مطالب
C# 12.0 - Collection Expressions & Spread Operator
C# 12 به همراه روش جدیدی برای آغاز مجموعه‌ها است که با آرایه‌ها، Spanها و هر نوعی که آغازگرهای مجموعه‌ها را بپذیرد، کار می‌کند. همچنین اپراتور جدیدی را هم به نام spread operator به صورت .. به زبان #C اضافه کرده‌است که امکان ساده‌تر ترکیب مجموعه‌ها را میسر می‌کند.


آغاز ساده‌تر مجموعه‌ها با کمک Collection Expressions

تا پیش از C# 12 برای آغاز یک آرایه می‌توان از روش زیر استفاده کرد که در آن نوع آرایه از طریق نوع اعضای آن حدس زده می‌شود:
var numbers1_CS11 = new[] { 1, 2, 3 };
که در حقیقت ساده شده‌ی تعریف اصلی زیر است:
var numbers1_CS_11 = new int[] { 1, 2, 3 };
در C# 12، می‌توان این تعاریف را به کمک collection expressions، خلاصه‌تر هم کرد:
int[] numbers1_CS12 = [ 1, 2, 3 ];
که در اینجا، {}‌ها به [] تبدیل شده‌اند و ذکر نوع آرایه، ضروری است (یعنی نمی‌توان از var جهت تعریف آن‌ها استفاده کرد)؛ در غیراینصورت با خطای زیر متوقف می‌شویم:
error CS9176: There is no target type for the collection expression.

یک collection expression و یا collection literals، به مجموعه‌ای از عناصر گفته می‌شود که بین دو براکت [] قرار می‌گیرند.

نمونه‌ی دیگر آن کار با Spanها است که نمونه کد C# 11 آن:
Span<string> span1_CS11 = new string[] { "AC", "AL" };
در C# 12 به صورت زیر خلاصه می‌شود:
Span<string> span1_CS12 = [ "AC", "AL" ];
و در اینجا امکان کار با ReadOnlySpan‌ها هم وجود دارد:
ReadOnlySpan<string> readOnlySpan_CS12 = [ "Africa",  "Asia", "Europa"];

مثال دیگر، نحوه‌ی آغاز آرایه‌های چندبعدی است:
int[][] array2D_CS11 =
  {
    new int[] { 2002, 2006, 2010},
    new int[] { 2014, 2018},
    new int[] { 2022, 2026, 2030}
  };
که در C# 12 به صورت خلاصه‌ی زیر قابل بیان است:
int[][] array2D_CS12 =
  [
     [2002, 2006, 2010],
     [2014, 2018],
     [2022, 2026, 2030]
  ];

و یا حتی این مورد را در مورد نحوه‌ی آغاز Listهای پیش از C#12
List<string> list_CS11 = new List<string> { "Item 1", "Item 2" };
نیز می‌توان بکار گرفت:
List<string> list_CS12 = [ "Item 1", "Item 2" ];

در کل همانطور که مشاهده می‌کنید، این تغییر، تغییر مثبتی است و حجم قابل ملاحظه‌ای از کدها را کاهش داده و خواندن آن‌ها را نیز ساده‌تر می‌کند.

یک نکته: روش ساده شده‌ی آغاز یک لیست با مجموعه‌ای خالی در C# 12 به صورت زیر است:
// Before C#12
List<User> users = new List<User>();
// or
var users = new List<User>();
// or
List<User> user = new();

// C#12
List<User> users = [];


اضافه شدن spread operator به زبان #C

اگر پیشتر با زبان JavaScript کار کرده باشید، با spread operator هم آشنایی دارید. کار آن ساده سازی یکی کردن مجموعه‌ها و یا افزودن ساده‌تر عناصری به آن‌ها است و .. بالاخره به زبان #C هم راه پیدا کرده‌است! برای مثال دو آرایه‌ی زیر را درنظر بگیرید:
int[] numbers1_CS12 = [ 1, 2, 3 ];
int[] numbers2_CS12 = [ 4, 5, 6 ];
در C# 12 برای یکی کردن آن‌ها می‌توان از spread operator به صورت زیر استفاده کرد:
int[] allItems = [ ..numbers1_CS12, ..numbers2_CS12 ];
Spread به معنای «پخش کردن»/«گسترده کردن»/«باز کردن» هست. برای مثال در اینجا، اعضای دو آرایه را داخل یک آرایه‌ی جدید، پخش کرده‌ایم!

