نوع نگاه کامپایلر به این بلوک‌ها موثر است و باید این مسئله به درستی رعایت شود. همچنین در صورت نیاز میتوان از کلاس StartUp برای شروع تست استفاده کرد که عمدتا برای تعریف آن از نام ClassInit استفاده میشود و در بالای آن از [ClassInitialize] استفاده میشود.
در Library تست واحد میتوان به دو صورت چگونگی صحت عملکرد یک تست را بررسی کرد: با استفاده از Assert و با استفاده از ExpectedException، که در زیر به هر دو صورت آن میپردازیم.
    [TestClass]
    public class UnitTest
    {
        /// <summary>
        /// تعریف حساب جدید و بررسی تمامی فرآیند‌های معمول روی حساب
        /// </summary>
        [TestMethod]
        public void Create_New_Account_And_Check_The_Process()
        {
            //Arrange
            var account = new Account("Hassan", 4000);
            var account2 = new Account("Ali", 10000);
            //Act
            account.Credit(5000);
            account2.Debit(3000);
            account.ChangeStateAccount();
            account2.Active = false;
            account2.ChangeStateAccount();
            //Assert
            Assert.AreEqual(account.Balance,9000);
            Assert.AreEqual(account2.Balance,7000);
            Assert.IsTrue(account2.Active);
            Assert.AreEqual(account.Active,false);
        }
همانطور که مشاهده میشود ابتدا در قسمت Arrange، خوراک تست آماده میشود. سپس در قسمت Act، فعالیت‌هایی که زیر ذره بین تست هستند صورت می‌پذیرند و سپس در قسمت Assert درستی مقادیر با مقادیر مورد انتظار ما مطابقت داده میشوند.
برای بررسی خطاهای تعیین شده هنگام نوشتن یک متد نیز میتوان به صورت زیر عمل کرد:
        /// <summary>
        /// زمانی که کاربر بخواهد به یک حساب مسدود واریز کند باید جلوی آن گرفته شود.
        /// </summary>
        [TestMethod]
        [ExpectedException(typeof (Exception))]
        public void When_Deactive_Account_Wants_To_add_Credit_Should_Throw_Exception()
        {
            //Arrange
            var account = new Account("Hassan", 4000) {Active = false};
            //Act
            account.Credit(4000);
            //Assert
            //Assert is handled with ExpectedException
        }

        [TestMethod]
        [ExpectedException(typeof (ArgumentOutOfRangeException))]
        public void When_Customer_Wants_To_Debit_More_Than_Balance_Should_Throw_ArgumentOutOfRangeException()
        {
            //Arrange
            var account = new Account("Hassan", 4000);
            //Act
            account.Debit(5000);
            //Assert
            //Assert is handled with ArgumentOutOfRangeException
        }
همانطور که مشخص است نام متد تست باید کامل و شفاف به صورتی انتخاب شود که بیانگر رخداد درون متد تست باشد. در این متدها Assert مورد انتظار با DataAnnotation که پیش از این توضیح داده شد کنترل گردیده است و بدین صورت کار میکند که وقتی Act انجام میشود، متد بررسی می‌کند تا آن Assert رخ بدهد.


