مطالب
مهارت‌های تزریق وابستگی‌ها در برنامه‌های NET Core. - قسمت سوم - رهاسازی منابع سرویس‌های IDisposable
یکی از پرکاربردترین اینترفیس‌های NET.، اینترفیس IDisposable است. عموما کلاس‌هایی که ارجاعی را به منابع غیر مدیریت شده مانند فایل‌ها و سوکت‌ها داشته باشند، این اینترفیس را پیاده سازی می‌کنند. garbage collector به صورت خودکار حافظه‌ی اشیاء مدیریت شده یا دات نتی را رها می‌کند؛ اما چیزی را در مورد منابع غیر مدیریت شده نمی‌داند. به همین جهت پیاده سازی اینترفیس IDisposable روشی را جهت پاکسازی این منابع به garbage collector معرفی می‌کند.


رفتار IoC Container توکار ASP.NET Core با سرویس‌های IDisposable

ASP.NET Core به همراه یک IoC Container توکار ارائه می‌شود و اگر سرویسی با طول عمرTransient و یا Scoped به آن معرفی شود و همچنین این سرویس اینترفیس IDisposable را نیز پیاده سازی کند، کار dispose خودکار آن در پایان درخواست جاری صورت می‌گیرد و نیازی به تنظیمات اضافه‌تری ندارد. در اینجا سرویس‌هایی با طول عمر Singleton نیز در پایان کار برنامه، زمانیکه خود ServiceProvider به پایان کارش می‌رسد، dispose خواهند شد.
البته این مورد یک شرط را نیز به همراه دارد: کار وهله سازی سرویس‌های درخواستی باید توسط خود این IoC Container مدیریت شود تا در پایان کار بداند چگونه آن‌ها را Dispose کند.

یک مثال: بررسی Dispose شدن خودکار یک سرویس IDisposable
namespace CoreIocServices
{
    public interface IMyDisposableService
    {
        void Run();
    }

    public class MyDisposableService : IMyDisposableService, IDisposable
    {
        private readonly ILogger<MyDisposableService> _logger;

        public MyDisposableService(ILogger<MyDisposableService> logger)
        {
            _logger = logger ?? throw new ArgumentNullException(nameof(logger));
            _logger.LogInformation("+ {0} was created", this.GetType().Name);
        }

        public void Run()
        {
            _logger.LogInformation("Running MyDisposableService!");
        }

        public void Dispose()
        {
            _logger.LogInformation("- {0} was disposed!", this.GetType().Name);
        }
    }
}
سرویس ساده‌ی فوق، اینترفیس IDisposable را پیاده سازی می‌کند و با استفاده از ILogger، پیام‌هایی را در زمان ایجاد و Dipose آن در پنجره کنسول و یا دیباگ نمایش خواهد داد.
اگر این سرویس را به یک برنامه‌ی ASP.NET Core معرفی کنیم:
namespace CoreIocSample02
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddTransient<IMyDisposableService, MyDisposableService>();
و سپس به نحو متداولی از آن در یک کنترلر استفاده کنیم:
namespace CoreIocSample02.Controllers
{
    public class HomeController : Controller
    {
        private readonly IMyDisposableService _myDisposableService;

        public HomeController(IMyDisposableService myDisposableService)
        {
            _myDisposableService = myDisposableService;
        }

        public IActionResult Index()
        {
            _myDisposableService.Run();
            return View();
        }
در اینجا منظور از نحو‌ه‌ی متداول، همان تزریق در سازنده‌ی کلاس و درخواست وهله‌ای از این سرویس از IoC Container است؛ بجای ایجاد مستقیم آن.
در ادامه با اجرای برنامه، اگر به لاگ‌های آن دقت کنیم، این خروجی قابل مشاهده خواهد بود:
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
      Route matched with {action = "Index", controller = "Home"}. Executing action CoreIocSample02.Controllers.HomeController.Index (CoreIocSample02)
info: CoreIocServices.MyDisposableService[0]
      + MyDisposableService was created
.
.
.  
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
      Executed endpoint 'CoreIocSample02.Controllers.HomeController.Index (CoreIocSample02)'
info: CoreIocServices.MyDisposableService[0]
      - MyDisposableService was disposed!
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[2]
      Request finished in 1316.4719ms 200 text/html; charset=utf-8
در ابتدای اجرای درخواست، پیام MyDisposableService was created ظاهر شده‌است (پیام صادر شده‌ی از سازنده‌ی سرویس) و جائیکه پیام Executed endpoint یا پایان درخواست جاری لاگ شده، بلافاصله پیام MyDisposableService was disposed نیز مشاهده می‌شود که از متد Dispose سرویس درخواستی صادر شده‌است.
بنابراین IoC Container، به صورت خودکار، کار Dispose این سرویس IDisposable را نیز انجام داده‌است.


Dispose خودکار وهله‌هایی که توسط IoC Container ایجاد نشده‌اند

اگر ایجاد اشیاء از نوع IDisposable را خودتان و خارج از دید IoC Container توکار ASP.NET Core انجام می‌دهید، از مزیت پاکسازی خودکار منابع توسط آن‌ها در پایان درخواست محروم خواهید شد، اما ... برای رفع این مشکل نیز متد context.Response.RegisterForDispose پیش بینی شده‌است. اگر شیءای از نوع IDisposable را توسط این متد به ASP.NET Core معرفی کنید، در پایان درخواست به صورت خودکار Dispose خواهد شد.
یک مثال: فرض کنید یک StreamWriter را داخل یک میان‌افزار ایجاد کرده‌اید، اما آن‌را Dispose نکرده‌اید:
namespace CoreIocSample02
{
    public class Startup
    {
        public void Configure(IApplicationBuilder app, IHostingEnvironment env)
        {
            app.Use(async (context, next) =>
            {
                var writer = File.CreateText(Path.GetTempFileName());
                context.Response.RegisterForDispose(writer);
                context.Items["filewriter"] = writer;
                await writer.WriteLineAsync("some important information");
                await writer.FlushAsync();
                await next();
            });
در این مثال، شیء writer به context.Items انتساب داده شده‌است تا در سایر قسمت‌های pipeline جاری نیز قابل دسترسی باشد. یعنی از آن می‌توان داخل یک اکشن متد نیز استفاده کرد. نکته‌ی مهم آن، معرفی این شیء به متد context.Response.RegisterForDispose است که سبب خواهد شد پس از پایان کار درخواست، به صورت خودکار writer را Dispose کند.
اکنون در ادامه، در اکشن متد WriteLog یک کنترلر دلخواه، کار ثبت وقایع با دریافت این writer از HttpContext.Items قابل انجام است؛ چون هنوز طول عمر درخواست جاری پایان نیافته و شیء writer به صورت خودکار Dispose نشده‌است:
namespace CoreIocSample02.Controllers
{
    public class HomeController : Controller
    {
        public async Task<IActionResult> WriteLog()
        {
            var writer = HttpContext.Items["filewriter"] as StreamWriter;
            if (writer != null)
            {
                await writer.WriteLineAsync("more important information");
                await writer.FlushAsync();
            }
            return View();
        }
 
روش صحیح Dispose اشیایی با طول عمر Scoped، در خارج از طول عمر یک درخواست ASP.NET Core

زمانیکه به صورت متداولی از سیستم تزریق وابستگی‌های ASP.NET Core استفاده می‌کنیم، به ازای هر درخواست HTTP رسیده، یک Scope از نوع IServiceScopeFactory ایجاد می‌شود و با پایان درخواست، این Scope نیز Dispose خواهد شد. به این ترتیب هر سرویس ایجاد شده‌ی درون این Scope نیز Dispose می‌شود؛ کاری شبیه به عملیات زیر:
using(var scope = serviceProvider.CreateScope())
{
   var provider = scope.ServiceProvider;
   var resolvedService = provider.GetRequiredService(someType);
   // Use resolvedService...
}
در این بین سرویس‌های Singleton به هیچ Scope ای منتسب نمی‌شوند و طول عمر آن‌ها توسط root container مدیریت می‌شود و زمانیکه این ServiceProvider یا root container به پایان کار خودش برسد، با dispose شدن آن، سرویس‌های Singleton آن نیز dispose خواهند شد.

مشکل! اگر از سرویس فرضی IOperationScoped با طول عمر Scoped در متدهای مختلف کلاس آغازین برنامه استفاده کنیم (مانند DbContext برنامه)، طول عمری را که دریافت خواهیم کرد singleton خواهد بود و نه Scoped؛ چون درون یک scopeFactory.CreateScope ایجاد شده‌ی به صورت خودکار توسط یک درخواست قرار نداریم. بنابراین هر درخواست وهله‌ای از سرویس IOperationScoped با طول عمر Scoped، تنها همان وهله‌ی ابتدایی آن‌را باز می‌گرداند و singleton رفتار می‌کند؛ چون scope ایی ایجاد و تخریب نشده‌است.
در یک چنین مواردی، برای اطمینان حاصل کردن از dispose شدن سرویس در پایان کار، نیاز است مراحل ایجاد scope و dispose آن‌را به صورت دستی به نحو ذیل مدیریت کنیم:
public void Configure(IApplicationBuilder app, 
                      ILoggerFactory loggerFactory, 
                      IServiceScopeFactory scopeFactory) 
{
   using (var scope = scopeFactory.CreateScope()) 
   { 
     var initializer = scope.ServiceProvider.GetService<IOperationScoped>(); 
     initializer.SeedAsync().Wait(); 
   } 
}


Dispose کردن سرویس‌های IDisposable در برنامه‌های Console

اگر همین سرویس IMyDisposableService را در مثال برنامه‌ی کنسول قسمت اول استفاده کنیم:
var myDisposableService = serviceProvider.GetService<IMyDisposableService>();
myDisposableService.Run();
در پایان کار برنامه، شاهد پیام MyDisposableService was disposed نخواهیم بود. به همین جهت در اینجا نیز می‌توانیم شبیه به کاری که در ASP.NET Core در پشت صحنه رخ می‌دهد، عمل کنیم:
در برنامه‌ی کنسول، کار ایجاد serviceProvider را خودمان انجام دادیم:
var serviceCollection = new ServiceCollection();
ConfigureServices(serviceCollection);
var serviceProvider = serviceCollection.BuildServiceProvider();
متد BuildServiceProvider خروجی از نوع کلاس ServiceProvider را دارد؛ با این امضاء:
namespace Microsoft.Extensions.DependencyInjection
{
    public sealed class ServiceProvider : IServiceProvider, IDisposable, IServiceProviderEngineCallback
    {
        public void Dispose();
        public object GetService(Type serviceType);
    }
}
همانطور که مشاهده کنید، کلاس ServiceProvider نیز اینترفیس IDisposable را پیاده سازی می‌کند. بنابراین برای آزاد سازی صحیح منابع وابسته‌ی به آن، باید متد Dispose آن‌را نیز فراخوانی کرد:
namespace CoreIocSample01
{
    class Program
    {
        static void Main(string[] args)
        {
            var serviceCollection = new ServiceCollection();
            ConfigureServices(serviceCollection);
            using (var serviceProvider = serviceCollection.BuildServiceProvider())
            {
                var myDisposableService = serviceProvider.GetService<IMyDisposableService>();
                myDisposableService.Run();

                var testService = serviceProvider.GetService<ITestService>();
                testService.Run();
            }
        }
در اینجا serviceProvider را داخل یک using statement قرار داده‌ایم. اینبار اگر برنامه را اجرا کنیم، پس از پایان کار برنامه، پیام MyDisposableService was disposed نیز ظاهر می‌شود. ServiceProvider ایجاد شده یا همان root container، در زمان Dispose، تمام اشیایی را هم که توسط آن مدیریت شده‌اند و نیاز به Dispose دارند، Dispose می‌کند.

کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: CoreDependencyInjectionSamples-02.zip
مطالب
آشنایی با CLR: قسمت دوم
متادیتاهای یک ماژول مدیریت شده Managed Module 

در قسمت قبلی به اصل وجودی CLR پرداختیم. در این قسمت تا حدودی به بررسی ماژول مدیریت شده managed module که از زبان‌های دیگر، کامپایل شده و به زبان میانی تبدیل گشته است صحبت می‌کنیم.

یک ماژول مدیریت شده شامل بخش‌های زیر است:
 نام بخش
توضیح
 هدر PE32 یا PE32+
CLR باید بداند که برنامه‌ی نوشته شده قرار است روی چه پلتفرمی و با چه معماری، اجرا گردد. این برنامه یک برنامه‌ی 32 بیتی است یا 64 بیتی. همچنین این هدر اشاره می‌کند که نوع فایل از چه نوعی است؛ GUI,CUI یا DLL. به علاوه تاریخ ایجاد یا کامپایل فایل هم در آن ذکر شده است. در صورتیکه این فایل شامل کدهای بومی native CPU هم باشد، اطلاعاتی در مورد این نوع کدها نیز در این هدر ذکر می‌شود و اگر ماژول ارائه شده تنها شامل کد IL باشد، قسمت بزرگی از اطلاعات این هدر در نظر گرفته نمی‌شود.
 CLR Header
اطلاعاتی را در مورد CLR ارائه می‌کند. اینکه برای اجرا به چه ورژنی از CLR نیاز دارد. منابع مورد استفاده. آدرس و اندازه جداول و فایل‌های متادیتا و جزئیات دیگر.
 metadata  هر کد یا ماژول مدیریت شده‌ای، شامل جداول متادیتا است که این جداول بر دو نوع هستند. اول جداولی که نوع‌ها و اعضای تعریف شده در کد را توصیف می‌کنند و دومی جداولی که نوع‌ها و اعضایی را که در کد به آن ارجاع شده است، توصیف می‌کنند.
IL Code
اینجا محل قرار گیری کدهای میانی تبدیل شده است که در زمان اجرا، CLR آن‌ها را به کدهای بومی تبدیل می‌کند.


کامپایلرهایی که بر اساس CLR کار می‌کنند، وظیفه دارند جداول متادیتاها را به طور کامل ساخته و داخل فایل نهایی embed کنند. متادیتاها مجموعه‌ی کاملی از فناوری‌های قدیمی چون فایل‌های COM یا Component Object Model و همچنین IDL یا Interface Definition (Description) Language هستند. گفتیم که متادیتا‌ها همیشه داخل فایل IL که ممکن است DLL باشد یا EXE، ترکیب یا Embed شد‌ه‌اند و جدایی آن‌ها غیر ممکن است. در واقع کامپایلر در یک زمان، هم کد IL و هم متادیتاها را تولید کرده و آن‌ها را به صورت یک نتیجه‌ی واحد در می‌آورد.

متادیتاها استفاده‌های زیادی دارند که در زیر به تعدادی از آنان اشاره می‌کنیم:

  • موقع کامپایل نیاز به هدرهای C و ++C از بین می‌رود؛ چرا که فایل نهایی شامل تمامی اطلاعات ارجاع شده می‌باشد. کامپایلرها می‌توانند مستقیما اطلاعات را از داخل متادیتاها بخوانند.
  • ویژوال استودیو از آن‌ها برای کدنویسی راحت‌تر بهره می‌گیرد. با استفاده از قابلیت IntelliSense، متادیتا‌ها به شما خواهند گفت چه متدهایی، چه پراپرتی‌هایی، چه رویدادهایی و ... در دسترس شماست و هر متد انتظار چه پارامترهایی را از شما دارد.
  • CLR Code Verification از متادیتا برای اینکه اطمینان کسب کند که کدها تنها عملیات type Safe را انجام می‌دهند، استفاده می‌کند.
  • متادیتاها به فیلد یک شیء اجازه می‌دهند که خود را به داخل بلوک‌های حافظ انتقال داده و بعد از ارسال به یک ماشین دیگر، همان شیء را با همان وضعیت، ایجاد نماید.
  • متادیتاها به GC اجازه می‌دهند که طول عمر یک شیء را رصد کند. GC برای هر شیء موجود می‌تواند نوع هر شیء را تشخیص داده و از طریق متادیتاها می‌تواند تشخیص دهد که فیلدهای یک شیء به اشیاء دیگری هم متصل هستند.

در آینده بیشتر در مورد متادیتاها صحبت خواهیم کرد. 

مطالب
CoffeeScript #12

بخش‌های بد

جاوااسکریپت یک زبان پیچیده است که شما برای کار با آن، نیاز است قسمت‌هایی را که باید از آن‌ها دوری کنید و قسمت‌های مهمی را که باید استفاده کنید، بشناسید. همانطور که Sun Tzu گفته "دشمن خود را بشناس"، ما نیز در این قسمت می‌خواهیم برای شناخت بیشتر قسمت‌های تاریک و روشن جاوااسکریپت به آن بپردازیم.

همانطور که در قسمت‌های قبل گفته شد، CoffeeScript تنها به یک syntax محدود نمی‌شود و توانایی برطرف کردن برخی از مشکلات جاوااسکریپت را نیز دارد. با این حال، با توجه به این واقعیت که کدهای CoffeeScript به صورت مستقیم به جاوااسکریپت تبدیل می‌شوند و نمی‌توانند تمامی مشکلاتی را که در جاوااسکریپت وجود دارند، حل کنند، پس برخی از مسائل وجود دارند که شما باید از آنها آگاهی داشته باشید.

اول از قسمت‌هایی که توسط CoffeeScript حل شده‌اند شروع می‌کنیم.

A JavaScript Subset

with یک دستور بسیار زمانبر است و مضر شناخته شده است و نباید از آن استفاده کنید. with با ایجاد یک ساختار خلاصه نویسی، برای جستجو بر روی خصوصیات اشیاء در نظر گرفته شده بود. برای نمونه به جای نوشتن:

dataObj.users.vahid.email = "info@vmt.ir";
می‌توانید به این صورت این کار را انجام دهید:
with(dataObj.users.vahid) {
  email = "info@vmt.ir";
}
مفسر جاوااسکریپت دقیقا نمی‌داند که شما می‌خواهید چه کاری را با with انجام دهید، و به شیء مشخص شده فشار می‌آورد تا اول اسم همه مراجعه شده‌ها را جستجو کند. این عمل واقعا به عملکرد و کارآیی لطمه می‌زند. یعنی مترجم، تمام انواع بهینه سازی‌های JIT را خاموش می‌کند. همچنین پیشنهادهایی مبنی بر حذف کامل آن از نسخه‌های بعدی جاوااسکریپت نیز مطرح شده است.
همه چیز برای عدم استفاده از with در نظر گرفته شده است. CoffeeScript یک قدم جلوتر از همه برداشته و with را از syntax خود حذف کرده است. به عبارت دیگر در صورتیکه شما از آن استفاده کنید، کامپایلر CoffeeScript خطا صادر می‌کند.

Global variables

به طور پیش فرض تمامی برنامه‌های جاوااسکریپت در دامنه global اجرا می‌شوند و تمامی متغیرهایی که ساخته می‌شوند به طور پیش فرض در ناحیه‌ی global قرار می‌گیرند. اگر شما بخواهید متغیری را در ناحیه‌ی local ایجاد کنید، باید از کلمه کلیدی var استفاده کنید.

usersCount = 1;        // Global
var groupsCount = 2;   // Global

(function(){              
  pagesCount = 3;      // Global
  var postsCount = 4;  // Local
})()
اکثر اوقات شما می‌خواهید متغیر local ایی را ایجاد کنید و نه global. توسعه دهندگان باید همیشه به یاد داشته باشند که قبل از مقداردهی اولیه‌ی هر متغیری، کلمه‌ی کلیدی var را قرار دهند یا با انواع و اقسام مشکلات، هنگامی که متغیرها به طور تصادفی با یکدیگر برخورد و یا بازنویسی بر روی یکدیگر انجام می‌دهند، روبرو شوند.
خوشبختانه CoffeeScript به کمک شما می‌آید و به طور کامل انتساب متغیرهای global را به طور ضمنی از بین می‌برد. به عبارت دیگر کلمه کلیدی var در CoffeeScript رزرو شده است و در صورت استفاده خطا صادر می‌شود.
به صورت پیش فرض به طور ضمنی متغیرها local ایجاد می‌شوند و خیلی سخت می‌شود متغیر global ایی را بدون انتساب آن به عنوان خصوصیتی از شیء window ایجاد کرد.
outerScope = true
do ->
  innerScope = true
نتیجه‌ی کامپایل آن می‌شود:
var outerScope;
outerScope = true;
(function() {
  var innerScope;
  return innerScope = true;
})();
همانطور که مشاهده می‌کنید CoffeeScript مقداردهی اولیه متغیر را (با استفاده از var) به صورت خودکار در context ایی که برای اولین بار استفاده شده است انجام می‌دهد. باید مواظب باشید تا از نام متغیر خارجی مجددا استفاده نکنید که این اتفاق ممکن است در کلاس یا تابع با عمق زیاد ایجاد شود. برای مثال، در اینجا به صورت تصادفی متغیر package در یک تابع کلاس بازنویسی شده است:
package = require('./package')

class Test
  build: ->
    # Overwrites outer variable!
    package = @testPackage.compile()

  testPackage: ->
    package.create()
برای ایجاد متغیرهای global باید از انتساب آنها به عنوان خصوصیتی از شیء window استفاده کرد.
  class window.Asset
    constructor: ->
با تضمین متغیرهای global به صورت صریح و روشن به جای به طور ضمنی بودن آنها، CoffeeScript یکی از منابع اصلی ایجاد مشکلات در جاوااسکریپت را حذف کرد‌ه‌است.

Semicolons

جاوااسکریپت اجباری برای نوشتن ";" ندارد، بنابراین ممکن است یک سری از دستورات از قلم بیافتند. با این حال در پشت صحنه‌ی کامپایلر جاوااسکریپت به ";" احتیاج دارد. به طوری که parser جاوااسکریپت به صورت خودکار هر زمانی که نتواند ارزیابی از دستورات داشته باشد، یک بار دیگر با ";" این کار را انجام می‌دهد و درصورت موفقیت، پیام خطایی مبنی بر نبود ";" را صادر می‌کند.
متاسفانه این یک ایده بد است. چرا که ممکن است تغییر رفتاری در کد نوشته شده به وجود آید. به مثال زیر توجه کنید. به نظر کد نوشته شده صحیح است؛ درسته؟
function() {}
(window.options || {}).property
اشتباه است، حداقل با توجه به parser، یک خطای syntax صادر می‌شود. در مورد دوم نیز parser، ";" اضافه نمی‌کند و کد نوشته شده به کد یک خطی تبدیل می‌شوند.
function() {}(window.options || {}).property
حالا شما می‌توانید این موضوع را ببینید که چرا parser خطا داده‌است. وقتی شما در حال نوشتن کد جاوااسکریپتی هستید، باید بعد از هر دستور از ";" استفاده کنید. خوشبختانه در تمام زمانیکه درحال نوشتن کد CoffeeScript هستید، نیازی به نوشتن ";" ندارید. در زمانیکه کد CoffeeScript نوشته شده کامپایل می‌شود، به صورت خودکار ";" را در جای مناسبی قرار می‌دهد.