اگر در نگارش‌های قبلی #C بخواهیم چنین کاری را انجام دهیم، یک روش آن به صورت زیر است:
int[] allItems_CS11 = numbers1_CS12.Concat(numbers2_CS12).ToArray();
که ... نگارش C# 12 آن کارآیی بیشتری دارد؛ چون تعداد بار اختصاص حافظه‌ی آن کمتر است. در C# 12، هنگام استفاده از spread operator، کار کپی کردن اطلاعات صورت نمی‌گیرد و همچنین طول نهایی مجموعه‌ی حاصل دقیقا مشخص می‌شود که این مورد از چندین بار تخصیص حافظه برای چسباندن آرایه‌های مختلف به هم جلوگیری می‌کند.

همچنین اپراتور پخش کردن، قابلیت قرارگرفتن در کنار سایر اعضای یک آرایه را هم به سادگی و با خوانایی بیشتری به همراه دارد:
int[] join = [..a, ..b, ..c, 6, 5];

به علاوه محدودیتی در مورد نوع مجموعه‌ی بکار گرفته شده نیز در اینجا وجود ندارد. برای نمونه در مثال زیر، یک آرایه، یک Span و یک لیست، با هم یکی شده‌اند:
int[] a =[1, 2, 3];
Span<int> b = [2, 4, 5, 4, 4];
List<int> c = [4, 6, 6, 5];

List<int> join = [..a, ..b, ..c, 6, 5];

و مثالی دیگر، نحوه‌ی ساده‌ی تعریف لیستی از tuples است:
List<(string, int)> otherScores = [("Dave", 90), ("Bob", 80)];
و سپس باز کردن آن داخل آرایه‌ای از tuples:
(string name, int score)[] scores = [("Alice", 90), ..otherScores, ("Charlie", 70)];
مطالب
C# 12.0 - Primary Constructors
قابلیتی تحت عنوان Primary Constructors به C# 12 اضافه شده‌است که ... البته جدید نیست! این قابلیت از زمان C# 9، با ارائه‌ی رکوردها، به زبان #C اضافه شد و در طی چند نگارش بعدی، توسعه و تکامل یافت (برای مثال اضافه شدن records for structs به C# 10) تا در C# 12، به کلاس‌های معمولی نیز تعمیم پیدا کرد. این ویژگی را در ادامه با جزئیات بیشتری بررسی می‌کنیم.


Primary Constructors چیست؟

Primary Constructors، قابلیتی است که به C# 12 اضافه شده‌است تا توسط آن بتوان خواص را مستقیما توسط پارامترهای سازنده‌ی یک کلاس تعریف و همچنین مقدار دهی کرد. هدف از آن، کاهش قابل ملاحظه‌ی یکسری کدهای تکراری و مشخص است تا به کلاس‌هایی زیباتر، کم‌حجم‌تر و خواناتر برسیم. برای مثال کلاس متداول زیر را درنظر بگیرید:
public class Employee
{
    public string FirstName { get; set; }
    public string LastName { get; set; }
    public DateTime HireDate { get; set; }
    public decimal Salary { get; set; }