استفاده از Library Moq در تست واحد

ابتدا باید به این توضیح بپردازیم که این کتابخانه چه کاری میکند و چه امکانی را برای انجام تست واحد فراهم میکند.
در پروژه‌های بزرگ و زمانی که ارتباطات بین لایه‌ای زیادی موجود است و اصول SOLID رعایت میشود، شما در یک لایه برای ارایه فعالیت‌ها و خدمات متدهایتان با Interface‌های لایه‌های دیگر در ارتباط هستید و برای نوشتن تست واحد متدهایتان، مشکلی بزرگ دارید که نمیتوانید به این لایه‌ها دسترسی داشته باشید و ماهیت تست واحد را زیر سوال میبرید. Library Moq این امکان را به شما میدهد که از این Interface‌ها یک تصویر مجازی بسازید و همانند Snap Shot با آن کار کنید؛ بدون اینکه در لایه‌های دیگر بروید و ماهیت تست واحد را زیر سوال ببرید.
برای استفاده از متدهایی که در این Interface‌ها موجود است شما باید یک شیء از نوع Mock<> از آنها بسازید و سپس با استفاده از متد Setup به صورت مجازی متد مورد نظر را فراخوانی کنید و مقدار بازگشتی مورد انتظار را با Return معرفی کنید، سپس از آن استفاده کنید.
همچنین برای دسترسی به خود شیء از Property ایی با نام Objet از موجودیت mock شده استفاده میکنیم.
برای شناسایی بهتر اینکه از چه اینترفیس هایی باید Mock<> بسازید، میتوانید به متد سازنده کلاسی که معرف لایه ایست که برای آن تست واحد مینویسید، مراجعه کنید.
نحوه اجرای یک تست واحد با استفاده از Moq با توجه به توضیحات بالا به صورت زیر است:
پروژه مورد بررسی لایه Service برای تعریف واحد‌های سازمانی است که با الگوریتم DDD و CQRS پیاده سازی شده است.
ابتدا به Constructor خود لایه سرویس نگاه میکنیم تا بتوانید شناسایی کنید از چه Interface هایی باید Mock<> کنیم.
  public class OrganizationalService : ICommandHandler<CreateUnitTypeCommand>,
                                         ICommandHandler<DeleteUnitTypeCommand>,                                    
    {
        private readonly IUnitOfWork _unitOfWork;
        private readonly IUnitTypeRepository _unitTypeRepository;
        private readonly IOrganizationUnitRepository _organizationUnitRepository;
        private readonly IOrganizationUnitDomainService _organizationUnitDomainService;

        public OrganizationalService(IUnitOfWork unitOfWork, IUnitTypeRepository unitTypeRepository, IOrganizationUnitRepository organizationUnitRepository, IOrganizationUnitDomainService organizationUnitDomainService)
        {
            _unitOfWork = unitOfWork;
            _unitTypeRepository = unitTypeRepository;
            _organizationUnitRepository = organizationUnitRepository;
            _organizationUnitDomainService = organizationUnitDomainService;
        }
مشاهده میکنید که 4 Interface استفاده شده و در متد سازنده نیز مقدار دهی شده اند. پس 4 Mock نیاز داریم. در پروژه تست به صورت زیر و در ClassInitialize عمل میکنیم.
    [TestClass]
    public class OrganizationServiceTest
    {
        private static OrganizationalService _organizationalService;
        private static Mock<IUnitTypeRepository> _mockUnitTypeRepository;
        private static Mock<IUnitOfWork> _mockUnitOfWork;
        private static Mock<IOrganizationUnitRepository> _mockOrganizationUnitRepository;
        private static Mock<IOrganizationUnitDomainService> _mockOrganizationUnitDomainService;

        [ClassInitialize]
        public static void ClassInit(TestContext context)
        {
            TestBootstrapper.ConfigureDependencies();
            _mockUnitOfWork = new Mock<IUnitOfWork>();
            _mockUnitTypeRepository = new Mock<IUnitTypeRepository>();
            _mockOrganizationUnitRepository = new Mock<IOrganizationUnitRepository>();
            _mockOrganizationUnitDomainService=new Mock<IOrganizationUnitDomainService>();
            _organizationalService = new OrganizationalService(_mockUnitOfWork.Object, _mockUnitTypeRepository.Object,  _mockOrganizationUnitRepository.Object,_mockOrganizationUnitDomainService.Object);
        }
از خود لایه سرویس با نام OrganizationService یک آبجکت میگیریم و 4 واسط دیگر به صورت Mock شده تعریف میشوند. همچنین در کلاس بارگذار از همان نوع مقدار دهی میگردند تا در اجرای تمامی متدهای تست، در دست کامپایلر باشند. همچنین برای new کردن خود سرویس از mock.obect‌ها که حاوی مقدار اصلی است استفاده می‌کنیم.
خود متد اصلی به صورت زیر است:
        /// <summary>
        /// یک نوع واحد سازمانی را حذف مینماید
        /// </summary>
        /// <param name="command"></param>
        public void Handle(DeleteUnitTypeCommand command)
        {
            var unitType = _unitTypeRepository.FindBy(command.UnitTypeId);
            if (unitType == null)
                throw new DeleteEntityNotFoundException();