مطالب
(Domain Driven Design) به زبان ساده
DDD چیست؟ روشی است ساده، زیبا، در وهله اول برای تفکر، و در وهله دوم برای توسعه نرم افزار، که می‌توان بر مبنای آن نیازمندیهای پویا و پیچیده‌ی حوزه دامین را تحلیل، مدل و نهایتا پیاده سازی کرد.
در این روش توسعه نرم افزار تاکید ویژه ای بر الزامات زیر وجود دارد:
  • تمرکز اصلی پروژه، باید صرف فائق آمدن بر مشکلات و پیچیدگیهای موجود در دامین شود.
  • پیچیدگیهای موجود در دامین پس از شناسایی به یک مدل تبدیل شوند.
  • برقراری یک رابطه‌ی خلاق بین متخصصان دامین و افراد تیم توسعه برای بهبود مستمر مدل ارائه شده که نهایتا راه حل مشکلات دامین است بسیار مهم می‌باشد.
مبدع این روش کیست؟
بخوانید:
Eric Evans is a specialist in domain modeling and design in large business systems. Since the early 1990s, he has worked on many projects developing large business systems with objects and has been deeply involved in applying Agile processes on real projects. Eric is the author of "Domain-Driven Design" (Addison-Wesley, 2003) and he leads the consulting group Domain Language, Inc. 
ویدیویی سخنرانی اریک اوانس با عنوان: DDD: putting the model to work
شرایط موفقیت اجرای یک پروژه مبتنی بر DDD چیست؟
  • دامین ساده و سر راست نباشد.
  • افراد تیم توسعه با طراحی / برنامه نویسی شی گرا آشنا باشند.
  • دسترسی به افراد متخصص در مسائل مرتبط با دامین آسان باشد.
  • فرآیند تولید نرم افزار، یک فرآیند چابک باشد.
در این باره چه چیزی بخوانم؟
برای شروع توصیه می‌کنم بخوانید: Domain-Driven Design: Tackling Complexity in the Heart of Software 
نویسنده: Eric Evans


در ادامه می‌پردازم به اینکه ابزار DDD برای شکستن پیچیدگیهای دامین و تبدیل آنها به مدل کدامند؟
پاسخ خلاصه در زیر آمده است. دعوت می‌کنم تا شرح هر یک از این موارد را در پستهای بعدی پیگیر باشید.
  • Entity
  • Value Object
  • Aggregate
  • Service
  • Repository
  • Factory

 قبلا توضیح داده بودم که طراحی متاثر از حوزه‌ی کاری (Domain Driven Design) منجر به کاهش، درک و نهایتا قابل مدیریت کردن پیچیدگیهای موجود در حوزه عملیاتی نرم افزار (Domain) می‌شود. توجه کنیم که تحلیل و مدلسازی، فعالیتهای رایج در حوزه هایی مانند حمل و نقل، اکتشافات، هوا فضا، شبکه‌های اجتماعی و ... می‌تواند بسیار دشوار باشد.

برای مثال فرض کنید که می‌خواهید به مدلسازی نرم افزاری بپردازید که هدف تولید آن پیش بینی وضع آب و هوا است. این حوزه کاری (پیش بینی وضع آب و هوا) بویژه همواره یکی از حوزه (Domain)‌های  پیچیده برای طراحان مدل محسوب می‌شود. DDD روشی است که با بکار گیری آن می‌توانید این پیچیدگیها را بسیار کاهش دهید. توسعه سیستمهای پیچیده بدون رعایت قواعدی همه فهم، نهایتا نرم افزار را به مجموعه ای از کدهای غیر خوانا و دیرفهم تبدیل می‌کند که احتمالا نسل بعدی توسعه دهندگانش را تشویق به بازنویسی آن خواهد کرد.

DDD در واقع روشی است برای دقیق‌تر فکر کردن در مورد نحوه ارتباط و تعامل اجزای مدل با یکدیگر. این سبک طراحی (DDD) به تولید مدلی از اشیاء می‌انجامد که نهایتا تصویری قابل درک (Model) از مسائل مطرح در حوزه‌ی کاری ارائه می‌دهند. این مدل ارزشمند است وقتی که:

1- نمایی آشکار و در عین حال در نهایت سادگی و وضوح از همه‌ی مفاهیمی باشد که در حوزه عملیاتی نرم افزار(Domain) وجود دارد.
2- به تناسب درک کاملتری که از حوزه کاری کسب می‌شود بتوان این مدل را بهبود و توسعه داد(Refactoring).

در DDD کوشش می‌شود که با برقراری ارتباطی منطقی بین اشیاء، و رعایت سطوحی از انتزاع یک مشکل بزرگتر را به مشکلات کوچکتر شکست و سپس به حل این مشکلات کوچکتر پرداخت.

توجه کنیم که DDD به چگونگی سازماندهی اشیاء توجه ویژه ای دارد ولی DDD چیزی درباره برنامه نویسی شی گرا نیست. DDD متدولوژیی است که با بهره گیری از مفاهیم شی گرایی و مجموعه ای از تجارب ممتاز توسعه نرم افزار (Best Practice) پیچیدگیها را و قابلیت توسعه و نگهداری نرم افزار را بهبود می‌دهد.

ایده مستتر در DDD ساده است. اگر در حوزه کاری مفهوم (Concept) ارزشمندی وجود دارد باید بتوان آن را به وضوح در مدل مشاهده کرد. برای مثال صحیح نیست که یک شرط ارزشمند حوزه کسب و کار را با مجموعه‌ی سخت فهمی از If / Else ها، در مدل نشان داد. این شرط مهم را می‌توان با Specification pattern پیاده سازی کرد تا تصویری خوانا‌تر از Domain در مدل بوجود بیاید.

مدلی که دستیبابی به آن در DDD دنبال می‌شود مدلی است سر راست و گویا با در نظر گرفتن همه جوانب و قواعد حوزه‌ی عمل نرم افزار. در این مدل مطلوب و ایده آل به مسائل ذخیره سازی (persistence) پرداخته نمی‌شود. (رعایت اصل PI). این مدل نگران چگونگی نمایش داده‌ها در واسط کاربری نیست. این مدل نگران داستانهای Ajax نیست. این مدل یک مدل Pureاست که دوست داریم حتی المقدور POCO باشد. این مدلی است برای بیان قواعد و منطق موجود در حوزه عمل نرم افزار. این قواعد همیشه تغییر می‌کنند و مدلی که از آموزه‌های DDDالهام گرفته باشد، راحت‌تر پذیرای این تغییرات خواهد بود. به همین دلیل DDD با روشهای توسعه به سبک اجایل نیز قرابت بیشتری دارد.  
مطالب
آشنایی با الگوی Adapter
  قبل از آشنایی با الگوی Adapter،ابتدا با تعریف الگوهای ساختاری آشنا می‌شویم که به شرح ذیل می‌باشد:

الگوهای ساختاری (Structural Patterns):
    از الگوهای ساختاری برای ترکیب کلاسها و اشیاء (Objects)،در جهت ایجاد ساختارهای بزرگتر استفاده می‌شود.به بیان ساده‌تر الگوهای ساختاری با ترکیب کلاسها و آبجکتها،قابلیت‌های کلاسهای غیر مرتبط را در قالب یک Interface(منظور ظاهر) در اختیار Client (منظور کلاس یا متد استفاده کننده می‌باشد) قرار می‌دهند.الگوهای ساختاری با استفاده از ارث بری به ترکیب Interfaceها پرداخته و آنها را پیاده سازی می‌نمایند.
استفاده از الگوهای ساختاری برای توسعه کتابخانه هایی (Library) که مستقل از یکدیگر می‌باشند،اما در کنار هم مورد استفاده قرار می‌گیرند،بسیار مفید است.

در ادامه به الگوی Adapter که یکی از الگوهای ساختاری است،می پردازیم.الگوی  Adapter انواع مختلفی دارد که فهرست آنها به شرح ذیل می‌باشد:
1- Pluggable  Adapter - 4 Two way  Adapter- 3 Object Adapter - 2 Class Adapter

در این مقاله Class Adapter و Object Adapter را مورد بررسی قرار می‌دهیم و اگر عمری باقی باشد در مقاله بعدی Two-way Adapter و Pluggable Adapter را بررسی می‌کنیم.
قبل از پرداختن به هر یک از Adapter‌ها با یکسری واژه آشنا می‌شویم،که در سرتاسر مقاله ممکن است از آنها استفاده شود.
Interface: منظور از Interface در اینجا، ظاهر یا امکاناتی است که یک کلاس می‌تواند ارائه دهد.
Client: منظور متد یا کلاسی است که از Interface مورد انتظار،استفاده می‌نمایید.

Intent (هدف)
     هدف از ارائه الگوی Adapter ،تبدیل Interface یک Class به Interface ی که مورد انتظار Client است، می‌باشد.در واقع الگوی Adapter روشی است که بوسیله آن می‌توان کلاسهای با Interface متفاوت را در یک سیستم کنار یکدیگر مورد استفاده قرار داد. به بیان ساده‌تر هرگاه بخواهیم از کلاسهای ناهمگون یا نامنطبق (کلاسهای غیر مرتبط) در یک سیستم استفاده کنیم،راه حل مناسب استفاده از الگوی Adapter می‌باشد.

Adapter را به عنوان Wrapper می‌شناسند.الگوی Adapter از سه Component مهم تشکیل شده است،که عبارتند از: Target،Adapter و Adaptee. 
Target:کلاس یا Interface ی است که توسط Client مورد استفاده قرار می‌گیرد، و Client از طریق آن درخواستهای خود را بیان می‌کند. در واقع Functionality موجود در کلاس Target به جهت پاسخگویی به درخواست‌های Client فراهم گردیده است.
Adaptee: کلاسی است، دارای قابلیتهای مورد نیاز Client بطوریکه Interface اش با Interface مورد انتظار Client (یعنی Target)سازگار نیست. و Client برای استفاده از امکانات کلاس Adaptee و سازگاری با Interface مورد انتظارش نیاز به یک Wrapper همانند کلاسAdapter دارد.
Adapter: کلاسی است که قابلیتها و امکانات کلاس Adaptee را با Interface مورد انتظار Client یعنی Target سازگار می‌کند، تا Client بتواند از امکانات کلاس Adaptee جهت رفع نیاز‌های خود استفاده نماید. به بیان ساده‌تر Adapter کلاسی هست که برای اتصال دو کلاس نامتجانس (منظور دو کلاسی که هم جنس نمی‌باشند یا از نظر Interface بطور کامل با یکدیگر غیر مرتبط هستند) مورد استفاده قرار می‌گیرد.

