مطالب
ساخت یک بارکدخوان با استفاده از OpenCV و ZXing.Net
فرض کنید می‌خواهیم بارکد این قبض را یافته و سپس عدد متناظر با آن‌را در برنامه بخوانیم.


مراحل کار به این صورت هستند:


بارگذاری تصویر و چرخش آن در صورت نیاز

ابتدا تصویر بارکد دار را بارگذاری کرده و آن‌را تبدیل به یک تصویر سیاه و سفید می‌کنیم:
// load the image and convert it to grayscale
var image = new Mat(fileName);
 
if (rotation != 0)
{
    rotateImage(image, image, rotation, 1);
}
 
if (debug)
{
    Cv2.ImShow("Source", image);
    Cv2.WaitKey(1); // do events
}
 
var gray = new Mat();
var channels = image.Channels();
if (channels > 1)
{
    Cv2.CvtColor(image, gray, ColorConversion.BgrToGray);
}
else
{
    image.CopyTo(gray);
}
در این بین ممکن است بارکد موجود در تصویر، دقیقا در زاویه‌ای که در تصویر ابتدای بحث قرار گرفته‌است، وجود نداشته باشد؛ مثلا منهای 90 درجه، چرخیده باشد. به همین جهت می‌توان از متد چرخش تصویر مطلب «تغییر اندازه، و چرخش تصاویر» ارائه شده در قسمت نهم این سری استفاده کرد.


تشخیص گرادیان‌های افقی و عمودی

یکی از روش‌های تشخیص بارکد، استفاده از روشی است که در تشخیص خودرو قسمت 16 بیان شد. تعداد زیادی تصویر بارکد را تهیه و سپس آن‌ها را به الگوریتم‌های machine learning جهت تشخیص و یافتن محدوده‌ی بارکد موجود در یک تصویر، ارسال کنیم. هرچند این روش جواب خواهد داد، اما در این مورد خاص، قسمت بارکد، شبیه به گرادیانی از رنگ‌ها است. کتابخانه‌ی OpenCV برای یافتن این نوع گرادیان‌ها دارای متدی است به نام Sobel :
// compute the Scharr gradient magnitude representation of the images
// in both the x and y direction
var gradX = new Mat();
Cv2.Sobel(gray, gradX, MatType.CV_32F, xorder: 1, yorder: 0, ksize: -1);
//Cv2.Scharr(gray, gradX, MatType.CV_32F, xorder: 1, yorder: 0);
 
var gradY = new Mat();
Cv2.Sobel(gray, gradY, MatType.CV_32F, xorder: 0, yorder: 1, ksize: -1);
//Cv2.Scharr(gray, gradY, MatType.CV_32F, xorder: 0, yorder: 1);
 
// subtract the y-gradient from the x-gradient
var gradient = new Mat();
Cv2.Subtract(gradX, gradY, gradient);
Cv2.ConvertScaleAbs(gradient, gradient);
 
if (debug)
{
    Cv2.ImShow("Gradient", gradient);
    Cv2.WaitKey(1); // do events
}


ابتدا درجه‌ی شدت گرادیان‌ها در جهت‌های x و y محاسبه می‌شوند. سپس این شدت‌ها از هم کم خواهند شد تا بیشترین شدت گرادیان موجود در محور x حاصل شود. این بیشترین شدت‌ها، بیانگر نواحی خواهند بود که احتمال وجود بارکدهای افقی در آن‌ها بیشتر است.


کاهش نویز و یکی کردن نواحی تشخیص داده شده

در ادامه می‌خواهیم با استفاده از متدهای تشخیص کانتور (قسمت 12)، نواحی با بیشترین شدت گرادیان افقی را پیدا کنیم. اما تصویر حاصل از قسمت قبل برای اینکار مناسب نیست. به همین جهت با استفاده از متدهای کار با مورفولوژی تصاویر، این نواحی گرادیانی را یکی می‌کنیم (قسمت 8).
// blur and threshold the image
var blurred = new Mat();
Cv2.Blur(gradient, blurred, new Size(9, 9));
 
var threshImage = new Mat();
Cv2.Threshold(blurred, threshImage, thresh, 255, ThresholdType.Binary);
 
if (debug)
{
    Cv2.ImShow("Thresh", threshImage);
    Cv2.WaitKey(1); // do events
}
 
 
// construct a closing kernel and apply it to the thresholded image
var kernel = Cv2.GetStructuringElement(StructuringElementShape.Rect, new Size(21, 7));
var closed = new Mat();
Cv2.MorphologyEx(threshImage, closed, MorphologyOperation.Close, kernel);
 
if (debug)
{
    Cv2.ImShow("Closed", closed);
    Cv2.WaitKey(1); // do events
}
 
 
// perform a series of erosions and dilations
Cv2.Erode(closed, closed, null, iterations: 4);
Cv2.Dilate(closed, closed, null, iterations: 4);
 
if (debug)
{
    Cv2.ImShow("Erode & Dilate", closed);
    Cv2.WaitKey(1); // do events
}
این سه مرحله را در تصاویر ذیل مشاهده می‌کنید:


ابتدا با استفاده از متد Threshold، تصویر را به یک تصویر باینری تبدیل خواهیم کرد. در این تصویر تمام نقاط دارای شدت رنگ کمتر از مقدار thresh، به مقدار حداکثر 255 تنظیم می‌شوند.
سپس با استفاده از متدهای تغییر مورفولوژی تصویر، قسمت‌های مجاور به هم را می‌بندیم و یکی می‌کنیم. این مورد در یافتن اشیاء احتمالی که ممکن است بارکد باشند، بسیار مفید است.
متدهای Erode و Dilate در اینجا کار حذف نویزهای اضافی را انجام می‌دهند؛ تا بهتر بتوان بر روی نواحی بزرگتر یافت شده، تمرکز کرد.