            ICanDeleteUnitTypeSpecification canDeleteUnitType = new CanDeleteUnitTypeSpecification(_organizationUnitRepository);
            if (canDeleteUnitType.IsSatisfiedBy(unitType))
                throw new UnitTypeIsUnderUsingException(unitType.Title);
            _unitTypeRepository.Remove(unitType);
        }
متد‌های تست این متد نیز به صورت زیر هستند:
        /// <summary>
        /// کامند حذف نوع واحد سازمانی باید به درستی حذف کند.
        /// </summary>
        [TestMethod]
        public void DeleteUnitTypeCommand_Should_Delete_UnitType()
        {
            //Arrange
            var unitTypeId=new Guid();
            var deleteUnitTypeCommand = new DeleteUnitTypeCommand { UnitTypeId = unitTypeId };
            var unitType = new UnitType("خوشه");
            var org = new List<OrganizationUnit>();
            _mockUnitTypeRepository.Setup(d => d.FindBy(deleteUnitTypeCommand.UnitTypeId)).Returns(unitType);
            _mockUnitTypeRepository.Setup(x => x.Remove(unitType));
            _mockOrganizationUnitRepository.Setup(z => z.FindBy(unitType)).Returns(org);
            try
            {
                //Act
                _organizationalService.Handle(deleteUnitTypeCommand);
            }
            catch (Exception ex)
            {
                //Assert
                Assert.Fail(ex.Message);
            }
        }
همانطور که مشاهده میشود ابتدا یک Guid به عنوان آی دی نوع واحد سازمانی گرفته میشود و همان آی دی برای تعریف کامند حذف به آن ارسال میشود. سپس یک نوع واحد سازمانی دلخواه تستی ساخته میشود و همچنین یک لیست خالی از واحد‌های سازمانی که برای چک شدن توسط خود متد Handle استفاده شده‌است ساخته میشود. در اینجا این متد خالی است تا شرط غلط شود و عمل حذف به درستی صورت پذیرد.
برای اعمالی که در Handle انجام میشود و متدهایی که از Interface‌ها صدا زده میشوند Setup میکنیم و آنهایی را که Return دارند به object هایی که مورد انتظار خودمان هست نسبت میدهیم.
در Setup اول میگوییم که آن Guid مربوط به "خوشه" است. در Setup بعدی برای عمل Remove کدی مینویسیم و چون عمل حذف Return ندارد میتواند، این خط به کل حذف شود! به طور کلی Setup هایی که Return ندارند میتوانند حذف شوند.
در Setup بعدی از Interface دیگر متد FindBy که قرار است چک کند این نوع واحد سازمانی برای تعریف واحد سازمانی استفاده شده است، در Return به آن یک لیست خالی اختصاص میدهیم تا نشان دهیم لیست خالی برگشته است.
عملیات Act را وارد Try میکنیم تا اگر به هر دلیل انجام نشد، Assert ما باشد.
دو حالت رخداد استثناء که در متد اصلی تست شده است در دو متد تست به طور جداگانه تست گردیده است:
        /// <summary>
        /// کامند حذف یک نوع واحد سازمانی باید پیش از حذف بررسی کند که این شناسه داده شده برای حذف موجود باشد.
        /// </summary>
        [TestMethod]
        [ExpectedException(typeof(DeleteEntityNotFoundException))]
        public void DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitTypeId_NotExist()
        {
            //Arrange
            var unitTypeId = new Guid();
            var deleteUnitTypeCommand = new DeleteUnitTypeCommand();
            var unitType = new UnitType("خوشه");
            var org = new List<OrganizationUnit>();
            _mockUnitTypeRepository.Setup(d => d.FindBy(unitTypeId)).Returns(unitType);
            _mockUnitTypeRepository.Setup(x => x.Remove(unitType));
            _mockOrganizationUnitRepository.Setup(z => z.FindBy(unitType)).Returns(org);