در ادامه به بررسی اولین الگوی Adapter یعنی Class Adapter می‌پردازیم:
Class Adapter: 
در این روش کلاس Adapter از ارث بری چند گانه استفاده می‌کند و Interface مرتبط به Adaptee را به Interface مرتبط به Target سازگار می‌نماید.
برای درک تعریف بالا مثالی را بررسی می‌کنیم، در ابتدا شکل زیر را مشاهده نمایید:

در شکل ملاحظه می‌کنید، متد SpecificationRequet واقع در Adaptee می‌تواند نیاز Client را برطرف نماید، اما Client،چیزی را که مشاهده می‌کند اینترفیس Itarget می‌باشد، به عبارتی Client بطور مستقیم نمی‌تواند با Adaptee ارتباط برقرار کند، بنابراین اگر بخواهیم از طریق Itarget نیاز Client را برطرف نماییم، لازم است کلاسی بین Itarget و Adaptee به جهت تبادل اطلاعات ایجاد کنیم، که Adapter نامیده می‌شود. حال در روش Class Adapter، کلاس Adapter  جهت تبادل اطلاعات بین ITarget و Adaptee هر دو را در خود Implement می‌نماید، به عبارتی از هر دو مشتق (Inherit) می‌شود.
در ادامه شکل بالا را بصورت کد پیاده سازی می‌نماییم.
class Adaptee
    {
        public void SpecificationRequest()
        {
            Console.WriteLine("SpecificationRequest() is called");
        }
    }
interface ITarget
    {
        void Request();

    }
class Adapter:Adaptee, ITarget
    {
        public void Request()
        {
            SpecificationRequest();
        }
    }
class MainApp
{
    static void Main()
    {
        ITarget target = new Adapter();
        target.Request();

        Console.ReadKey();
    }
}
سادگی کد، روش Class Adapter را قابل درک می‌نماید،نکته مهم در کد بالا،متد Request در کلاس Adapter و نحوه فراخوانی متد SpecificationRequest در آن می‌باشد.
شکل زیر که از سایت Wikipedia گرفته شده است،به خوبی نحوه فراخوانی  را مشخص می‌نماید:


روش Object Adapter:
می دانیم در زبان برنامه نویسی #C هر کلاس فقط می‌تواند از یک کلاس دیگر Inherit شود، به طوری که هر کلاس نمی‌تواند بیش از یک کلاس Parent داشته باشد، بنابراین اگر Client شما بخواهد از امکانات و قابلیت‌های چندین کلاس Adaptee استفاده نماید، روش Class Adapter نمی‌تواند پاسخگوی نیازتان باشد، بلکه می‌بایست از روش Object Adapter استفاده نمایید.
شکل زیر بیانگر روش Object Adapter می‌باشد:

همانطور که در شکل ملاحظه می‌کنید، در این روش کلاس Adapter به جای Inherit نمودن از کلاس Adaptee، آبجکتی از کلاس Adaptee را در خود ایجاد می‌نماید، بنابراین با این روش شما می‌توانید به چندین Adaptee از طریق کلاس Adapter دسترسی داشته باشید.
پیاده سازی کدی شکل بالا به شرح ذیل می‌باشد:
class Adaptee
    {
        public void SpecificRequest()
        {
            MessageBox.Show("Called SpecificRequest()");
        }
    }
interface ITarget
    {
        void Request();

    }
class Adapter: ITarget
    {
        private Adaptee _adptee = new Adaptee();

        public void Request()
        {
            _adptee.SpecificationRequest();
        }
    }
class MainApp
{
    static void Main()
    {
        ITarget target = new Adapter();
        target.Request();

        Console.ReadKey();
    }
}
برای درک تفاوت Class Adapter و Object Adapter ، پیاده سازی کلاس Adapter را مشاهده نمایید، که در کد بالا به جای Inherit نمودن از کلاس Adaptee ، آبجکت آن را ایجاد نمودیم. واضح است که Object Adapter انعطاف پذیرتر نسبت به Class Adapter می‌باشد.
امیدوارم مطلب فوق مفید واقع شود
نظرات مطالب
مفاهیم برنامه نویسی ـ مروری بر کلاس و شیء
شروع خوبی بود، آفرین!
من هنوز وقتی جلسه‌ی اول کلاس میپرسم که پراید یک کلاس هست و یا یک آبجکت. همه میگن آبجکتی از کلاس ماشین!
این در حالیست که خیلی از این افراد سالهاست برنامه نویسی میکنند و هنوز نمیدونند heap یا stack چیه
مطالب
مدیریت پیشرفته‌ی حالت در React با Redux و Mobx - قسمت سوم - روش اتصال Redux به برنامه‌های React
پس از بررسی ساختار کتابخانه‌ی Redux به صورت مستقل و متکی به خود، اکنون در این قسمت، نحوه‌ی اتصال آن‌را به برنامه‌های React بررسی می‌کنیم.


نصب پیشنیازها

می‌توان همانند قسمت قبل، تمام کارها را با کتابخانه‌ی redux انجام داد و یا می‌توان قسمت به روز رسانی UI آن‌را و همچنین مدیریت state را به کتابخانه‌ی ساده کننده‌ی دیگری به نام react-redux واگذار کرد. به همین جهت در ادامه‌ی همان برنامه‌ی قسمت قبل، دو کتابخانه‌ی redux و همچنین react-redux را به همراه types آن نصب می‌کنیم (نصب types، سبب ارائه‌ی intellisense بهتری در VSCode می‌شود؛ حتی اگر نخواهیم با TypeScript کار کنیم).
برای این منظور پس از باز کردن پوشه‌ی اصلی برنامه توسط VSCode، دکمه‌های ctrl+` را فشرده (ctrl+back-tick) و دستورات زیر را در ترمینال ظاهر شده وارد کنید:
> npm install --save redux react-redux
> npm install --save-dev @types/react-redux
به علاوه در ادامه توئیتر بوت استرپ 4 را نیز نصب می‌کنیم:
> npm install --save bootstrap
سپس برای افزودن فایل bootstrap.css به پروژه‌ی React خود، ابتدای فایل index.js را به نحو زیر ویرایش خواهیم کرد:
import "bootstrap/dist/css/bootstrap.css";
این import به صورت خودکار توسط webpack ای که در پشت صحنه کار bundling & minification برنامه را انجام می‌دهد، مورد استفاده قرار می‌گیرد.


معرفی ساختار ابتدایی برنامه

برنامه‌ای را که در این قسمت بررسی می‌کنیم، ساختار بسیار ساده‌ای را داشته و به همراه دو دکمه‌ی افزایش و کاهش مقدار یک شمارشگر است؛ به همراه دکمه‌ی برای به حالت اول در آوردن آن. هدف اصلی دنبال شده‌ی در اینجا نیز نحوه‌ی برپایی redux و همچنین react-redux و اتصال آن‌ها به برنامه‌ی React جاری است:


به همین جهت ابتدا کامپوننت جدید src\components\counter.jsx را به نحو زیر تشکیل می‌دهیم تا markup ابتدایی فوق را به همراه سه دکمه و یک span، برای نمایش مقدار شمارشگر، رندر کند:
import React, { Component } from "react";

class Counter extends Component {
  render() {
    return (
      <section className="card mt-5">
        <div className="card-body text-center">
          <span className="badge m-2 badge-primary">0</span>
        </div>
        <div className="card-footer">
          <div className="d-flex justify-content-center align-items-center">
            <button className="btn btn-secondary btn-sm">+</button>
            <button className="btn btn-secondary btn-sm m-2">-</button>
            <button className="btn btn-danger btn-sm">Reset</button>
          </div>
        </div>
      </section>
    );
  }
}

export default Counter;
سپس المان آن‌را جهت نمایش در برنامه، به فایل src\App.js اضافه می‌کنیم:
import "./App.css";

import React from "react";

import Counter from "./components/counter";

function App() {
  return (
    <main className="container">
      <Counter />
    </main>
  );
}

export default App;


پوشه بندی مخصوص برنامه‌های مبتنی بر Redux


هدف ما در ادامه ایجاد یک store مخصوص redux است و سپس اتصال آن به کامپوننت شمارشگر برنامه. به همین جهت نیاز به 4 پوشه‌ی جدید، برای مدیریت بهتر برنامه خواهیم داشت:
- پوشه constants: برای اینکه نام رشته‌ای نوع اکشن‌های مختلف را بتوانیم در قسمت‌های مختلف برنامه استفاده کنیم، بهتر است فایل جدید src\actions\index.js را ایجاد کرده و این ثوابت را داخل آن export کنیم.
- پوشه‌ی actions: در فایل جدید src\actions\index.js، تمام متدهای ایجاد کننده‌ی شیء خاص action، که در قسمت قبل در مورد آن بحث شد، قرار می‌گیرند. نمونه‌ی آن، متد createAddAction قسمت قبل است.
- پوشه‌ی reducers: تمام توابع reducer برنامه را در فایل‌های مجزایی در پوشه‌ی reducers قرار می‌دهیم. سپس در فایل src\reducers\index.js با استفاده از متد combineReducer آن‌ها را یکی کرده و به متد createStore ارسال می‌کنیم.
- پوشه‌ی containers: این پوشه جائی است که کار فراخوانی متد connect کتابخانه‌ی react-redux به ازای هر کامپوننت استفاده کننده‌ی از redux store، صورت می‌گیرد.

این موارد را با جزئیات بیشتری در ادامه بررسی می‌کنیم.



ایجاد نام نوع اکشن متناظر با دکمه‌ی افزودن مقدار

می‌خواهیم با کلیک بر روی دکمه‌ی +، مقدار شمارشگر افزایش یابد. به همین جهت نیاز به یک نام وجود دارد تا در تابع Reducer متناظر و قسمت‌های دیگر برنامه، بتوان بر اساس آن، این اکشن خاص را شناسایی کرد و سپس عکس العمل نشان داد. به همین جهت فایل جدید src\constants\ActionTypes.js را ایجاد کرده و به صورت زیر تکمیل می‌کنیم:
export const Increment = "Increment";
البته هرچند مرسوم است نام و مقدار این نوع ثوابت را تشکیل شده‌ی از حروف بزرگ، معرفی کنند ولی این موضوع اختیاری است.


ایجاد متد Action Creator

در قسمت قبل مشاهده کردیم که شیء ارسالی به یک reducer از طریق dispatch یک action خاص، دارای فرمت ویژه‌ی زیر است:
{
    type: "ADD",
    payload: {
      amount // = amount: amount
    },
    meta: {}
}
به همین جهت برای نظم بخشیدن به تعریف این نوع اشیاء و یک‌دست سازی آن‌ها، فایل جدید src\actions\index.js را ایجاد کرده و آن‌را به صورت زیر تکمیل می‌کنیم:
import * as types from "../constants/ActionTypes";

export const incrementValue = () => ({ type: types.Increment });
همانطور که ملاحظه می‌کنید در این متد، فعلا فقط نام رشته‌ای نوع این اکشن، بیشتر مدنظر است تا بر اساس action.type رسیده در reducer متناظر با آن، عملی رخ دهد. بنابراین فقط قسمت type آن‌را مقدار دهی کرده‌ایم. مقدار ثابت رشته‌ای types.Increment نیز از فایل مجزای src\constants\ActionTypes.js که پیشتر تعریف کردیم، تامین شده‌است.


ایجاد تابع reducer مخصوص افزودن مقدار

ابتدا فایل جدید src\reducers\counter.js را با محتوای زیر ایجاد می‌کنیم:
import * as types from "../constants/ActionTypes";

const initialState = {
  count: 0
};

export default function counterReducer(state = initialState, action) {
  if (action.type === types.Increment) {
    return {
      count: state.count + 1
    };
  }
  return state;
}
- اگر دقت کرده باشید، کامپوننت شمارشگر این قسمت، دارای state نیست و همچنین نمی‌خواهیم هم که دارای state باشد؛ چون قرار است توسط redux مدیریت شود. به همین جهت state اولیه را به صورت initialState که محتوای یک شیء با خاصیت count با مقدار اولیه‌ی صفر است، خارج از کلاس کامپوننت، ایجاد کرده‌ایم.
- سپس می‌خواهیم رویداد کلیک بر روی دکمه + را مدیریت کنیم. به همین جهت نیاز به یک اکشن جدید به نام Increment داریم که توسط مقدار ثابت رشته‌ای types.Increment، از فایل مجزای src\constants\ActionTypes.js، تامین می‌شود.
- پس از مشخص کردن نوع action ای که قرار است مدیریت شود و همچنین ایجاد متدی برای تولید شیء حاوی اطلاعات آن که در فایل src\actions\index.js قرار دارد، اکنون می‌توان متد reducer را که state و action را دریافت می‌کند و سپس state جدیدی را بر اساس action.type دریافتی و در صورت نیاز بازگشت می‌دهد، ایجاد کرد. این متد بررسی می‌کند که آیا action.type رسیده همان ثابت Increment است؟ اگر بله، بجای تغییر مستقیم state.count، یک شیء جدید را بازگشت می‌دهد. البته روش صحیح‌تر اینکار را در قسمت اول این سری با معرفی روش‌هایی برای کپی اشیاء و آرایه‌ها، بررسی کردیم. در اینجا جهت سادگی بیشتر، یک شیء کاملا جدید را دستی ایجاد می‌کنیم. در آخر اگر action.type رسیده قابل پردازش نبود، همان state ابتدایی دریافتی را بازگشت می‌دهیم تا در صورت وجود چندین reducer تعریف شده‌ی در سیستم، زنجیره‌ی آن‌ها قابل پردازش باشد. این مورد را در قسمت قبل، ذیل عنوان «بررسی تابع combineReducers با یک مثال» بیشتر بررسی کردیم.