یافتن بزرگترین ناحیه‌ی به هم پیوسته‌ی موجود در یک تصویر

تمام این مراحل را انجام دادیم تا بتوانیم بزرگترین ناحیه‌ی به هم پیوسته‌ای را که احتمال می‌رود بارکد باشد، در تصویر تشخیص دهیم. پس از این آماده سازی‌ها، اکنون با استفاده از متد یافتن کانتورها، تمام نواحی یکی شده را یافته و بزرگترین مساحت ممکن را به عنوان بارکد انتخاب می‌کنیم:
//find the contours in the thresholded image, then sort the contours
//by their area, keeping only the largest one
 
Point[][] contours;
HiearchyIndex[] hierarchyIndexes;
Cv2.FindContours(
    closed,
    out contours,
    out hierarchyIndexes,
    mode: ContourRetrieval.CComp,
    method: ContourChain.ApproxSimple);
 
if (contours.Length == 0)
{
    throw new NotSupportedException("Couldn't find any object in the image.");
}
 
var contourIndex = 0;
var previousArea = 0;
var biggestContourRect = Cv2.BoundingRect(contours[0]);
while ((contourIndex >= 0))
{
    var contour = contours[contourIndex];
 
    var boundingRect = Cv2.BoundingRect(contour); //Find bounding rect for each contour
    var boundingRectArea = boundingRect.Width * boundingRect.Height;
    if (boundingRectArea > previousArea)
    {
        biggestContourRect = boundingRect;
        previousArea = boundingRectArea;
    }
 
    contourIndex = hierarchyIndexes[contourIndex].Next;
}
 
 
var barcode = new Mat(image, biggestContourRect); //Crop the image
Cv2.CvtColor(barcode, barcode, ColorConversion.BgrToGray);
 
Cv2.ImShow("Barcode", barcode);
Cv2.WaitKey(1); // do events
حاصل این عملیات یافتن بزرگترین ناحیه‌ی گرادیانی به هم پیوسته‌ی موجود در تصویر است:


خواندن مقدار متناظر با بارکد یافت شده

خوب، تا اینجا موفق شدیم، محل قرارگیری بارکد را تصویر پیدا کنیم. مرحله‌ی بعد خواندن مقدار متناظر با این تصویر است. برای این منظور از کتابخانه‌ی سورس بازی به نام http://zxingnet.codeplex.com استفاده خواهیم کرد. این کتابخانه قادر است بارکد بسازد و همچنین تصاویر بارکدها را خوانده و مقادیر متناظر با آن‌ها را استخراج کند. برای نصب آن می‌توان از دستور ذیل استفاده کرد:
 PM> Install-Package ZXing.Net
پس از نصب این کتابخانه‌ی بارکدساز و بارکد خوان، اکنون تنها کاری که باید صورت گیرد، ارسال تصویر بارکد جدا شده‌ی توسط OpenCV به آن است:
private static string getBarcodeText(Mat barcode)
{
    // `ZXing.Net` needs a white space around the barcode
    var barcodeWithWhiteSpace = new Mat(new Size(barcode.Width + 30, barcode.Height + 30), MatType.CV_8U, Scalar.White);
    var drawingRect = new Rect(new Point(15, 15), new Size(barcode.Width, barcode.Height));
    var roi = barcodeWithWhiteSpace[drawingRect];
    barcode.CopyTo(roi);
 
    Cv2.ImShow("Enhanced Barcode", barcodeWithWhiteSpace);
    Cv2.WaitKey(1); // do events
 
    return decodeBarcodeText(barcodeWithWhiteSpace.ToBitmap());
}
 
private static string decodeBarcodeText(System.Drawing.Bitmap barcodeBitmap)
{
    var source = new BitmapLuminanceSource(barcodeBitmap);
 
    // using http://zxingnet.codeplex.com/
    // PM> Install-Package ZXing.Net
    var reader = new BarcodeReader(null, null, ls => new GlobalHistogramBinarizer(ls))
    {
        AutoRotate = true,
        TryInverted = true,
        Options = new DecodingOptions
        {
            TryHarder = true,
            //PureBarcode = true,
            /*PossibleFormats = new List<BarcodeFormat>
                    {
                        BarcodeFormat.CODE_128
                        //BarcodeFormat.EAN_8,
                        //BarcodeFormat.CODE_39,
                        //BarcodeFormat.UPC_A
                    }*/
        }
    };
 
    //var newhint = new KeyValuePair<DecodeHintType, object>(DecodeHintType.ALLOWED_EAN_EXTENSIONS, new Object());
    //reader.Options.Hints.Add(newhint);
 
    var result = reader.Decode(source);
    if (result == null)
    {
        Console.WriteLine("Decode failed.");
        return string.Empty;
    }
 
    Console.WriteLine("BarcodeFormat: {0}", result.BarcodeFormat);
    Console.WriteLine("Result: {0}", result.Text);
 
 
    var writer = new BarcodeWriter
    {
        Format = result.BarcodeFormat,
        Options = { Width = 200, Height = 50, Margin = 4},
        Renderer = new ZXing.Rendering.BitmapRenderer()
    };
    var barcodeImage = writer.Write(result.Text);
    Cv2.ImShow("BarcodeWriter", barcodeImage.ToMat());
 
    return result.Text;
}
چند نکته را باید در مورد کار با ZXing.Net بخاطر داشت؛ وگرنه جواب نمی‌گیرید:
الف) این کتابخانه حتما نیاز دارد تا تصویر بارکد، در یک حاشیه‌ی سفید در اختیار او قرار گیرد. به همین جهت در متد getBarcodeText، ابتدا تصویر بارکد یافت شده، به میانه‌ی یک مستطیل سفید رنگ بزرگ‌تر کپی می‌شود.
ب) برای تبدیل Mat به Bitmap مورد نیاز این کتابخانه می‌توان از متد الحاقی ToBitmap استفاده کرد (قسمت 7).
ج) پس از آن وهله‌ای از کلاس BarcodeReader آماده شده و در آن پارامترهایی مانند بیشتر سعی کن (TryHarder) و اصلاح درجه‌ی چرخش تصویر (AutoRotate) تنظیم شده‌اند.
د) بارکدهای موجود در قبض‌های ایران عموما بر اساس فرمت CODE_128 ساخته می‌شوند. بنابراین برای خواندن سریعتر آ‌نها می‌توان PossibleFormats را مقدار دهی کرد. اگر این مقدار دهی صورت نگیرد، تمام حالت‌های ممکن بررسی می‌شوند.

در آخر کار این متد، از متد Writer آن نیز برای تولید بارکد مشابهی استفاده شده‌است تا بتوان بررسی کرد این دو تا چه اندازه به هم شبیه هستند.


همانطور که مشاهده می‌کنید، عدد تشخیص داده شده، با عدد شناسه‌ی قبض و شناسه‌ی پرداخت تصویر ابتدای بحث یکی است.