    public Employee(string firstName, string lastName, DateTime hireDate, decimal salary)
    {
        FirstName = firstName;
        LastName = lastName;
        HireDate = hireDate;
        Salary = salary;
    }
}
در زبان ‍#C، سازنده، متد ویژه‌ای است که در حین ساخت نمونه‌ای از یک کلاس، فراخوانی می‌شود. هدف از آن‌، آغاز و مقدار دهی حالت شیء ایجاد شده‌است که عموما با مقدار دهی خواص آن شیء، انجام می‌شود.
اکنون اگر بخواهیم همین کلاس را با استفاده از ویژگی Primary Constructor اضافه شده به C# 12.0 بازنویسی کنیم، به قطعه کد زیر می‌رسیم:
public class Employee(string firstName, string lastName, DateTime hireDate, decimal salary)
{
    public string FirstName { get; set; } = firstName;
    public string LastName { get; set; } = lastName;
    public DateTime HireDate { get; set; } = hireDate;
    public decimal Salary { get; set; } = salary;
}
و نحوه‌ی نمونه سازی از آن به صورت زیر است:
var employee = new Employee("John", "Doe", new DateTime(2020, 1, 1), 50000);

یک نکته: اگر از Rider و یا ReSharper استفاده می‌کنید، یک چنین Refactoring توکاری جهت سهولت کار، به آن‌ها اضافه شده‌است و به سرعت می‌توان این تبدیلات را توسط آن‌ها انجام داد.




توضیحات:
- متد سازنده در این حالت، به ظاهر حذف شده و به قسمت تعریف کلاس منتقل شده‌است.
- تمام مقدار دهی‌های آغازین موجود در متد سازنده‌ی پیشین نیز حذف شده‌اند و مستقیما به قسمت تعریف خواص، منتقل شده‌اند.
در نتیجه از یک کلاس 15 سطری، به کلاسی 7 سطری رسیده‌ایم که کاهش حجم قابل ملاحظه‌ای را پیدا کرده‌است.

نکته 1: هیچ ضرورتی وجود ندارد که به همراه یک primary constructor، خواصی هم مانند مثال فوق ارائه شوند؛ چون پارامترهای آن در تمام اعضای این کلاس، به همین شکل، قابل دسترسی هستند. در این مثال صرفا جهت بازسازی کد قبلی، این خواص اضافی را مشاهده می‌کنید. یعنی اگر تنها قرار بود، کار تزریق وابستگی‌ها صورت گیرد که عموما به همراه تعریف فیلدهایی جهت انتساب پارامترهای متد سازنده به آن‌ها است، استفاده از یک primary constructor، کدهای فوق را بیش از این هم فشرده‌تر می‌کرد و ... یک سطری می‌شد.

نکته 2: استفاده از پارامترهای سازنده‌ی اولیه، صرفا جهت مقدار دهی خواص عمومی یک کلاس، یک code smell هستند! چون می‌توان یک چنین کارهایی را به نحو شکیل‌تری توسط required properties معرفی شده‌ی در C# 11، پیاده سازی کرد.


بررسی تاریخچه‌ی primary constructors

همانطور که در مقدمه‌ی بحث نیز عنوان شد، primary constructors قابلیت جدیدی نیست و برای نمونه به همراه C# 9 و مفهوم جدید رکوردهای آن، ارائه شد:
public record class Book(string Title, string Publisher);
مثال فوق که به positional syntax هم معروف است، به همراه بکارگیری primary constructors است. در اینجا کامپایلر به صورت خودکار، کار تولید کدهای خواص متناظر را که از نوع get و init دار هستند، انجام می‌دهد. در این حالت به علت استفاده از init accessors، پس از نمونه سازی شیءای از آن، دیگر نمی‌توان مقدار خواص متناظر را تغییر داد.
پس از آن در C# 10، این توسعه ادامه یافت و به امکان تعریف record structها، بسط یافت که در اینجا هم قابلیت تعریف primary constructors وجود دارد:
public record struct Color(int R, int G, int B);
که البته در این حالت برخلاف record classها، کامپایلر، کدی را که برای خواص تولید می‌کند، get و set دار است. در اینجا اگر نیاز است به همان حالت خواص get و init دار رسید، می‌توان یک readonly record struct را تعریف کرد.