پس از ایجاد reducer اختصاصی عمل افزودن مقدار شمارشگر، فایل جدید src\reducers\index.js را نیز با محتوای زیر ایجاد می‌کنیم:
import { combineReducers } from "redux";

import counterReducer from "./counter";

const rootReducer = combineReducers({
  counterReducer
});

export default rootReducer;
کار این فایل، مدیریت مرکزی تمام reducerهای سفارشی تعریف شده‌ی در برنامه‌است. لیست آن‌ها را به متد combineReducers ارسال کرده و در نهایت یک rootReducer ترکیب شده‌ی از تمام آن‌ها را دریافت می‌کنیم.


ایجاد store مخصوص Redux

تا اینجا رسیدیم به یک rootReducer متشکل از تمام reducerهای سفارشی برنامه. اکنون بر اساس آن در فایل src\index.js، یک store جدید را ایجاد می‌کنیم:
import { createStore } from "redux";
import reducer from "./reducers";

//...

const store = createStore(
  reducer,
  window.__REDUX_DEVTOOLS_EXTENSION__ && window.__REDUX_DEVTOOLS_EXTENSION__()
);

//...
نکته 1: چون شیء rootReducer در فایل src\reducers\index.js واقع شده‌است، دیگر در حین import، نیازی به ذکر نام فایل index آن نیست.
نکته 2: در اینجا روش فعالسازی افزونه‌ی redux-devtools را نیز ملاحظه می‌کنید. ابتدا بررسی می‌شود که آیا متد ویژه‌ی فراخوانی این افزونه وجود دارد یا خیر؟ اگر بله، فراخوانی می‌شود. بدون این پارامتر دوم، افزونه‌ی redex dev tools، هیچ خروجی را نمایش نخواهد داد.


اتصال React به Redux

کتابخانه‌ی react-redux تنها به همراه دو شیء مهم connect و Provider است. شیء Provider آن شبیه به Context API خود React است و هدف آن، ارسال ارجاعی از store ایجاد شده، به برنامه‌ی React است. پس از ایجاد store در فایل src\index.js، اکنون نوبت به اتصال آن به برنامه‌ی React ای جاری است. به همین جهت در بالاترین سطح برنامه، ابتدا شیء کامپوننت App را با شیء Provider محصور می‌کنیم:
import { Provider } from "react-redux";
import { createStore } from "redux";
import reducer from "./reducers";

// ...
const store = createStore(
  reducer,
  window.__REDUX_DEVTOOLS_EXTENSION__ && window.__REDUX_DEVTOOLS_EXTENSION__()
);

ReactDOM.render(
  <Provider store={store}>
    <App />
  </Provider>,
  document.getElementById("root")
);
کامپوننت Provider، از طریق props خود نیاز به دریافت store تعریف شده را دارد. به این ترتیب هر کامپوننتی که در درخت کامپوننت‌های App قرار می‌گیرد، می‌تواند با redux store کار کند.


تامین state کامپوننت شمارشگر از طریق props

همانطور که عنوان شد، کامپوننت Counter به همراه state نیست و ما قصد نداریم در آن از state خود React استفاده کنیم؛ البته فلسفه‌ی آن‌را در قسمت اول این سری بررسی کردیم و همچنین اگر کامپوننتی نیاز به اشتراک گذاری اطلاعات خودش را با لایه‌های زیرین یا بالاتر از خود ندارد، شاید اصلا نیازی به Redux نداشته باشد و همان state استاندارد React برای آن کافی است. بنابراین می‌توان برنامه‌ای را داشت که ترکیبی از state استاندارد React، در کامپوننت‌های متکی به خود و Redux، در کامپوننت‌هایی که باید اطلاعاتی را با هم به اشتراک بگذارند، باشد. برای مثال، کامپوننت مثال جاری، واقعا نیازی را به Redux، برای مدیریت حالت خود، ندارد؛ هدف ما در اینجا بررسی نحوه‌ی برقراری ارتباطات یک سیستم مبتنی بر Redux، در برنامه‌های React است.
بنابراین در اینجا و کامپوننتی که قرار است از Redux برای مدیریت حالت خود استفاده کند، هر اطلاعاتی که به آن از طریق react-redux store وارد می‌شود، از طریق props به آن ارسال خواهد شد. برای مثال در اینجا مقدار count، از طریق props خوانده می‌شود و همچنین امکان ارسال action ای خاص به متد reducer تعریف شده نیز باید تعریف شود. بنابراین در ادامه نیاز داریم تا یک کامپوننت React را به redux store متصل کنیم. برای این منظور فایل جدید src\containers\Counter.js را با محتوای زیر ایجاد می‌کنیم:
import { connect } from "react-redux";

import { incrementValue } from "../actions";
import Counter from "../components/counter";

const mapStateToProps = state => {
  return state;
};

const mapDispatchToProps = dispatch => {
  return {
    increment() {
      dispatch(incrementValue());
    }
  };
};

export default connect(mapStateToProps, mapDispatchToProps)(Counter);
ابتدا متد connect را از react-redux دریافت می‌کنیم. connect خود متدی است که منتظر یک کامپوننت React است؛ مانند Counter. همچنین به عنوان پارامتر، توابعی را دریافت می‌کند که اطلاعات redux store را به کامپوننت، نگاشت می‌کنند؛ مانند props و actions. در اینجا دو تابع نگاشت state به props و همچنین dispatch به props را ملاحظه می‌کنید (توابع mapStateToProps و mapDispatchToProps)؛ هرچند الزامی نیست، ولی بهتر است از همین روش نامگذاری استفاده شود.

زمانیکه در مورد store در redux صحبت می‌شود، داخل آن یک شیء بزرگ state قرار گرفته‌است که حاوی کل state برنامه‌است. اما شاید هر کامپوننت به تمام آن نیازی نداشته باشد. برای مثال شاید کامپوننت شمارشگر، اهمیتی به اطلاعات خطاهای سیستم و یا کاربر وارد شده‌ی به سیستم که در شیء کلی state موجود در store وجود دارند، ندهد. به همین جهت متد mapStateToProps، کل state برنامه را دریافت کرده و به ما اجازه می‌دهد تا تنها اطلاعاتی را که از آن نیاز داریم، به صورت props دریافت کنیم. به این ترتیب از رندر مجدد این کامپوننت نیز جلوگیری خواهد شد؛ چون این کامپوننت دیگر وابسته‌ی به تغییرات سایر اجزای کل state برنامه، نخواهد بود و اگر آن‌ها تغییر کردند، این کامپوننت رندر مجدد نخواهد شد.
بنابراین می‌توان متد mapStateToProps را به صورت کلی زیر نیز تعریف کرد:
const mapStateToProps = (state) => { return state };
هرچند این روش در مثال ما بدون مشکل کار می‌کند، اما چون کل state را دریافت می‌کند، مشکل رندر مجدد کامپوننت را به ازای هر تغییری در state کلی برنامه به همراه خواهد داشت.

یک نکته: اگر کامپوننتی نیاز به تامین state خود را از طریق props نداشت و فقط کارش صدور رخ‌دادها است، می‌توان پارامتر اول متد connect را نال وارد کرد.

پارامتر dispatch متد mapDispatchToProps، به متد store.dispatch اشاره می‌کند. بنابراین توسط آن امکان ارسال actions را میسر کرده و می‌توان state را توسط reducerهای تعریف شده، تغییر داد که در نتیجه‌ی آن props جدیدی به کامپوننت منتقل می‌شوند. این تابع نیز یک شیء را باز می‌گرداند. این شیء را فعلا با یک متد دلخواه مقدار دهی می‌کنیم که توسط پارامتر dispatch رسیده‌ی به آن، متد action creator تعریف شده‌ی در فایل src\actions\index.js را به نام incrementValue، فراخوانی می‌کند؛ دقیقا عملی شبیه به فراخوانی store.dispatch(createAddAction(2)) در قسمت قبل که از آن برای ارسال یک اکشن، به reducer متناظری استفاده شد.

یک نکته: اگر کامپوننتی کار صدور رخ‌دادها را انجام نمی‌دهد، می‌توان پارامتر دوم متد connect را بطور کامل حذف کرد و قید نکرد.


استفاده از کامپوننت جدید خروجی متد connect، جهت تامین props کامپوننت شمارشگر

در انتهای فایل src\components\counter.jsx، چنین سطری درج شده‌است:
export default connect(mapStateToProps, mapDispatchToProps)(Counter);
این شیء حاصل، به خودی خود، سبب بروز تغییری در کامپوننت شمارشگر نمی‌شود. بلکه یک کامپوننت دربرگیرنده‌ی کامپوننت Counter را ایجاد می‌کند (به همین جهت آن‌را در پوشه‌ی containers یا دربرگیرنده‌ها قرار دادیم). بنابراین برای استفاده‌ی از آن، به کامپوننت src\App.js مراجعه کرده و جائیکه المان کامپوننت Counter قبلی درج شده، آن‌را به صورت زیر تغییر می‌دهیم:
import "./App.css";

import React from "react";

import CounterContainer from "./containers/Counter";

function App() {
  return (
    <main className="container">
      <CounterContainer />
    </main>
  );
}

export default App;
ابتدا کامپوننت جدید CounterContainer را که تبادل اطلاعات بین کامپوننت Counter اصلی و state و action مخزن redux را برقرار می‌کند، import کرده و سپس المان جدید آن‌را جایگزین المان کامپوننت شمارشگر اصلی می‌کنیم.

اکنون کامپوننت شمارشگر src\components\counter.jsx، دو شیء را از طریق props دریافت می‌کند؛ یکی کل state است که خاصیت count داخل آن قرار دارد و از طریق mapStateToProps تامین می‌شود. دیگری متد increment ای است که در متد mapDispatchToProps تعریف کردیم و کار صدور رخ‌دادی را به reducer متناظر، انجام می‌دهد. به همین جهت تغییرات ذیل را در کامپوننت Counter اعمال می‌کنیم:
import React, { Component } from "react";

class Counter extends Component {
  render() {
    console.log("props", this.props);
    const {
      counterReducer: { count },
      increment
    } = this.props;
    return (
      <section className="card mt-5">
        <div className="card-body text-center">
          <span className="badge m-2 badge-primary">{count}</span>
        </div>
        <div className="card-footer">
          <div className="d-flex justify-content-center align-items-center">
            <button className="btn btn-secondary btn-sm" onClick={increment}>
              +
            </button>
            <button className="btn btn-secondary btn-sm m-2">-</button>
            <button className="btn btn-danger btn-sm">Reset</button>
          </div>
        </div>
      </section>
    );
  }
}

export default Counter;
لاگ اولین بار دریافت this.pros این کامپوننت که اکنون توسط دربرگیرنده‌ی آن ارائه می‌شود، به صورت زیر است:


به همین جهت، خاصیت تو در توی this.props.counterReducer.count و همچنین اشاره‌گر به متد increment، توسط Object Destructuring به صورت زیر از this.props دریافتی، تجزیه شده‌اند:
    const {
      counterReducer: { count },
      increment
    } = this.props;
سپس مقدار count، توسط span نمایش داده و همچنین دکمه +  را به صورت onClick={increment} تکمیل کرده‌ایم تا با کلیک بر روی آن، متد increment که در حقیقت معادل فراخوانی store.dispatch(incrementValue()) است، اجرا شود. حاصل آن، افزایش مقدار شمارشگر است:


جزئیات کار با Redux store را نیز می‌توان در افزونه‌ی redux dev tools مشاهده کرد:


این افزونه در نوار ابزار پایین آن، امکان export کل state و سپس import و بازیابی آن‌را نیز به همراه دارد.