بهبود تصویر، پیش از ارسال آن به متد Decode کتابخانه‌ی ZXing.Net

در تصویر قبلی، سطر decode failed را هم ملاحظه می‌کنید. علت اینجا است که اولین سعی انجام شده، موفق نبوده است؛ چون تصویر تشخیص داده شده، بیش از اندازه نویز و حاشیه‌ی خاکستری دارد. می‌توان این حاشیه‌ی خاکستری را با دوبار اعمال متد Threshold از بین برد:
var barcodeClone = barcode.Clone();
var barcodeText = getBarcodeText(barcodeClone);
 
if (string.IsNullOrWhiteSpace(barcodeText))
{
    Console.WriteLine("Enhancing the barcode...");
    //Cv2.AdaptiveThreshold(barcode, barcode, 255,
        //AdaptiveThresholdType.GaussianC, ThresholdType.Binary, 9, 1);
    //var th = 119;
    var th = 100;
    Cv2.Threshold(barcode, barcode, th, 255, ThresholdType.ToZero);
    Cv2.Threshold(barcode, barcode, th, 255, ThresholdType.Binary);
    barcodeText = getBarcodeText(barcode);
}
 
Cv2.Rectangle(image,
    new Point(biggestContourRect.X, biggestContourRect.Y),
    new Point(biggestContourRect.X + biggestContourRect.Width, biggestContourRect.Y + biggestContourRect.Height),
    new Scalar(0, 255, 0),
    2);
 
if (debug)
{
    Cv2.ImShow("Segmented Source", image);
    Cv2.WaitKey(1); // do events
}
 
Cv2.WaitKey(0);
Cv2.DestroyAllWindows();


اعداد یافت شده، دقیقا از روی تصویر بهبود یافته‌ی توسط متدهای Threshold خوانده شده‌اند و نه تصویر ابتدایی یافت شده. بنابراین به این موضوع نیز باید دقت داشت.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
اشتراک‌ها
پیاده سازی مفاهیم SOLID در ASP.NET Core توسط نویسنده‌ی AutoMapper

ASP.NET Core 1.0 is the ground-up rewrite of ASP.NET, MVC and Web API, bringing a new paradigm in building web applications and APIs in .NET. With this rewrite brought new techniques in building SOLID applications, and updated some existing patterns and tools.
In this session, we'll take a lap around some of the major extension points of ASP.NET Core 1.0, walking through how these features can help us build cleaner, more maintainable systems. We'll cover web APIs, traditional MVC applications, controllers, views, filters, dependency injection, tag helpers and more. With a SOLID foundation, our ASP.NET Core applications will be dead simple to build and maintain.
 

پیاده سازی مفاهیم SOLID در ASP.NET Core توسط نویسنده‌ی AutoMapper
مطالب
کنترل نرخ ورود اطلاعات در برنامه‌های Angular
فرض کنید قصد دارید همزمان با تایپ کاربر، نتایج جستجو را به او نمایش دهید. این جستجو نیز عموما به همراه ارسال یک درخواست HTTP به سمت سرور و نمایش اطلاعات بازگشتی به کاربر است. جهت کاهش تعداد رفت و برگشت‌های به سرور، کاهش بار سرور و همچنین کاهش تعداد بار به روز رسانی رابط کاربری، کتابخانه‌ی RxJS به همراه متدهایی است که امکان کاهش نرخ ورودی کاربر را میسر می‌کنند.


کنترلر جستجوی سمت سرور و سرویس سمت کلاینت استفاده کننده‌ی از آن

در اینجا کنترلر و اکشن متدی را جهت جستجوی قسمتی از نام کشورها، مشاهده می‌کنید:
    [Route("api/[controller]")]
    public class TypeaheadController : Controller
    {
        [HttpGet("[action]")]
        public async Task<IActionResult> SearchCountries(string term)
        {
            await Task.Delay(1000); // simulating a slow operation

            var items = new[]
                {
                     "Afghanistan",
                     "Albania",
                     "Algeria",
                     "American Samoa",
                     "Andorra",
                     "Angola",
                     "Anguilla",
                     "Antarctica",
                     "Antigua and/or Barbuda"
                };
            var results = string.IsNullOrWhiteSpace(term) ? items :
                           items.Where(item => item.StartsWith(term, StringComparison.OrdinalIgnoreCase));
            return Json(results.ToArray());
        }
    }
از این کنترلر به نحو ذیل در برنامه‌ی Angular برای ارسال اطلاعات و انجام جستجو استفاده می‌شود:
import { HttpClient, HttpErrorResponse } from "@angular/common/http";
import { Injectable } from "@angular/core";
import { Observable } from "rxjs/Observable";
import { ErrorObservable } from "rxjs/observable/ErrorObservable";
import { catchError, map } from "rxjs/operators";

@Injectable()
export class SearchService {

  constructor(private http: HttpClient) { }

  searchCountries(term: string): Observable<string[]> {
    return this.http
      .get(`/api/Typeahead/SearchCountries?term=${encodeURIComponent(term)}`)
      .pipe(
        map(response => response || {}),
        catchError((error: HttpErrorResponse) => ErrorObservable.create(error))
      );
  }
}
در اینجا از اپراتور pipe مخصوص RxJS 5.5 استفاده شده‌است.


جستجوی ورودی کاربر به ازای هربار ورود اطلاعات توسط او

صرفنظر از نوع فرمی که استفاده می‌کنید (مبتنی بر قالب‌ها و یا واکنشی)، جهت انتقال هربار فشرده شدن کلیدی به کدهای کامپوننت، می‌توان از رخ‌داد input استفاده کرد:
<label>Country: </label>
<input type="text" (input)="onSearch1Change($event.target.value)" />
<ul class="list-group">
   <li class="list-group-item" *ngFor="let country of countries1">
        {{country}}
   </li>
</ul>
و سپس متد مدیریت کننده‌ی آن در کامپوننت نیز به صورت زیر تعریف می‌شود:
onSearch1Change(value: string) {
 
}
در این حالت روش ابتدایی واکنش نشان دادن به هر ورودی، تزریق SearchService فوق به سازنده‌ی این کامپوننت
 constructor(private searchService: SearchService) { }
و سپس مشترک متد جستجوی سمت سرور آن، شدن است.
این روش ابتدایی سه مشکل را به همراه دارد:
الف) به ازای هر بار فشرده شدن کلیدی در Input box، یک درخواست به سمت سرور ارسال می‌شود. برای مثال اگر هدف اصلی کاربر، جستجوی کشورهای شروع شده‌ی با alg باشد، سه درخواست به سمت سرور ارسال می‌شوند و سه بار هم رابط کاربری به روز می‌شود.
ب) اگر در این بین، کاربر حرفی را کم و زیاد کند، درخواست‌های قبلی لغو نمی‌شوند.
ج) درخواست‌ها به صورت موازی به سرور ارسال می‌شوند. ممکن است نتیجه‌ی یکی زودتر و دیگری دیرتر دریافت شود. در این حالت آخرین نتیجه‌ی رسیده، نتایج قبلی را بازنویسی می‌کند که ممکن است الزاما نتیجه‌ای نباشد که کاربر درخواست کرده‌است.