پس از این مقدمات، اکنون در C# 12 نیز می‌توان primary constructors را به تمام کلاس‌ها و structهای معمولی هم اعمال کرد؛ با این تفاوت که در اینجا برخلاف رکوردها، کدهای خواص‌های متناظر، به صورت خودکار تولید نمی‌شوند و اگر به آن‌ها نیاز دارید، باید آن‌ها را همانند مثال ابتدای بحث، خودتان به صورت دستی تعریف کنید.


primary constructors کلاس‌ها و structهای معمولی، با primary constructors رکوردها یکی نیست

در C# 12 و به همراه معرفی primary constructors مخصوص کلاس‌ها و structهای معمولی آن، از روش متفاوتی برای دسترسی به پارامترهای تعریف شده، استفاده می‌کند که به آن capturing semantics هم می‌گویند. در این حالت پارامترهای تعریف شده‌ی در یک primary constructor، توسط هر عضوی از آن کلاس قابل استفاده‌است که یکی از کاربردهای آن، ساده کردن تعاریف تزریق وابستگی‌ها است. در این حالت دیگر نیازی نیست تا ابتدا یک فیلد را برای انتساب به پارامتر تزریق شده تعریف کرد و سپس از آن فیلد، استفاده نمود؛ مستقیما می‌توان با همان پارامتر تعریف شده، در متدها و اعضای کلاس، کار کرد.
برای مثال سرویس زیر را که از تزریق وابستگی‌ها، در سازنده‌ی خود استفاده می‌کند، درنظر بگیرید:
public class MyService
{
    private readonly IDepedent _dependent;
  
    public MyService(IDependent dependent)
    {
        _dependent = dependent;
    }
  
    public void Do() 
    {
        _dependent.DoWork();
    }
}
این کلاس در C# 12 به صورت زیر خلاصه شده و پارامتر dependent تعریف شده‌ی در سازنده‌ی اولیه‌ی آن، به همان شکل و بدون نیاز به کد اضافی، در سایر متدهای این کلاس قابل استفاده‌است:
public class MyService(IDependent dependent)
{
    public void Do() 
    {
        dependent.DoWork();
    }
}

البته مفهوم Captures هم در زبان #C جدید نیست و در ابتدا به همراه anonymous methods و بعدها به همراه lambda expressions، معرفی و بکار گرفته شد. برای مثال درون یک lambda expression، اگر از متغیری خارج از آن lambda expressions استفاده شود، کامپایلر یک capture از آن متغیر را تهیه کرده و استفاده می‌کند.

بنابراین به صورت خلاصه primary constructors در رکوردها، با هدف تعریف خواص عمومی فقط خواندنی، ارائه شدند؛ اما primary constructors ارائه شده‌ی در C# 12 که اینبار قابل اعمال به کلاس‌ها و structs معمولی است، بیشتر هدف ساده سازی تعریف کدهای تکراری private fields را دنبال می‌کند. برای نمونه این کدی است که کامپایلر برای primary constructor مثال ابتدای بحث تولید می‌کند و در اینجا نحوه‌ی تولید خودکار این فیلدهای خصوصی را مشاهده می‌کنید:
using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;

namespace CS8Tests
{
  [NullableContext(1)]
  [Nullable(0)]
  public class Employee
  {
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private string <FirstName>k__BackingField;
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private string <LastName>k__BackingField;
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private DateTime <HireDate>k__BackingField;
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private Decimal <Salary>k__BackingField;

    public Employee(string firstName, string lastName, DateTime hireDate, Decimal salary)
    {
      this.<FirstName>k__BackingField = firstName;
      this.<LastName>k__BackingField = lastName;
      this.<HireDate>k__BackingField = hireDate;
      this.<Salary>k__BackingField = salary;
      base..ctor();
    }

    public string FirstName
    {
      [CompilerGenerated] get
      {
        return this.<FirstName>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<FirstName>k__BackingField = value;
      }
    }

    public string LastName
    {
      [CompilerGenerated] get
      {
        return this.<LastName>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<LastName>k__BackingField = value;
      }
    }