دریافت props از طریق کامپوننت دربرگیرنده و ارسال آن به کامپوننت اصلی

فرض کنید نیاز باشد تا اطلاعاتی را به صورت متداول React از طریق props، به کامپوننت دربرگیرنده‌ی کامپوننت شمارشگر ارسال کرد:
function App() {
  const prop1 = 123
  return (
    <main className="container">
      <CounterContainer prop1={prop1} />
    </main>
  );
}
برای دسترسی به آن، پارامتر دومی به متد mapStateToProps به نام ownProps اضافه می‌شود که حاوی props ارسالی به کامپوننت container است:
const mapStateToProps = (state, ownProps) => {
  console.log("mapStateToProps", { state, ownProps });
  return state;
};
در این حالت اگر نیاز به انتقال آن به کامپوننت اصلی بود، می‌توان شیء بازگشت داده شده‌ی از mapStateToProps را به همراه یک سری خواص سفارشی دریافتی از ownProps، تعریف کرد.


پیاده سازی دکمه‌ی کاهش مقدار شمارشگر

پس از آشنایی با روش کلی برقراری اتصالات سیستم react-redux، پیاده سازی دکمه‌ی کاهش مقدار شمارشگر بسیار ساده‌است و شامل مراحل زیر است:
1)  ایجاد نام نوع اکشن متناظر با دکمه‌ی کاهش مقدار
به فایل src\constants\ActionTypes.js، نوع جدید کاهشی را اضافه می‌کنیم:
export const Decrement = "Decrement";
2) ایجاد متد Action Creator
در فایل src\actions\index.js، متد ایجاد کننده‌ی شیء اکشن ارسالی به reducer متناظری را تعریف می‌کنیم تا بتوان بر اساس نوع آن در reducer کاهشی، منطق کاهش را پیاده سازی کرد:
export const decrementValue = () => ({ type: types.Decrement });
3) ایجاد تابع reducer مخصوص کاهش مقدار
اکنون در فایل src\reducers\counter.js، بر اساس نوع شیء رسیده، تصمیم به کاهش یا افزایش مقدار موجود در state گرفته می‌شود:
export default function counterReducer(state = initialState, action) {

  // ...

  if (action.type === types.Decrement) {
    return {
      count: state.count - 1
    };
  }

  return state;
}
4) تامین state کامپوننت شمارشگر از طریق props
در ادامه نیاز است بتوان اکشن کاهش را به این reducer ارسال کرد. به همین جهت به کامپوننت دربرگیرنده‌ی کامپوننت شمارشگر در فایل src\containers\Counter.js مراجعه کرده و به شیء خروجی متد mapDispatchToProps، متد کاهش را اضافه می‌کنیم:
import { decrementValue, incrementValue } from "../actions";
// ...

const mapDispatchToProps = dispatch => {
  return {
    // ...
    decrement() {
      dispatch(decrementValue());
    }
  };
};
5) استفاده از نتایج دریافتی از props
در آخر به فایل src\components\counter.jsx مراجعه کرده و اشاره‌گر به متد decrement را از طریق this.props دریافت می‌کنیم:
const {
      // ...
      decrement
    } = this.props;
 سپس آن‌را به onClick دکمه‌ی کاهش، انتساب خواهیم داد:
<button
  className="btn btn-secondary btn-sm m-2"
  onClick={decrement}
>
  -
</button>

به عنوان تمرین، پیاده سازی دکمه‌ی Reset را نیز انجام دهید که جزئیات آن بسیار شبیه به دو مثال قبلی افزودن و کاهش مقدار شمارشگر است.


بهبود کیفیت کدهای کامپوننت دربرگیرنده‌ی کامپوننت Counter

متد mapDispatchToProps فایل src\containers\Counter.js اکنون چنین شکلی را پیدا کرده‌است:
const mapDispatchToProps = dispatch => {
  return {
    increment() {
      dispatch(incrementValue());
    },
    decrement() {
      dispatch(decrementValue());
    }
  };
};
می‌توان با استفاده از تابع bindActionCreators که در قسمت قبل در مورد آن بحث شد، تعریف آن‌را به صورت زیر خلاصه کرد:
import { bindActionCreators } from "redux";

// ...

const mapDispatchToProps = dispatch => {
  return bindActionCreators(
    {
      incrementValue,
      decrementValue
    },
    dispatch
  );
};
با استفاده از تابع bindActionCreators کتابخانه‌ی redux، می‌توان تمام action creators واقع در فایل src\actions\index.js را به صورت یک شیء به آن ارسال کرد و پارامتر دوم آن‌را نیز به store.dispatch یا در اینجا به همان dispatch دریافتی توسط پارامتر dispatch متد mapDispatchToProps، تنظیم کرد. البته در این حالت props دریافتی در کامپوننت شمارشگر به صورت زیر تغییر می‌کنند:


به همین جهت نیاز است در متد رندر کامپوننت src\components\counter.jsx، نام‌هایی را که به متدهای action creator اشاره می‌کنند، به صورت زیر تغییر داد:
const {
      counterReducer: { count },
      incrementValue,
      decrementValue
    } = this.props;
و همچنین نام‌های منتسب به onClickها را نیز بر این اساس، اصلاح کرد.

روش دوم: در نگارش‌های اخیر react-redux می‌توان متد mapDispatchToProps را به صورت زیر نیز خلاصه و تعریف کرد که بسیار ساده‌تر است:
const mapDispatchToProps = {
  incrementValue,
  decrementValue
};
البته در این حالت نیز مابقی آن که شامل تغییر نام‌ها می‌شود، یکسان است.

همچنین بجای بازگشت کل state در متد mapStateToProps، می‌توان تنها خواص مدنظر را بازگشت داد:
const mapStateToProps = state => {
  //return state;
  return {
    count: state.counterReducer.count
  };
};
در این حالت props ارسالی به کامپوننت یک چنین شکلی را پیدا می‌کنند:


بنابراین باید در متد رندر کامپوننت شمارشگر، خاصیت count را به صورت معمولی دریافت کرد:
const {
      //counterReducer: { count },
      count,
      incrementValue,
      decrementValue
    } = this.props;

کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: state-management-redux-mobx-part03.zip
مطالب
شروع به کار با Ember.js
Ember.js کتابخانه‌ای است جهت ساده سازی تولید برنامه‌های تک صفحه‌ای وب. برنامه‌هایی که شبیه به برنامه‌های دسکتاپ در مرورگر کاربر عمل می‌کنند. دو برنامه نویس اصلی آن Yehuda Katz که عضو اصلی تیم‌های jQuery و Ruby on Rails است و Tom Dale که ابتدا SproutCore را به وجود آورد و بعدها به Ember.js تغییر نام یافت، هستند.

منابع اصلی Ember.js

پیش از شروع به بحث نیاز است با تعدادی از سایت‌های اصلی مرتبط با Ember.js آشنا شد:
سایت اصلی: http://emberjs.com
مخزن کدهای آن: https://github.com/emberjs
انجمن اختصاصی پرسش و پاسخ: http://discuss.emberjs.com
موتور قالب‌های آن: http://handlebarsjs.com
لیست منابع مطالعاتی مرتبط مانند ویدیوهای آموزشی و لیست مقالات موجود: http://emberwatch.com
و بسته‌ی نیوگت آن: https://www.nuget.org/packages/EmberJS



مفاهیم پایه‌ای Ember.js

شیء Application
 App = Ember.Application.create();
یک برنامه‌ی Ember.js با تعریف وهله‌ای از شیء Application آن آغاز می‌شود. با اینکار به صورت خودکار رویدادگردان‌هایی به صفحه اضافه می‌شوند. کامپوننت‌های پیش فرض آن ایجاد شده و همچنین قالب اصلی برنامه رندر می‌شود.

مسیر یابی
با مرور قسمت‌های مختلف برنامه توسط کاربر، نیاز است حالات برنامه را مدیریت کرد؛ اینجا است که کار قسمت مسیریابی شروع می‌شود. مسیریابی، منابع مورد نیاز جهت آدرس‌های مشخصی را تامین می‌کند.
App.Router.map(function() {
    this.resource('accounts'); // takes us to /accounts
    this.resource('gallery'); // takes us to /gallery
});
در اینجا نحوه‌ی تعریف آغازین مسیریابی Ember.js را مشاهده می‌کنید که توسط متد resource آن مسیرهای قابل ارائه توسط برنامه مشخص می‌شوند.
به این ترتیب مسیرهای accounts/ و gallery/ قابل پردازش خواهند شد.

این مسیرها، تو در تو نیز می‌توانند باشند. برای مثال:
App.Router.map(function() {
    this.resource('news', function() {
        this.resource('images', function () { // takes us to /news/images
            this.route('add');// takes us to /news/images/add
        });
    });
});
به این ترتیب نحوه‌ی تعریف مسیریابی آدرس news/images/add را مشاهده می‌کنید. همچنین در این مثال از دو متد resource و route استفاده شده‌است. از متد resource برای حالت تعریف اسامی استفاده کنید و از متد route برای تعریف افعال و تغییر دهنده‌ها. برای نمونه در اینجا فعل افزودن تصاویر با متد route مشخص شده‌است.


مدل‌ها
مدل‌ها همان اشیایی هستند که برنامه مورد استفاده قرار می‌دهد و می‌توانند یک آرایه‌ی ساده و یا اشیاء JSON دریافتی از وب سرور باشند.
حداقل به دو روش می‌توان مدل‌ها را تعریف کرد:
الف) با استفاده از افزونه‌ی Ember Data
ب) با کمک شیء Ember.Object
App.SiteLink = Ember.Object.extend({});
App.SiteLink.reopenClass({
    findAll: function() {
        var links = [];
        //… $.getJSON …

        return links;
    }
});
ابتدا یک زیرکلاس از Ember.Object به کمک متد extend ایجاد خواهد شد. سپس از متد توکار reopenClass برای توسعه‌ی API کمک خواهیم گرفت.
در ادامه متد دلخواهی را ایجاد کرده و برای مثال آرایه‌ای از اشیاء دلخواه جاوا اسکریپتی را بازگشت خواهیم داد.
پس از تعریف مدل، نیاز است آن‌را به سیستم مسیریابی معرفی کرد:
App.GalleryRoute = Ember.Route.extend({
    model: function() {
        return App.SiteLink.findAll();
    }
});
به این ترتیب زمانیکه کاربر به آدرس gallery/ مراجعه می‌کند، دسترسی به model وجود خواهد داشت. در اینجا model یک واژه‌ی کلیدی است.


کنترلرها
کنترلرها جهت ارائه‌ی اطلاعات مدل‌ها به View و قالب برنامه تعریف می‌شوند. در اینجا همیشه باید بخاطر داشت که model تامین کننده‌ی اطلاعات است. کنترلر جهت در معرض دید قرار دادن این اطلاعات، به View برنامه کاربرد دارد و مدل‌ها هیچ اطلاعی از وجود کنترلرها ندارند.
کنترلرها علاوه بر اطلاعات model، می‌توانند حاوی یک سری خواص و اشیاء صرفا نمایشی که قرار نیست در بانک اطلاعاتی ذخیره شوند نیز باشند.
در Ember.js قالب‌ها (templates) اطلاعات خود را از کنترلر دریافت می‌کنند. کنترلرها اطلاعات مدل را به همراه سایر خواص نمایشی مورد نیاز در اختیار View و قالب‌های برنامه قرار می‌دهند.