کنترل نرخ ورود اطلاعات توسط متد debounceTime

با اعمال اپراتور debounceTime به رخ‌داد تغییرات ورودی، می‌توان نرخ ورودی کاربر و واکنش نشان دادن به آن‌را کاهش داد. برای مثال اگر این عدد به 300 میلی ثانیه تنظیم شده باشد، صرفا به اولین ورودی رسیده‌ی پس از 300 میلی ثانیه واکنش نشان داده می‌شود و از مابقی صرفنظر خواهد شد. به این ترتیب دیگر به ازای هربار فشرده شدن کلیدی توسط کاربر جستجو صورت نمی‌گیرد. همچنین با ترکیب آن با اپراتور distinctUntilChanged می‌توان تنها به تغییرات غیرتکراری واکنش نشان داد:
export class AutocompleteSampleComponent implements OnInit {

  countries1: string[] = [];
  private model1Changed: Subject<string> = new Subject<string>();
  private dueTime = 300;

  constructor(private searchService: SearchService) { }

  ngOnInit() {
    this.model1Changed
      .pipe(
        debounceTime(this.dueTime),
        distinctUntilChanged(),
        flatMap(inputValue => {
          console.log("debounced input value1", inputValue);
          return this.searchService.searchCountries(inputValue);
        })
      )
      .subscribe(countries => {
        this.countries1 = countries;
      });
  }

  onSearch1Change(value: string) {
    this.model1Changed.next(value);
  }
}
بنابراین بجای اینکه متد this.searchService.searchCountries دقیقا داخل onSearch1Change فراخوانی شود، باید بتوان تغییرات صورت گرفته‌ی نهایی را پس از اعمال debounceTime و distinctUntilChanged به آن ارسال کرد و سپس نتیجه را به کاربر نمایش داد.
برای این منظور یک Subject تعریف شده‌است تا کار مدیریت تغییرات رسیده (کلیدهای فشرده شده‌ی توسط کاربر) را انجام دهد. در این‌حالت فرصت خواهیم داشت تا انواع و اقسام اپراتورهای RxJS را با هم ترکیب و صرفا نتیجه‌ی نهایی (آخرین ورودی یکتای با تاخیر او) را به searchService ارسال کنیم.
متد onSearch1Change نیز تنها کافی است با فراخوانی متد next این Subject‌، جریان تغییرات رسیده را به آن انتقال دهد.
در اینجا برای انتقال آخرین ورودی یکتای با تاخیر به متد this.searchService.searchCountries از اپراتور flatMap استفاده شده‌است. این اپراتور، آخرین ورودی فیلتر شده را دریافت کرده و به متد searchCountries ارسال می‌کند. همچنین خروجی آن نیز یک Observable است. به همین جهت در ادامه می‌توان توسط متد subscribe، مشترک آن شد و آرایه‌ی countries دریافتی از سرور را به کاربر نمایش داد.



بهبود کارآیی جستجو با لغو درخواست‌های پیشین

تا اینجا توانستیم نرخ ورود اطلاعات کاربر را به صورت کنترل شده‌ای به متد this.searchService.searchCountries ارسال کنیم و نه اینکه به ازای هر بار ورود اطلاعات توسط آن، یکبار این متد فراخوانی شود. اما همانطور که در تصویر فوق مشاهده می‌کنید، در اینجا هدف نهایی کاربر، جستجوی نام کشورهای شروع شده‌ی با alg بوده است و در این بین چندین بار سعی و خطا انجام داده‌است تا به alg رسیده‌است. مشکل اینجا است که هیچکدام از درخواست‌های قبلی او که مدنظر نبوده‌اند، لغو نشده‌اند و تمام آن‌ها صورت گرفته و همچنین سبب به روز رسانی‌های مکرر رابط کاربری شده‌اند.
برای رفع یک چنین مشکلی و لغو خودکار درخواست‌های قبلی، اپراتور دیگری به نام switchMap وجود دارد که دقیقا یک چنین کاری را انجام می‌دهد. در اینجا برخلاف اپراتور flatMap، تمام درخواست‌های تمام نشده‌ی قبلی، لغو شده و صرفا آخرین مورد پردازش می‌شود.


برای اعمال آن نیز در کدهای فوق تنها کافی است flatMap را با switchMap جایگزین کنید. پس از آن نتیجه را در تصویر فوق ملاحظه می‌کنید. اینبار اگر هدف نهایی کاربر جستجوی alg باشد، تمام ورودی‌های قبلی او به صورت خودکار لغو می‌شوند و دیگر پردازش نخواهند شد که در نهایت سبب بالا رفتن کارآیی برنامه با کاهش تعداد بار به روز رسانی رابط کاربری خواهد شد.

همچنین در حالت استفاده‌ی از flatMap، ممکن است کاربر نتیجه‌ی اشتباهی را نیز دریافت کند. از این جهت که درخواست‌های ارسالی به سمت سرور، به صورت موازی اجرا می‌شوند. در این حالت ممکن است یکی زودتر و دیگری دیرتر به پایان برسد و کاربر نتیجه‌ای را که مشاهده می‌کند، دقیقا آن چیزی نباشد که جستجو کرده‌است (رابط کاربری آخرین درخواست پایان یافته را نمایش می‌دهد که نتیجه‌ی آن الزاما به ترتیب ورود اطلاعات کاربر نیست).
// A1: Request for `ABC`
// A2: Response for `ABC`
// B1: Request for `ABCX`
// B2: Response for `ABCX`
--A1----------A2-->
------B1--B2------>
برای نمونه فرض کنید دو درخواست A1 و B1 به همراه پاسخ‌های A2 و B2 را داریم. درخواست A1 پیش از B1 ارسال شده‌است؛ اما پاسخ B1 زودتر از پاسخ A2 از سرور دریافت شده‌است. در این حالت کاربر عبارت ABCX را وارد کرده‌است اما پاسخ عبارت ABC پیشین را در رابط کاربری مشاهده می‌کند (آخرین پاسخ رسیده در رابط کاربری (یا همان A2)، پاسخ‌های قبلی (یا همان B2) را بازنویسی می‌کند).