            //Act
            _organizationalService.Handle(deleteUnitTypeCommand);
        }

        /// <summary>
        /// کامند حذف یک نوع واحد سازمانی نباید اجرا شود وقتی که نوع واحد برای تعریف واحد‌های سازمان استفاده شده است.
        /// </summary>
        [TestMethod]
        [ExpectedException(typeof(UnitTypeIsUnderUsingException))]
        public void DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitType_Exist_but_UsedForDefineOrganizationUnit()
        {
            //Arrange
            var unitTypeId = new Guid();
            var deleteUnitTypeCommand = new DeleteUnitTypeCommand { UnitTypeId = unitTypeId };
            var unitType = new UnitType("خوشه");
            var org = new List<OrganizationUnit>()
            {
                new OrganizationUnit("مدیریت یک", unitType, null),
                new OrganizationUnit("مدیریت دو", unitType, null)
            };
            _mockUnitTypeRepository.Setup(d => d.FindBy(deleteUnitTypeCommand.UnitTypeId)).Returns(unitType);
            _mockUnitTypeRepository.Setup(x => x.Remove(unitType));
            _mockOrganizationUnitRepository.Setup(z => z.FindBy(unitType)).Returns(org);

            //Act
            _organizationalService.Handle(deleteUnitTypeCommand);
        }
متد DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitTypeId_NotExist همانطور که از نامش معلوم است بررسی میکند که نوع واحد سازمانی که ID آن برای حذف ارسال میشود در Database وجود دارد و اگر نباشد Exception مطلوب ما باید داده شود.
در متد DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitType_Exist_but_UsedForDefineOrganizationUnit بررسی میشود که از این نوع واحد سازمانی برای تعریف واحد سازمانی استفاده شده است یا نه و صحت این مورد با الگوی Specification صورت گرفته است. استثنای مطلوب ما Assert و شرط درستی این متد تست، میباشد.
نظرات مطالب
بررسی روش آپلود فایل‌ها از طریق یک برنامه‌ی Angular به یک برنامه‌ی ASP.NET Core
سلام.
من برای دانلود فایل در بخش api ام این کد رو نوشتم:
public async Task<ServiceResult<FileContentResult>> GetByFileFolderId(int id)
        {
            var file = await FileRepository.GetByFileFolderId( id);
            var locatedFile = (byte[])Convert.ChangeType(file.FileData64, typeof(byte[]));
            var result= new FileContentResult(locatedFile, new
            MediaTypeHeaderValue("application/pdf"))
            {
                FileDownloadName = "SomeFileDownloadName.pdf"
            };
            return Ok(result);
        }
و در بخش کلاینت از این کد استفاده کردم:
getPDF(fileId): Observable<Blob> {
    const uri = 'MyApiUri/GetByFileFolderId?id=' + fileId;
    return this.http.get(uri, { responseType: 'blob' });
  }

downloadFile(){
this.getPDF()
.subscribe(x => {
  var newBlob = new Blob([x], { type: "application/pdf" });

  const data = window.URL.createObjectURL(newBlob);
  var link = document.createElement('a');
  link.href = data;
  link.download = "SomeFileDownloadName.pdf";
  link.dispatchEvent(new MouseEvent('click', { bubbles: true, cancelable: true, view: window }));
  setTimeout(function () {
      window.URL.revokeObjectURL(data);
      link.remove();
  }, 100);
});
}
ولی زمانی که فایل رو دانلود میکنه و فایل رو میخوام باز کنم ارور This PDF is corrupted میده. و برای انواع دیگر فایل هم همین مشکل رو داره و نمیتونه محتوای فایل رو تشخیص بده.
مطالب
عبارت using و نحوه استفاده صحیح از آن
مثال ساده زیر را که در مورد تعریف یک کلاس Disposable و سپس استفاده از آن توسط عبارت using است را به همراه سه استثنایی که در این متدها تعریف شده است، در نظر بگیرید:
using System;