    public DateTime HireDate
    {
      [CompilerGenerated] get
      {
        return this.<HireDate>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<HireDate>k__BackingField = value;
      }
    }

    public Decimal Salary
    {
      [CompilerGenerated] get
      {
        return this.<Salary>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<Salary>k__BackingField = value;
      }
    }
  }
}
بنابراین آیا پارامترهای سازنده‌ی اولیه، به صورت خواص تعریف می‌شوند و قابلیت تغییر میدان دید آن‌ها میسر است؟ پاسخ: خیر. این پارامترها توسط کامپایلر، به صورت فیلدهای خصوصی در سطح کلاس، تعریف و استفاده می‌شوند. یعنی تمام اعضای کلاس، البته منهای سازنده‌های ثانویه، به این پارامترها دسترسی دارند. همچنین، این تولید کد هم بهینه‌است و صرفا برای پارامترهایی انجام می‌شود که واقعا در کلاس استفاده شده باشند؛ درغیر اینصورت، فیلد خصوصی متناظری برای آن‌ها تولید نخواهد شد.

یک نکته: برای مشاهده‌ی یک چنین کدهایی می‌توانید از منوی Tools->IL Viewer برنامه‌ی Rider استفاده کرده و در برگه‌ی ظاهر شده، گزینه‌ی #Low-Level C آن‌را انتخاب نمائید.


امکان تعریف سازنده‌های دیگر، به همراه سازنده‌ی اولیه

اگر به کدهای #Low-Level C تولیدی فوق دقت کنید، این کلاس، به همراه یک سازنده‌ی خالی بدون پارامتر (parameter less constructor) نیست و سازنده‌ی پیش‌فرضی (default constructor) برای آن درنظر گرفته نشده‌است ... اما اگر کلاسی به همراه یک primary constructor تعریف شد، می‌توان با استفاده از واژه‌ی کلیدی this، سازنده‌ی ثانویه‌ای را هم برای آن تعریف کرد:
public class Person(string firstName, string lastName) 
{
    public Person() : this("John", "Smith") { }
    public Person(string firstName) : this(firstName, "Smith") { }
    public string FullName => $"{firstName} {lastName}";
}
در اینجا نحوه‌ی تعریف یک Default constructor بدون پارامتر را هم ملاحظه می‌کنید.


امکان ارث‌بری و تعریف سازنده‌ی اولیه

مثال زیر را درنظر بگیرید که در آن کلاس مشتق شده‌ی از کلاس User، یک سازنده‌ی اولیه را تعریف کرده:
public class User
{
    public User(string firstName, string lastName) { }
}

public class Editor(string firstName, string lastName) : User
{
}
در این حالت برنامه با خطای «Base class 'CS8Tests.User' does not contain parameterless constructor» کامپایل نمی‌شود. عنوان می‌کند که اگر کلاس مشتق شده می‌خواهد سازنده‌ی اولیه‌ای داشته باشد، باید کلاس پایه را به همراه یک سازنده‌ی پیش‌فرض بدون پارامتر تعریف کنید.
البته این محدودیت با structها وجود ندارد؛ چون structها، value type هستند و همواره به صورت پیش‌فرض، به همراه یک سازنده‌ی پیش فرض بدون پارامتر، تولید می‌شوند.
یک مثال: قطعه کد متداول ارث‌بری زیر را درنظر بگیرید که در آن، کلاس مشتق شده به کمک واژه‌ی کلید base، امکان تعریف سازنده‌ی جدیدی را یافته و یکی از پارامترهای سازنده‌ی کلاس پایه را مقدار دهی می‌کند:
public class Automobile
{
    public Automobile(int wheels, int seats)
    {
        Wheels = wheels;
        Seats = seats;
    }

    public int Wheels { get; }
    public int Seats { get; }
}

public class Car : Automobile
{
    public Car(int seats) : base(4, seats)
    {
    }
}
این تعاریف در C# 12 به صورت زیر خلاصه می‌شوند:
public class Automobile(int wheels, int seats)
{
    public int Wheels { get; } = wheels;
    public int Seats { get; } = seats;
}

public class Car(int seats) : Automobile(4, seats);