در حالت استفاده‌ی از flatMap‌، مشترک هر رخ‌داد رسیده خواهیم شد؛ بدون قطع اشتراک خودکار از سایر observableهای ایجاد شده‌ی پیشین. اما در حالت استفاده‌ی از switchMap‌، ابتدا کار لغو اشتراک خودکار از تمام observableهای قبلی صورت می‌گیرد و سپس یک observable جدید را ایجاد می‌کند. به همین جهت است که استفاده‌ی از switchMap‌  به همراه درخواست‌های http، سبب لغو خودکار درخواست‌های پیشین می‌شود. در این حالت نه تنها تعداد بار به روز رسانی رابط کاربری کاهش پیدا می‌کند، بلکه تضمین خواهد شد دیگر کاربر نتیجه‌ی اشتباهی را نیز مشاهده نکند.



کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید.
اشتراک‌ها
سری 6 قسمتی TDD

Part 1: Trials and Tribulations of TDD
Part 2: Naming Tests; Mocking Frameworks; Dependency Injection
Part 3: Mocks vs. Stubs; Test Frameworks; Assertions; ReSharper Accelerators
Part 4: Tests as Documentation; False Positive Results; Component Isolation
Part 5: Tests vs. Code; Refactor Friendliness; Test Parameterization
Part 6: Mini-Factory Pattern; Don’t Care Terms  

سری 6 قسمتی TDD
اشتراک‌ها
Lazy Loading و مزایای استفاده از آن در بخش Write سیستم

In Defense of Lazy Loading

I don’t know how this happened but for the last couple years (at least), whenever I read an author who writes about ORMs, I often see a sentiment like this: “ORMs are fine, just make sure you disable this pesky feature called Lazy Loading”.

It’s like this feature is not even needed and only brings confusion and performance issues to everyone who chooses to use it. Well, as you may guess from the title of this article, I disagree with this point of view completely. 

Lazy Loading و مزایای استفاده از آن در بخش Write سیستم
اشتراک‌ها
دوره ساخت قدم به قدم یک برنامه‌ی NET MAUI.

In this video we perform a full step by step build of a .NET MAUI App that we test on both Windows and Android. The app interacts with a separate .NET 6 API that we also build step by step.

Level: Beginner

⏲️ Time Codes ⏲️

Theory

- 0:48 Welcome
- 03:13 App demo
- 06:07 Course overview
- 09:14 Ingedients
- 10:10 What is .NET MAUI?
- 12:48 How MAUI works
- 15:14 MAUI project anatomy
- 19:47 MAUI App start up sequence
- 22:29 UI Conepts
- 28:21 XAML vs C#
- 30:29 Solution Architecture
- 31:41 Application Architecture


API Build

- 35:31 API Project Set up
- 42:41 API Model definition
- 44:47 API Db Context
- 47:13 Connection String
- 52:19 Migrations
- 56:31 API Read Endpoint
- 1:01:58 API Create Endpoint
- 1:08:15 API Update Endpoint
- 1:12:57 API Delete Endpoint

MAUI App Build

- 1:17:21 MAUI App Project Set up
- 1:21:00 Android Device Manager
- 1:25:08 MAUI Model definition
- 1:31:16 Data Service Interface
- 1:35:40 Data Service Implementation
- 1:47:27 Data Service Read Method
- 1:53:34 Data Service Create Method
- 1:58:48 Data Service Delete Method
- 2:01:53 Data Service Update Method
- 2:05:41 Android environment config
- 2:11:00 Architecture check point
- 2:11:54 Register MainPage for DI
- 2:14:13 MainPage code-behind
- 2:21:03 MainPage XAML Layout
- 2:30:19 Re-work MainPage layout
- 2:35:12 Add another page (ManagePage)
- 2:38:01 Adding a Route
- 2:30:01 Regiter ManagePage for DI
- 2:40:29 Complete MainPage code-behind
- 2:45:12 ManagePage code-behind
- 2:51:16 QueryProperty
- 2:57:34 ManagePage XMAL
- 3:07:56 Run on Windows
- 3:09:30 Re-work ManagePage layout
- 3:16:26 Using HttpClientFactory

Outro

- 3:21:02 Wrap up and thanks
- 3:21:31 Supporter Credits 

دوره ساخت قدم به قدم یک برنامه‌ی NET MAUI.
مطالب
نحوه ایجاد یک تصویر امنیتی (Captcha) با حروف فارسی در ASP.Net MVC
در این مطلب، سعی خواهیم کرد تا همانند تصویر امنیتی این سایت که موقع ورود نمایش داده می‌شود، یک نمونه مشابه به آنرا در ASP.Net MVC ایجاد کنیم. ذکر این نکته ضروری است که قبلا آقای پایروند در یک مطلب دو قسمتی کاری مشابه را انجام داده بودند، اما در مطلبی که در اینجا ارائه شده سعی کرده ایم تا تفاوتهایی را با مطلب ایشان داشته باشد.

همان طور که ممکن است بدانید، اکشن متدها در کنترلرهای MVC می‌توانند انواع مختلفی را برگشت دهند که شرح آن در مطالب این سایت به مفصل گذشته است. یکی از این انواع، نوع ActionResult می‌باشد. این یک کلاس پایه برای انواع برگشتی توسط اکشن متدها مثل JsonResult، FileResult می‌باشد. (اطلاعات بیشتر را اینجا بخوانید) اما ممکن است مواقعی پیش بیاید که بخواهید نوعی را توسط یک اکشن متد برگشت دهید که به صورت توکار تعریف نشده باشد. مثلا زمانی را در نظر بگیرید که بخواهید یک تصویر امنیتی را برگشت دهید. یکی از راه حل‌های ممکن به این صورت است که کلاسی ایجاد شود که از کلاس پایه ActionResult ارث بری کرده باشد. بدین صورت:

using System;
using System.Web.Mvc;

namespace MVCPersianCaptcha.Models
{
    public class CaptchaImageResult : ActionResult 
    {
        public override void ExecuteResult(ControllerContext context)
        {
            throw new NotImplementedException();
        }
    }
}
همان طور که مشاهده می‌کنید، کلاسی به اسم CaptchaImageResult تعریف شده که از کلاس ActionResult ارث بری کرده است. در این صورت باید متد ExecuteResult را override کنید. متد ExecuteResult به صورت خودکار هنگامی که از CaptchaImageResult به عنوان یک نوع برگشتی اکشن متد استفاده شود اجرا می‌شود. به همین خاطر باید تصویر امنیتی توسط این متد تولید شود و به صورت جریان (stream)  برگشت داده شود