برای تعریف یک کنترلر می‌توان درون شیء مسیریابی، با تعریف متد setupController شروع کرد:
App.GalleryRoute = Ember.Route.extend({
    setupController: function(controller) {
        controller.set('content', ['red', 'yellow', 'blue']);
    }
});
در این مثال یک خاصیت دلخواه به نام content تعریف و سپس آرایه‌ای به آن انتساب داده شده‌است.

روش دوم تعریف کنترلرها با ایجاد یک زیر کلاس از شیء Ember.Controller انجام می‌شود:
App.GalleryController = Ember.Controller.extend({
    search: '',
    content: ['red', 'yellow', 'blue'],
    query: function() {
        var data = this.get('search');
        this.transitionToRoute('search', { query: data });
    }
});


قالب‌ها یا templates
قالب‌ها قسمت‌های اصلی رابط کاربری را تشکیل خواهند داد. در اینجا از کتابخانه‌ای به نام handlebars برای تهیه قالب‌های سمت کاربر کمک گرفته می‌شود.
<script type="text/x-handlebars" data-template-name="sayhello">
    Hello,
    <strong>{{firstName}} {{lastName}}</strong>!
</script>
این قالب‌ها توسط تگ اسکریپت تعریف شده و نوع آن‌ها text/x-handlebars مشخص می‌شود. به این ترتیب Ember.js، این قسمت از صفحه را یافته و عبارات داخل {{}} را با مقادیر دریافتی از کنترلر جایگزین می‌کند.
<script type="text/x-handlebars" data-template-name="sayhello">
    Hello,
    <strong>{{firstName}} {{lastName}}</strong>!
 
    {{#if person}}
    Welcome back,
    <strong>{{person.firstName}} {{person.lastName}}</strong>!
    {{/if}}
 
    <ul>
        {{#each friend in friends}}
        <li>
            {{friend.name}}
        </li>
        {{/each}}
    </ul>
 
    <img {{bindAttr src="link.url" }} />
    {{#linkTo ''about}}About{{/linkTo}}
</script>
در این مثال نحوه‌ی تعریف عبارات شرطی و یا یک حلقه را نیز مشاهده می‌کنید. همچنین امکان اتصال به ویژگی‌هایی مانند src یک تصویر و یا ایجاد لینک‌ها را نیز دارا است.
بهترین مرجع آشنایی با ریز جزئیات کتابخانه‌ی handlebars، مراجعه به سایت اصلی آن است.


قواعد پیش فرض نامگذاری در Ember.js
اگر به مثال‌های فوق دقت کرده باشید، خواصی مانند GalleryController و یا GalleryRoute به شیء App اضافه شده‌اند. این نوع نامگذاری‌ها در ember.js بر اساس روش convention over configuration کار می‌کنند. برای نمونه اگر مسیریابی خاصی را به نحو ذیل تعریف کردید:
 this.resource('employees');
شیء مسیریابی آن App.EmployeesRoute
کنترلر آن App.EmployeesController
مدل آن App.Employee
View آن App.EmployeesView
و قالب آن employees
بهتر است تعریف شوند. به عبارتی اگر اینگونه تعریف شوند، به صورت خودکار توسط Ember.js یافت شده و هر کدام با مسئولیت‌های خاص مرتبط با آن‌ها پردازش می‌شوند و همچنین ارتباطات بین آن‌ها به صورت خودکار برقرار خواهد شد. به این ترتیب برنامه نظم بهتری خواهد یافت. با یک نگاه می‌توان قسمت‌های مختلف را تشخیص داد و همچنین کدنویسی پردازش و اتصال قسمت‌های مختلف برنامه نیز به شدت کاهش می‌یابد.


تهیه‌ی اولین برنامه‌ی Ember.js
تا اینجا نگاهی مقدماتی داشتیم به اجزای تشکیل دهنده‌ی هسته‌ی Ember.js. در ادامه مثال ساده‌ای را جهت نمایش ساختار ابتدایی یک برنامه‌ی Ember.js، بررسی خواهیم کرد.
بسته‌ی Ember.js را همانطور که در قسمت منابع اصلی آن در ابتدای بحث عنوان شد، می‌توانید از سایت و یا مخزن کد آن دریافت کنید و یا اگر از VS.NET استفاده می‌کنید، تنها کافی است دستور ذیل را صادر نمائید:
 PM> Install-Package EmberJS
پس از اضافه شدن فایل‌های js آن به پوشه‌ی Scripts برنامه، در همان پوشه‌، فایل جدید Scripts\app.js را نیز اضافه کنید. از آن برای افزودن تعاریف کدهای Ember.js استفاده خواهیم کرد.
در این حالت ترتیب تعریف اسکریپت‌های مورد نیاز صفحه به صورت ذیل خواهند بود:
<script src="Scripts/jquery-2.1.1.js" type="text/javascript"></script>
<script src="Scripts/handlebars.js" type="text/javascript"></script>
<script src="Scripts/ember.js" type="text/javascript"></script>
<script src="Scripts/app.js" type="text/javascript"></script>
کدهای ابتدایی فایل app.js جهت وهله سازی شیء Application و سپس تعریف مسیریابی صفحه‌ی index بر اساس روش convention over configuration به همراه تعریف یک کنترلر و افزودن متغیری به نام content به آن که با یک آرایه مقدار دهی شده‌است:
App = Ember.Application.create();
App.IndexRoute = Ember.Route.extend({
    setupController:function(controller) {
        controller.set('content', ['red', 'yellow', 'blue']);
    }
});
باید دقت داشت که تعریف مقدماتی Ember.Application.create به همراه یک سری تنظیمات پیش فرض نیز هست. برای مثال مسیریابی index به صورت خودکار به نحو ذیل توسط آن تعریف خواهد شد و نیازی به تعریف مجدد آن نیست:
App.Router.map(function() {
    this.resource('application'); 
    this.resource('index');
});
سپس برای اتصال این کنترلر به یک template خواهیم داشت:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
    <title></title>
    <script src="Scripts/jquery-2.1.1.js" type="text/javascript"></script>
    <script src="Scripts/handlebars.js" type="text/javascript"></script>
    <script src="Scripts/ember.js" type="text/javascript"></script>
    <script src="Scripts/app.js" type="text/javascript"></script>
</head>
<body>
    <script type="text/x-handlebars" data-template-name="index">
        Hello,
        <strong>Welcome to Ember.js</strong>!
        <ul>
            {{#each item in content}}
            <li>
                {{item}}
            </li>
            {{/each}}
        </ul>
    </script>
</body>
</html>
توسط اسکریپتی از نوع text/x-handlebars، اطلاعات آرایه content دریافت و در طی یک حلقه در صفحه نمایش داده خواهد شد.
مقدار data-template-name در اینجا مهم است. اگر آن‌را به هر نام دیگری بجز index تنظیم کنید، منبع دریافت اطلاعات آن مشخص نخواهد بود. نام index در اینجا به معنای اتصال این قالب به اطلاعات ارائه شده توسط کنترلر index است.

تا همینجا اگر برنامه را اجرا کنید، به خوبی کار خواهد کرد. نکته‌ی دیگری که در مورد قالب‌های Ember.js قابل توجه هستند، قالب پیش فرض application است. با تعریف Ember.Application.create یک چنین قالبی نیز به ابتدای هر صفحه به صورت خودکار اضافه خواهد شد:
<body>
    <script type="text/x-handlebars" data-template-name="application">
        <h1>Header</h1>
        {{outlet}}
    </script>
outlet واژه‌‌ای است کلیدی که سبب رندر سایر قالب‌های تعریف شده در صفحه می‌گردد. مقدار data-template-name آن نیز به application تنظیم شده‌است (اگر این مقدار ذکر نگردد نیز به صورت خودکار از application استفاده می‌شود). برای مثال اگر بخواهید به تمام قالب‌های رندر شده در صفحات مختلف، مقدار ثابتی را اضافه کنید (مانند هدر یا منو)، می‌توان قالب application را به صورت دستی به نحو فوق اضافه کرد و آن‌را سفارشی سازی نمود.



کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید:
EmberJS01.zip
مطالب
آشنایی با CLR: قسمت بیست و چهارم
آغاز فصل چهارم: بنیان و اساس نوع‌ها (Type Fundamentals)
در این فصل قرار است به بررسی اساس نوع داده‌ها بپردازیم؛ اینکه رفتارهایی که باید از هر نوع Type انتظار داشته باشیم، چه چیزهایی هستند. معانی فضای نام، اسمبلی‌ها، امن بودن نوع‌ها (Safety) و تبدیلات (Casts) را بهتر درک کنیم.
اولین نکته‌ای که باید بدانید این است که هر نوع داده‌ای که شما در دات نت دارید و تعریف می‌کنید، از والدی به نام System.Object مشتق می‌شود. برای مثال وقتی شما کلاسی را تعریف می‌کنید، چه ضمنی و چه صریح، کلاس شما از System.Object ارث بری خواهد کرد.
یعنی کد:
class DotnetTips
{
....
}
با کد زیر:
class DotnetTips:System.Object
{
...
}
برابر است.
برای همین، همه‌ی کلاس‌ها و انواع داده‌ها، شامل یک سری متدها و خصوصیات مشترک هستند. در لیست زیر تعدادی از متدهایی را که دسترسی public و Protected دارند، در جداول جداگانه‌ای بررسی می‌کنیم:
Public Methods
Equals
اگر هر دو شیء مقادیر یکسانی داشته باشند، True باز می‌گرداند. در فصل پنجم با این مورد بیشتر آشنا می‌شویم.
GetHashCode
 بر اساس مقادیر این شیء، یک کد هش شده می‌سازد. اگر شیء قرار است مقدار هش آن در جداول هش، مثل Dictionary یا HashSet به عنوان کلید به کار رود بهتر است این متد رونویسی شود. متاسفانه این متد در شیء Object تعریف شده است و از آنجا که بیشتر نوع‌ها هیچ وقت به عنوان یک کلید استفاده نمی‌شوند؛ بهتر بود در این رابطه به یک اینترفیس منتقل می‌شد. در فصل 5 بیشتر در این مورد بحث خواهد شد (مطالب مرتبط در اینباره +  + + ).
ToString
پیاده سازی پیش‌فرض آن اینست که این متد با اجرای کد
this.GetType().FullName
نام نوع را برمی‌گرداند. ولی برای بعضی نوع‌ها چون Boolean,int32 این متد، رونویسی شده و مقدار مربوطه را به طور رشته‌ای باز می‌گرداند. در بعضی موارد هم این متد برای استفاده‌هایی چون دیباگ برنامه هم رونویسی می‌شود. توجه داشته باشید که که نسبت به CultureInfo ترد مربوطه، واکنش نشان می‌دهد که در فصل 14 آن را بررسی می‌کنیم.
GetType
 یک نمونه از شیء مورد نظر را برمی‌گرداند که با استفاده از ریفلکشن می‌توان به اطلاعات متادیتای آن شیء دسترسی پیدا کرد. در مورد ریفلکشن در فصل 23 صحبت خواهد شد.


Protected Methods

MemberwiseClone
 این متد از شیء جاری یک Shallow copy (+ )گرفته و فیلدهای غیر ایستای آن را همانند شیء جاری پر می‌کند. اگر فیلدهای غیر ایستا از نوع Value باشند که کپی بیت به بیت صورت خواهد گرفت. ولی اگر فیلدی از نوع Reference باشد، از همان نوع Ref می‌باشند؛ ولی خود شیء اصلی، یک شیء جدید به حساب می‌آید و به شیء سازنده‌اش ارتباطی ندارد.
 Finalize یک متد Virtual است و زمانی صدا زده می‌شود که GC قصد نابودسازی آن شیء را داشته باشد. این متد برای زمانی نیاز است که شما قصد دارید قبل از نابودسازی، کاری را انجام دهید. در فصل 21 در این مورد بیشتر صحبت می‌کنیم.