و یا یک نمونه مثال دیگر آن به صورت زیر است که در آن، ذکر بدنه‌ی کلاس در C# 12، الزامی ندارد:
public class MyBaseClass(string s); // no body required

public class Derived(int i, string s, bool b) : MyBaseClass(s)
{
    public int I { get; set; } = i;
    public string B => b.ToString();
}


توصیه به پرهیز از double capturing

با مفهوم capture در این مطلب آشنا شدیم. در مثال زیر دوبار از پارامتر سازنده‌ی age، در دو قسمت عمومی شده، استفاده شده‌است:
public class Human(int age)
{
    // initialization
    public int Age { get; set; } = age;

    // capture
    public string Bio => $"My age is {age}!";
}
در این حالت ممکن است استفاده کننده در طول برنامه، با وضعیت ناخواسته‌ی زیر مواجه شود:
var p = new Human(42);
Console.WriteLine(p.Age); // Output: 42
Console.WriteLine(p.Bio); // Output: My age is 42!

p.Age++;
Console.WriteLine(p.Age); // Output: 43
Console.WriteLine(p.Bio); // Output: My age is 42! // !
در اینجا پس از افزودن مقداری به خاصیت عمومی Age، زمانیکه به مقدار عبارت Bio مراجعه می‌شود، خروجی قبلی را دریافت می‌کنیم!
درک بهتر آن، نیاز به #Low-Level C کلاس Human را دارد:
using System.Diagnostics;
using System.Runtime.CompilerServices;

namespace CS8Tests
{
  [NullableContext(1)]
  [Nullable(0)]
  public class Human
  {
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private int <age>P;
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private int <Age>k__BackingField;

    public Human(int age)
    {
      this.<age>P = age;
      this.<Age>k__BackingField = this.<age>P;
      base..ctor();
    }

    public int Age
    {
      [CompilerGenerated] get
      {
        return this.<Age>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<Age>k__BackingField = value;
      }
    }

    public string Bio
    {
      get
      {
        DefaultInterpolatedStringHandler interpolatedStringHandler = new DefaultInterpolatedStringHandler(11, 1);
        interpolatedStringHandler.AppendLiteral("My age is ");
        interpolatedStringHandler.AppendFormatted<int>(this.<age>P);
        interpolatedStringHandler.AppendLiteral("!");
        return interpolatedStringHandler.ToStringAndClear();
      }
    }
  }
}
همانطور که مشاهده می‌کنید، کامپایلر، پارامتر age را دوبار، جداگانه capture کرده‌است:
public Human(int age)
{
   this.<age>P = age;
   this.<Age>k__BackingField = this.<age>P;
   base..ctor();
}
به همین جهت است که ++p.Age، فقط بر روی یکی از فیلدهای capture شده تاثیر داشته و بر روی دیگری خیر. به این مورد، double capturing گفته می‌شود و توصیه شده از آن پرهیز کنید و بجای استفاده‌ی دوباره از پارامتر age، از خود خاصیت Age استفاده نمائید.
مطالب
الگوهای طراحی API - مکانیزم جلوگیری از پردازش تکراری درخواست ها - Request Deduplication

در فضایی که همواره هیچ تضمینی وجود ندارد که درخواست ارسال شده‌ی به یک API، همواره مسیر خود را همانطور که انتظار می‌رود طی کرده و پاسخ مورد نظر را در اختیار ما قرار می‌دهد، بی‌شک تلاش مجدد برای پردازش درخواست مورد نظر، به دلیل خطاهای گذرا، یکی از راهکارهای مورد استفاده خواهد بود. تصور کنید قصد طراحی یک مجموعه API عمومی را دارید، به‌نحوی که مصرف کنندگان بدون نگرانی از ایجاد خرابی یا تغییرات ناخواسته، امکان تلاش مجدد در سناریوهای مختلف مشکل در ارتباط با سرور را داشته باشند. حتما توجه کنید که برخی از متدهای HTTP مانند GET، به اصطلاح Idempotent هستند و در طراحی آنها همواره باید این موضوع مدنظر قرار بگیرد و خروجی مشابهی برای درخواست‌های تکراری همانند، مهیا کنید.