کدهای اولیه برای ایجاد یک تصویر امنیتی به صورت خیلی ساده از کلاس‌های فراهم شده توسط +GDI ، که در دات نت فریمورک وجود دارند استفاده خواهند کرد. برای این کار ابتدا یک شیء از کلاس Bitmap با دستور زیر ایجاد خواهیم کرد:
// Create a new 32-bit bitmap image.
Bitmap bitmap = new Bitmap(width, height, PixelFormat.Format32bppArgb);
پارامترهای اول و دوم به ترتبی عرض و ارتفاع تصویر امنیتی را مشخص خواهند کرد و پارامتر سوم نیز فرمت تصویر را بیان کرده است. Format32bppArgb یعنی یک تصویر که هر کدام از پیکسل‌های آن 32 بیت فضا اشغال خواهند کرد ، 8 بیت اول میزان آلفا، 8 بیت دوم میزان رنگ قرمز، 8 بیت سوم میزان رنگ سبز، و 8 تای آخر نیز میزان رنگ آبی را مشخص خواهند کرد 

سپس شیئی از نوع Graphics برای انجام عملیات ترسیم نوشته‌های فارسی روی شیء bitmap ساخته می‌شود:
// Create a graphics object for drawing.
Graphics gfxCaptchaImage = Graphics.FromImage(bitmap);
خصوصیات مورد نیاز ما از gfxCaptchaImage را به صورت زیر مقداردهی می‌کنیم:
gfxCaptchaImage.PageUnit = GraphicsUnit.Pixel;
gfxCaptchaImage.SmoothingMode = SmoothingMode.HighQuality;
gfxCaptchaImage.Clear(Color.White);
واحد اندازه گیری به پیکسل، کیفیت تصویر تولید شده توسط دو دستور اول، و در دستور سوم ناحیه ترسیم با یک رنگ سفید پاک می‌شود.

سپس یک عدد اتفاقی بین 1000 و 9999 با دستور زیر تولید می‌شود:
// Create a Random Number from 1000 to 9999
int salt = CaptchaHelpers.CreateSalt();
متد CreateSalt در کلاس CaptchaHelpers قرار گرفته است، و نحوه پیاده سازی آن بدین صورت است:
public int CreateSalt()
{
   Random random = new Random();
   return random.Next(1000, 9999);
}
سپس مقدار موجود در salt را برای مقایسه با مقداری که کاربر وارد کرده است در session قرار می‌دهیم:
HttpContext.Current.Session["captchastring"] = salt;
سپس عدد اتفاقی تولید شده باید تبدیل به حروف شود، مثلا اگر عدد 4524 توسط متد CreateSalt تولید شده باشد، رشته "چهار هزار و پانصد و بیست و چهار" معادل آن نیز باید تولید شود. برای تبدیل عدد به حروف، آقای نصیری کلاس خیلی خوبی نوشته اند که چنین کاری را انجام می‌دهد. ما نیز از همین کلاس استفاده خواهیم کرد:
string randomString = (salt).NumberToText(Language.Persian);
در دستور بالا، متد الحاقی NumberToText با پارامتر Language.Persian وظیفه تبدیل عدد salt را به حروف فارسی معادل خواهد داشت.

به صورت پیش فرض نوشته‌های تصویر امنیتی به صورت چپ چین نوشته خواهند شد، و با توجه به این که نوشته ای که باید در تصویر امنیتی قرار بگیرد فارسی است، پس بهتر است آنرا به صورت راست به چپ در تصویر بنویسیم، بدین صورت:
// Set up the text format.
var format = new StringFormat();
int faLCID = new System.Globalization.CultureInfo("fa-IR").LCID;
format.SetDigitSubstitution(faLCID, StringDigitSubstitute.National);
format.Alignment = StringAlignment.Near;
format.LineAlignment = StringAlignment.Near;
format.FormatFlags = StringFormatFlags.DirectionRightToLeft;
و همچنین نوع و اندازه فونت که در این مثال tahoma می‌باشد:
// Font of Captcha and its size
Font font = new Font("Tahoma", 10);
خوب نوشته فارسی اتفاقی تولید شده آماده ترسیم شدن است، اما اگر چنین تصویری تولید شود احتمال خوانده شدن آن توسط روبات‌های پردازش گر تصویر شاید زیاد سخت نباشد. به همین دلیل باید کاری کنیم تا خواندن این تصویر برای این روبات‌ها سخت‌تر شود، روش‌های مختلفی برای این کار وجود دارند: مثل ایجاد نویز در تصویر امنیتی یا استفاده از توابع ریاضی سینوسی و کسینوسی برای نوشتن نوشته‌ها به صورت موج. برای این کار اول یک مسیر گرافیکی در تصویر یا موج اتفاقی ساخته شود و به شیء gfxCaptchaImage نسبت داده شود. برای این کار اول نمونه ای از روی کلاس GraphicsPath ساخته می‌شود،
// Create a path for text 
GraphicsPath path = new GraphicsPath();
و با استفاده از متد AddString ، رشته اتفاقی تولید شده را با فونت مشخص شده، و تنظیمات اندازه دربرگیرنده رشته مورد نظرر، و تنظیمات فرمت بندی رشته را لحاظ خواهیم کرد.
path.AddString(randomString, 
                font.FontFamily, 
                (int)font.Style, 
                (gfxCaptchaImage.DpiY * font.SizeInPoints / 72), 
                new Rectangle(0, 0, width, height), format);
با خط کد زیر شیء path را با رنگ بنقش با استفاده از شیء gfxCaptchaImage روی تصویر bitmap ترسیم خواهیم کرد:
gfxCaptchaImage.DrawPath(Pens.Navy, path);
برای ایجاد یک منحنی و موج از کدهای زیر استفاده خواهیم کرد:
//-- using a sin ware distort the image
int distortion = random.Next(-10, 10);
using (Bitmap copy = (Bitmap)bitmap.Clone())
{
          for (int y = 0; y < height; y++)
          {
              for (int x = 0; x < width; x++)
              {
                  int newX = (int)(x + (distortion * Math.Sin(Math.PI * y / 64.0)));
                  int newY = (int)(y + (distortion * Math.Cos(Math.PI * x / 64.0)));
                  if (newX < 0 || newX >= width) newX = 0;
                 if (newY < 0 || newY >= height) newY = 0;
                 bitmap.SetPixel(x, y, copy.GetPixel(newX, newY));
              }
         }
 }
موقع ترسیم تصویر امنیتی است:
//-- Draw the graphic to the bitmap
gfxCaptchaImage.DrawImage(bitmap, new Point(0, 0));