همانطور که می‌دانید، همه‌ی اشیا نیاز دارند تا با استفاده از کلمه‌ی new، در حافظه تعریف شوند:

DotnetTips dotnettips=new DotnetTips("i am constructor");

اتفاقاتی که با استفاده از عملگر new رخ می‌دهد به شرح زیر است:

  1. اولین کاری که CLR انجام می‌دهد، محاسبه‌ی مقدار حافظه یا تعداد بایت‌های فیلدهای شیء مربوطه است و همچنین اشیایی که از آن‌ها مشتق شده است؛ مثل System.Object که همیشه وجود دارد. هر شیء‌ایی که بر روی حافظه‌ی Heap قرار می‌گیرد، به یک سری اعضای اضافه هم نیاز دارد که Type Object Pointer و Sync Block Index نامیده می‌شوند و CLR از آن‌ها برای مدیریت حافظه استفاده می‌کند. تعداد بایت‌های این اعضای اضافه هم با تعداد بایت‌های شیء مدنظر جمع می‌شوند.
  2. طبق تعداد بایت‌های به دست آمده، یک مقدار از حافظه‌ی Heap دریافت می‌شود.
  3. دو عضو اضافه که در بند شماره یک به آن اشاره کردیم، آماده سازی می‌شوند.
  4. سازنده‌ی شیء صدا زده می‌شود. سازنده بر اساس نوع ورودی شما انتخاب می‌شود و در صورت ارجاع به سازنده‌های والد، ابتدا سازنده‌های والد صدا زده می‌شوند و بعد از اینکه همه‌ی سازنده‌ها صدا زده شدند، سازنده‌ی System.Object صدا زده می‌شود که هیچ کدی ندارد؛ ولی به هر حال عمل Return آن انجام می‌شود.

بعد از انجام همه‌ی موارد بالا، یک اشاره گر به متغیر شما (در اینجا dotnettips) برگشت داده می‌شود.

مطالب
اصول طراحی شیء گرا: OO Design Principles - قسمت چهارم

همانطور که قول داده بودم، به اصول GRASP می‌پردازیم.

اصول GRASP-General Responsibility Assignment Software Principles

این اصول به بررسی نحوه تقسیم وظایف بین کلاس‌ها و مشارکت اشیاء برای به انجام رساندن یک مسئولیت می‌پردازند. اینکه هر کلاس در ساختار نرم افزار چه وظیفه‌ای دارد و چگونه با کلاس‌های دیگر مشارکت میکند تا یک عملکرد به سیستم اضافه گردد. این اصول به چند بخش تقسیم می­شوند:

  • کنترلر ( Controller )
  • ایجاد کننده ( Creator )
  • انسجام قوی ( High Cohesion )
  • واسطه گری ( Indirection )
  • دانای اطلاعات ( Information Expert )
  • اتصال ضعیف ( Low Coupling )
  • چند ریختی ( Polymorphism )
  • حفاظت از تاثیر تغییرات ( Protected Variations )
  • مصنوع خالص ( Pure Fabrication )

 

Controller

این الگو بیان می‌کند که مسئولیت پاسخ به رویداد‌های (Events ) یک سناریوی محدود مانند یک مورد کاربردی ( Use Case ) باید به عهده یک کلاس غیر UI باشد. کنترلر باید کارهایی را که نیاز است در پاسخ رویداد انجام شود، به دیگران بسپرد و نتایج را طبق درخواست رویداد بازگرداند. در اصل، کنترلر دریافت کننده رویداد، راهنمای مسیر پردازش برای پاسخ به رویداد و در نهایت برگرداننده پاسخ به سمت مبداء رویداد است. در زیر مثالی را می‌بینیم که رویداد اتفاق افتاده توسط واسط گرافیکی به سمت یک handler (که متدی است با ورودیِ فرستنده و آرگمانهای مورد نیاز) در کنترلر فرستاده میشود. این روش event handling، در نمونه‌های وب فرم و ویندوز فرم دیده میشود. به صورتی خود کلاس‌های .Net وظیفه Event Raising از سمت UI با کلیک روی دکمه را انجام میدهد: 

 public class UserController
 {        
        protected void OnClickCreate(object sender, EventArgs e)
        {
           // call validation services
           // call create user services
        }
 }


در مثال بعد عملیات مربوط به User در یک WebApiController پاسخ داده میشود. در اینجا به جای استفاده از Event Raising برای کنترل کردن رویداد، از فراخوانی یک متد در کنترلر توسط درخواست HttpPost انجام میگیرد. در اینجا نیاز است که در سمت کلاینت درخواستی را ارسال کنیم:

    public class UserWebApiController
    {
        [HttpPost]
        public HttpResponseMessage Create(UserViewModel user)
        {
            // call validation services
            // call create user services
        }
    }



Creator :

  این اصل میگوید شیء ای میتواند یک شیء دیگر را بسازد ( instantiate ) که: (اگر کلاس B بخواهد کلاس A را instantiate کند)

  • کلاس B شیء از کلاس A را در خود داشته باشد؛
  • یا اطلاعات کافی برای instantiate کردن از A را داشته باشد؛
  • یا به صورت نزدیک با A در ارتباط باشد؛
  • یا بخواهد شیء A را ذخیره کند.

از آنجایی که این اصل بدیهی به نظر میرسد، با مثال نقض، درک بهتری را نسبت به آن میتوان پیدا کرد:

    // سازنده
    public class B
    {
        public static A CreateA(string name, string lastName, string job)
        {
            return new A() {
                Name =name,
                LastName = lastName,
                Job = job
            };
        }
    }
    // ایجاد شونده
    public class A
    {
        public string Name { get; set; }
        public string LastName { get; set; }
        public string Job { get; set; }
    }

    public class Context
    {
        public void Main()
        {
            var name = "Rasoul";
            var lastName = "Abbasi";
            var job = "Developer";            
            var obj = B.CreateA(name, lastName, job);
        }
    }


و اما چرا این مثال، اصل Creator را نقض میکند. در مثال میبینید که کلاس B، یک شیء از نوع A را در متد Main کلاس Context ایجاد میکند. کلاس B فقط یک متد برای تولید A دارد و در عملیات تولید A هیچ منطق خاصی را پیاده سازی نمیکند.کلاس B شیء ای را از کلاس A ، در خود ندارد، با آن ارتباط نزدیک ندارد و آنرا ذخیره نمیکند. با اینکه کلاس B اطلاعات کافی را برای تولید A از ورودی میگیرد، ولی این کلاس Context است که اطلاعات کافی را ارسال مینماید. اگر در کلاس B منطقی اضافه بر instance گیریِ ساده وجود داشت (مانند بررسی صحت و اعتبار سنجی)، میتوانستیم بگوییم کلاس B از یک مجموعه عملیات instance گیری با خبر است که کلاس Context  نباید از آن خبر داشته باشد. لذا اکنون هیچ دلیلی وجود ندارد که وظیفه تولید A را در Context انجام ندهیم و این مسئولیت را به کلاس B منتقل کنیم. این مورد ممکن است در ذهن شما با الگوی Factory تناقض داشته باشد. ولی نکته اصلی در الگو Factory انجام عملیات instance گیری با توجه به منطق برنامه است؛ یعنی وظیفه‌ای که کلاس Context نباید از آن خبر داشته باشد را به کلاس Factory منتقل میکنیم. در غیر اینصورت ایجاد کلاس Factory بی معنا خواهد بود (مگر به عنوان افزایش انعطاف پذیری معماری که بتوان به راحتی نوع پیاده سازی یک واسط را تغییر داد).


High Cohesion :

این اصل اشاره به یکی از اصول اساسی طراحی نرم افزار دارد. انسجام واحد‌های نرم افزاری باعث افزایش خوانایی، سهولت اشکال زدایی، قابلیت نگهداری و کاهش تاثیر زنجیره‌ای تغییرات میشود. طبق این اصل، مسئولیتهای هر واحد باید مرتبط باشد. لذا اجزایی کوچک با مسئولیتهای منسجم و متمرکز بهتر از اجزایی بزرگ با مسئولیت‌های پراکنده است. اگر واحد‌های سازنده نرم افزار انسجام ضعیفی داشته باشند، درک همکاری‌ها، استفاده مجدد آنها، نگه داری نرم افزار و پاسخ به تغییرات سخت‌تر خواهد شد.

در مثال زیر نقض این اصل را مشاهده میکنیم:

    class Controller
    {
        public void CreateProduct(string name, int categoryId) { }
        public void EditProduct(int id, string name) { }
        public void DeleteProduct(int id) { }
        public void CreateCategory(string name) { }
        public void EditCategory(int id, string name) { }
        public void DeleteCategory(int id) { }
    }  

همانطور که میبینید، کلاس کنترلر ما، مسئولیت مدیریت Product و Category را بر عهده دارد. بزرگ شدن این کلاس، باعث سخت‌تر شدن خواندن کد و رفع اشکال میگردد. با جداسازی کنترلر مربوط به Product از Category میتوان انسجام را بالا برد.


Indirection :

 این اصل بیان میکند که با تعریف یک واسط بین دو مولفه نرم افزاری میتوان میزان اتصال نرم افزار را کاهش داد. بدین ترتیب وظیفه هماهنگی ارتباط دو مؤلفه، به عهده این واسط خواهد بود و نیازی نیست داده‌های ورودی و خروجی دو مؤلفه، هماهنگ باشند. در اینجا واسط، از وابستگی بین دو مؤلفه با پنهان کردن ضوابط هر مؤلفه از دیگری و ایجاد وابستگی ضعیف خود با دو مؤلفه، باعث کاهش اتصال کلی طراحی میگردد.

الگوهای Adapter و Delegate و همچنین نقش کنترلر در الگوی معماری MVC از این اصل پیروی میکنند. 

    class SenderA
    {
        public Mediator mediator { get; }
        public SenderA() { mediator = new Mediator(); }
        public void Send(string message, string reciever) { mediator.Send(message, reciever); }
    }
    class SenderB
    {
        public Mediator mediator { get; }
        public SenderB() { mediator = new Mediator(); }
        public void Send(string message) { }
    }

    public class RecieverA
    {
        public void DoAction(string message)
        {
            // انجام عملیات بر اساس پیغام دریافت شده
            switch (message)
            {
                case "create":
                    break;
                case "delete":
                    break;
                default:
                    break;
            }
        }
    }
    public class RecieverB
    {
        public void DoAction(string message)
        {
            // انجام عملیات بر اساس پیغام دریافت شده
            switch (message)
            {
                case "edit":
                    break;
                case "rollback":
                    break;
                default:
                    break;
            }
        }
    }
    class Mediator
    {
        internal void Send(string message, string reciever)
        {
            switch (reciever)
            {
                case "A":
                    var recieverObjA = new RecieverA();
                    recieverObjA.DoAction(message);
                    break;
                case "B":
                    var recieverObjB = new RecieverB();
                    recieverObjB.DoAction(message);
                    break;

                default:
                    break;
            }
        }
    }
    class IndirectionContext
    {
        public void Main()
        {
            var senderA = new SenderA();
            senderA.Send("rollback", "B");
            var senderB = new SenderA();
            senderB.Send("create", "A");

        }
    }

در این مثال کلاس Mediator به عنوان واسط ارتباطی بین کلاس‌های Sender و Receiver قرار گرفته و نقش تحویل پیغام را دارد.

در مقاله بعدی، به بررسی سایر اصول GRASP خواهم پرداخت.