namespace TestUsing
{
    public class MyResource : IDisposable
    {
        public void DoWork()
        {
            throw new ArgumentException("A");
        }

        public void Dispose()
        {
            throw new ArgumentException("B");
        }
    }

    public static class TestClass
    {
        public static void Test()
        {
            using (MyResource r = new MyResource())
            {
                throw new ArgumentException("C");
                r.DoWork();
            }
        }
    }
}
به نظر شما قطعه کد زیر چه عبارتی را نمایش می‌دهد؟ C یا B یا A؟
try
{
     TestClass.Test();
}
catch (Exception ex)
{
    Console.WriteLine(ex.Message);
}

پاسخ: برخلاف تصور (که احتمالا C است؛ چون قبل از فراخوانی متد DoWork سبب بروز استثناء شده است)، فقط B را در خروجی مشاهده خواهیم کرد!
و این دقیقا مشکلی است که در حین کار با کتابخانه iTextSharp برای اولین بار با آن مواجه شدم. روش استفاده متداول از iTextSharp به نحو زیر است:
using (var pdfDoc = new Document(PageSize.A4))  
{  
   //todo: ...
}
در این بین هر استثنایی رخ دهد، در لاگ‌های خطای سیستم شما تنها خطاهای مرتبط با خود iTextSharp را مشاهده خواهید کرد و نه مشکل اصلی را که در کدهای ما وجود داشته است. البته این یک مشکل عمومی است و اگر «using statement and suppressed exceptions» را در گوگل جستجو کنید به نتایج مشابه زیادی خواهید رسید.
و خلاصه نتایج هم این است:
اگر به ثبت جزئیات خطاهای سیستم اهمیت می‌دهید (یکی از مهم‌ترین مزیت‌های دات نت نسبت به بسیاری از فریم ورک‌های مشابه که حداکثر خطای 0xABC12EF را نمایش می‌دهند)، از using استفاده نکنید! using در پشت صحنه به try/finally ترجمه می‌شود و بهتر است این مورد را دستی نوشت تا اینکه کامپایلر اینکار را به صورت خودکار انجام دهد.
در اینجا باز هم به یک سری کد تکراری try/finally خواهیم رسید و همانطور که در مباحث کاربردهای Action و Func در این سایت ذکر شد، می‌توان آن‌را تبدیل به کدهایی با قابلیت استفاده مجدد کرد. یک نمونه از پیاده سازی آن‌را در این سایت «C# Using Blocks can Swallow Exceptions » می‌توانید مشاهده کنید که خلاصه آن کلاس زیر است:
using System;

namespace Guard
{
    public static class SafeUsing
    {
        public static void SafeUsingBlock<TDisposable>(this TDisposable disposable, Action<TDisposable> action)
            where TDisposable : IDisposable
        {
            disposable.SafeUsingBlock(action, d => d);
        }

        internal static void SafeUsingBlock<TDisposable, T>(this TDisposable disposable, Action<T> action, Func<TDisposable, T> unwrapper)
            where TDisposable : IDisposable
        {
            try
            {
                action(unwrapper(disposable));
            }
            catch (Exception actionException)
            {
                try
                {
                    disposable.Dispose();
                }
                catch (Exception disposeException)
                {
                    throw new AggregateException(actionException, disposeException);
                }

                throw;
            }

            disposable.Dispose();
        }
    }
}
برای استفاده از کلاس فوق مثلا در حالت بکارگیری iTextSharp خواهیم داشت:
new Document(PageSize.A4).SafeUsingBlock(pdfDoc =>
{
  //todo: ...
});
علاوه بر اینکه SafeUsingBlock یک سری از اعمال تکراری را کپسوله می‌کند، از AggregateException نیز استفاده کرده است (معرفی شده در دات نت 4). به این صورت چندین استثنای رخ داده نیز در سطحی بالاتر قابل دریافت و بررسی خواهند بود و استثنایی در این بین از دست نخواهد رفت.