gfxCaptchaImage.Flush();
تصویر امنیتی به صورت یک تصویر با فرمت jpg به صورت جریان (stream) به مرورگر باید فرستاده شوند:
HttpResponseBase response = context.HttpContext.Response;
response.ContentType = "image/jpeg";
bitmap.Save(response.OutputStream, ImageFormat.Jpeg);
و در نهایت حافظه‌های اشغال شده توسط اشیاء فونت و گرافیک و تصویر امنیتی آزاد خواهند شد:
// Clean up.
font.Dispose();
gfxCaptchaImage.Dispose();
bitmap.Dispose();
برای استفاده از این کدها، اکشن متدی نوشته می‌شود که نوع CaptchaImageResult را برگشت می‌دهد:
public CaptchaImageResult CaptchaImage()
{
     return new CaptchaImageResult();
}
اگر در یک View خصیصه src یک تصویر به آدرس این اکشن متد مقداردهی شود، آنگاه تصویر امنیتی تولید شده نمایش پیدا می‌کند:
<img src="@Url.Action("CaptchaImage")"/>
بعد از پست کردن فرم مقدار text box تصویر امنیتی خوانده شده و با مقدار موجود در session مقایسه می‌شود، در صورتی که یکسان باشند، کاربر می‌تواند وارد سایت شود (در صورتی که نام کاربری یا کلمه عبور خود را درست وارد کرده باشد) یا اگر از این captcha در صفحات دیگری استفاده شود عمل مورد نظر می‌تواند انجام شود. در مثال زیر به طور ساده اگر کاربر در کادر متن مربوط به تصویر امنیتی مقدار درستی را وارد کرده باشد یا نه، پیغامی به او نشان داده می‌شود.  
[HttpPost]
public ActionResult Index(LogOnModel model)
{
      if (!ModelState.IsValid) return View(model);

      if (model.CaptchaInputText == Session["captchastring"].ToString()) 
             TempData["message"] = "تصویر امنتی را صحیح وارد کرده اید";
      else 
             TempData["message"] = "تصویر امنیتی را اشتباه وارد کرده اید";

      return View();
}

کدهای کامل مربوط به این مطلب را به همراه یک مثال از لینک زیر دریافت نمائید:
MVC-Persian-Captcha
مطالب
بررسی تفاوت Task و ValueTask

زمانیکه تصمیم میگیریم کدهای زده شده را بهینه کنیم، اکثرا دنبال راه حل‌های جدید نمیگردیم. این مورد کاملا غریزی است؛ چرا که به‌دنبال کم‌ترین انرژی و بیشترین بازدهی هستیم؛ این طبیعت انسان است. صرفا کدهای قبلی را بازبینی میکنیم و سعی میکنیم  نحوه‌ی نوشتن منطق‌های موجود را بهینه کنیم. در همین راستا درک عملکرد Task و ValueTask ‌ها شاید قدمی مهم در مورد بهینه کردن کد‌ها باشد؛ چرا استفاده درست و بجای این دو مورد می‌تواند تاثیر زیادی بر روی سرعت و استفاده از مصرف حافظه داشته باشد؟ در این مقاله سعی میکنیم تا درک درستی از این دو داشته باشیم.


Task<T>  چیست؟

Task یک کلاس در فضای نام System.Threading.Tasks است؛ به‌طوریکه کمک میکند تا یک قسمت از برنامه به صورت مستقل از Thread اصلی اجرا شود. به‌بیان دیگر می‌تواند یک Thread Pool را ایجاد و با توجه به روند کار، از یک مرحله‌ی اجرایی به مرحله‌ای دیگر منتقل می‌کند. همچنین هر Task می‌تواند یک مقدار برگشتی نیز داشته باشد.

 این درحالی‌است که می‌تواند صرفا یک فرآیند را اجرا کند، بدون اینکه خروجی داشته باشد. به‌عبارتی دیگر اگر فرآیندی داشته باشیم که در نهایت یک شناسه را برمیگرداند، از Task<int> و اگر فرآیندی داشته باشیم که صرفا فرآیند همگام سازی داده‌های قدیمی به جدید را انجام میدهد، می‌تواند از نوع Task باشد.

همانطور که اشاره شد، Task یک کلاس است که شامل متد‌ها و فیلد‌های مختلفی می‌باشد. با استفاده از این اعضا می‌توان نحوه‌ی اجرای کدها و وضعیت‌های مختلف اجرای آن را مدیریت کرد، تا در نهایت اجرای آن کامل شود.

به دلیل اینکه Task یک class است و class ‌ها از نوع ReferenceType می‌باشند، روی حافظه‌ی Heap ذخیره می‌شوند و به‌ازای هر بار فراخوانی متدی که خروجی Task دارد، شیء Task را روی Heap ذخیره میکند. این شیء وضعیت اجرای قسمتی از کد ما را که میتواند sync یا async باشد، در خود ذخیره میکند تا در نهایت اجرای آن کامل شود.


نحوه استفاده از Task<T>

برای درک بهتر، یک تکه کد را با بهره بردن از Task ایجاد میکنیم :

public static class DummyWeatherProvider
{
    public static async Task<Weather> Get(string city)
    {
        await Task.Delay(10);
        var weather = new Weather 
        { 
            City = city, 
            Date = DateTime.Now, 
            AvgTempratureF = new Random().Next(5, 70) 
        };
        
        return weather;
    }
}
همان طور که مشخص است، کلاس موجود یک متد به نام Get دارد تا اطلاعات آب و هوای  شهر مورد نظر را به صورت یک Task  برگرداند. حال کد زیر را جهت بررسی تغییر وضعیت‌های اجرایی این Task ایجاد می‌کنیم :
static async Task CheckTaskStatus()
{
   var task = DummyWeatherProvider.Get("Stockholm");
    LogTaskStatus(task.Status);
    await task;
    LogTaskStatus(task.Status);
}

static void LogTaskStatus(TaskStatus status)
{
    Console.WriteLine($"Task Status: {Enum.GetName(typeof(TaskStatus), status)}");
}
TaskStatus یک enumeration است، به‌طوری‌که بیانگر وضعیت‌های مختلف یک Task در حال اجرا می‌باشد. برای مثال: WaitingForActivation, Running, RanToCompletion. در کد بالا ابتدا متد را فراخوانی می‌کنیم. سپس منتظر می‌مانیم تا متد اجرا شده، تکمیل شود. در اولین لاگ وضعیت، به WaitingForActivation و در دومین لاگ به RanToCompletion تبدیل میشود. حال‌که با Task ها و نحوه‌ی اجرای فرآیند آن آشنا شدیم، در قسمت بعدی به بررسی ValueTask ها می‌پردازیم. 

ValueTask<T>  چیست؟

همانند Task ، ValueTask هم برای مدیریت وضعیت فرآیند استفاده میشود؛ با این تفاوت که ValueTask ‌ها از نوع struct هستند. به‌طوریکه نحوه‌ی ذخیره سازی آن‌ها در حافظه به نسبت class ‌ها کاملا متفاوت است. از نقطه نظر سرعت، تشخیص دادن اینکه کدامیک باید استفاده شود، باید با توجه به سناریو، بررسی و انتخاب شود؛ چرا که از نظر تخصیص حافظه متفاوت عمل می‌کنند. برای درک بهتر عملکرد ValueTask ‌ها کد زیر را بررسی میکنیم :

public class WeatherService
{
    private readonly ConcurrentDictionary<string, Weather> _cache;
    public WeatherService()
    {
        _cache = new();
    }

    public async Task<Weather> GetWeatherTask(string city)
    {
        if (!_cache.ContainsKey(city))
        {
            var weather = await DummyWeatherProvider.Get(city);
            _cache.TryAdd(city, weather);
        }
        return _cache[city];
    }

    public async ValueTask<Weather> GetWeatherValueTask(string city)
    {
        if (!_cache.ContainsKey(city))
        {
            var weather = await DummyWeatherProvider.Get(city);
            _cache.TryAdd(city, weather);
        }
        return _cache[city];   
  }

کلاس WeatherService شامل یک فیلد private از نوع collection و دو متد است. ما از _cache  جهت نگهداری اطلاعاتی که قبلا دریافت شده، استفاده می‌کنیم و به نوعی in-memory cache را پیاده سازی میکنیم. پیاده سازی منطق هر دو متد  GetWeatherTask و GetWeatherValueTask  کاملا شبیه به هم است؛ به‌طوری‌که اول بررسی میکنیم اطلاعات آب و هوای شهر مورد نظر در _cache وجود دارد یا خیر؟ اگر وجود داشت، اطلاعات به صورت مستقیم برگشت داده می‌شود؛ در غیر این صورت DummyWeatherProvider.Get()  فراخوانی خواهد شد. 

در قدم بعدی اطلاعات به‌دست آمده را در _cache ذخیره می‌کنیم. سپس مقدار ذخیره شده را برگشت میدهیم. در واقع تنها تفاوت دو متد ذکر شده، نوع خروجی آن می‌باشد؛ یکی از Taskو دیگری از ValueTask استفاده می‌کند.

برای مقایسه‌ی مصرف حافظه‌ی این دو روی هر دو متد، Benchmark میگیریم. برای پیاده سازی نیار به کد‌های زیر داریم : 

[MemoryDiagnoser]
public class TaskAndValueTaskBenchmark
{
    private readonly WeatherService _weatherService;
    public TaskAndValueTaskBenchmark()
    {
        _weatherService = new();
    }
    
    [Benchmark]
    [Arguments("Denver")]
    public async Task<Weather> TaskBenchmark(string city)
    {
        return await _weatherService.GetWeatherTask(city);
    }

    [Benchmark]
    [Arguments("London")]
    public async ValueTask<Weather> ValueTaskBenchmark(string city)
    {
        return await _weatherService.GetWeatherValueTask(city);
    }
}

نتیجه به دست آمده به شرح زیر است :

Allocated

Gen0

Method

144 B

0.0229

TaskBenchmark

------

----

ValueTaskBenchmark

  با توجه به نتیجه به‌دست آمده، متدی که خروجی ValueTask دارد، حافظه‌ای را تخصیص نداده‌است؛ این دقیقا مزیت مهم ValueTask نسبت به Task  می‌باشد.

مزیت  ValueTask<T>

به‌دلیل اینکه از نوع struct هستند، بر روی حافظه، در قسمت Stack ذخیره می‌شوند و به صورت خودکار بعد از اینکه نیازی به آنها نباشد، از حافظه حذف می‌شوند . به همین دلیل به شکل قابل توجهی، فشار را از روی GC کاهش می‌دهد .

 علاوه بر این، در سناریویی که اکثر کدها به صورت sync اجرا می‌شوند، در این مواقع استفاده از ValueTask، بهتر از Task می‌باشد .

این سری متد GetWeatherValueTask   را جهت تشخص اینکه  اغلب کدها به صورت sync یا async اجرا می‌شوند، بررسی می‌کنیم. در متد ذکر شده اگر اطلاعات شهر مورد نظر وجود داشته باشد، کار به صورت sync اجرا می‌شود و اگر شهر وجود نداشته باشد، کار به صورت async اجرا می‌شود. با بررسی دقیق‌تر متوجه می‌شویم اکثر مواقع در این متد کار به صورت sync  اجرا می‌شود؛ چرا که بعد ازدریافت اطلاعات، مجدد آن را دریافت نمیکند، بلکه از حافظه میخواند (همان _cache ) .


محدودیت‌های استفاده از    ValueTask<T>  

1. در اینجا تنها یکبار امکان استفاده از await وجود دارد. وقتی یکبار valueTask را await می‌کنیم، بهتر است کار دیگری بر روی آن انجام ندهیم؛ چراکه ممکن است از حافظه پاک شده باشد.

2. اگر در سناریویی لازم دارید چندین بار await را بر روی valueTask اجرا کنید، لازم است ابتدا آن را به Task تبدیل کنیم. برای این کار متد AsTask را فراخوانی میکنیم (بهتر است صرفا یکبار متد AsTask را فراخوانی کنیم).

3. نمیتوانیم به یک ValueTask به صورت هم زمان در حالت Multi threads دسترسی داشته باشیم.

4. به صورت پیش فرض خروجی عملیات async، نوع Task می‌باشد؛ مگر اینکه اغلب مراحل کار به صورت sync اجرا شود، مانند مثالی که بالاتر اشاره شد.


منابع :