در تصویر بالا، حالتی که درخواست، توسط کلاینت ارسال شده و در آن لحظه ارتباط قطع شده‌است یا با یک خطای گذرا در سرور مواجه شده‌است و همچنین سناریویی که درخواست توسط سرور دریافت و پردازش شده‌است ولی کلاینت پاسخی را دریافت نکرده‌است، قابل مشاهده‌است.

نکته: Idempotence یکی از ویژگی های پایه‌ای عملیاتی در ریاضیات و علوم کامپیوتر است و فارغ از اینکه چندین بار اجرا شوند، نتیجه یکسانی را برای آرگومان‌های همسان، خروجی خواهند داد. این خصوصیت در کانتکست‌های مختلفی از جمله سیستم‌های پایگاه داده و وب سرویس‌ها قابل توجه می‌باشد.

Idempotent and Safe HTTP Methods

طبق HTTP RFC، متدهایی که پاسخ یکسانی را برای درخواست‌های همسان مهیا می‌کنند، به اصطلاح Idempotent هستند. همچنین متدهایی که باعث نشوند تغییری در وضعیت سیستم در سمت سرور ایجاد شود، به اصطلاح Safe در نظر گرفته خواهند شد. برای هر دو خصوصیت عنوان شده، سناریوهای استثناء و قابل بحثی وجود دارند؛ به‌عنوان مثال در مورد خصوصیت Safe بودن، درخواست GET ای را تصور کنید که یکسری لاگ آماری هم ثبت می‌کند یا عملیات بازنشانی کش را نیز انجام می‌دهد که در خیلی از موارد به عنوان یک قابلیت شناسایی خواهد شد. در این سناریوها و طبق RFC، باتوجه به اینکه هدف مصرف کننده، ایجاد Side-effect نبوده‌است، هیچ مسئولیتی در قبال این تغییرات نخواهد داشت. لیست زیر شامل متدهای مختلف HTTP به همراه دو خصوصیت ذکر شده می باشد:

HTTP MethodSafeIdempotent
GETYesYes
HEADYesYes
OPTIONSYesYes
TRACEYesYes
PUTNoYes
DELETENoYes
POSTNoNo
PATCHNoNo

Request Identifier as a Solution

راهکاری که عموما مورد استفاده قرار می‌گیرد، استفاده از یک شناسه‌ی یکتا برای درخواست ارسالی و ارسال آن به سرور از طریق هدر HTTP می باشد. تصویر زیر از کتاب API Design Patterns، روش استفاده و مراحل جلوگیری از پردازش درخواست تکراری با شناسه‌ای همسان را نشان می‌دهد:

در اینجا ابتدا مصرف کننده درخواستی با شناسه «۱» را برای پردازش به سرور ارسال می‌کند. سپس سرور که لیستی از شناسه‌های پردازش شده‌ی قبلی را نگهداری کرده‌است، تشخیص می‌دهد که این درخواست قبلا دریافت شده‌است یا خیر. پس از آن، عملیات درخواستی انجام شده و شناسه‌ی درخواست، به همراه پاسخ ارسالی به کلاینت، در فضایی ذخیره سازی می‌شود. در ادامه اگر همان درخواست مجددا به سمت سرور ارسال شود، بدون پردازش مجدد، پاسخ پردازش شده‌ی قبلی، به کلاینت تحویل داده می شود.

Implementation in .NET

ممکن است پیاده‌سازی‌های مختلفی را از این الگوی طراحی در اینترنت مشاهده کنید که به پیاده سازی یک Middleware بسنده کرده‌اند و صرفا بررسی این مورد که درخواست جاری قبلا دریافت شده‌است یا خیر را جواب می دهند که ناقص است. برای اینکه اطمینان حاصل کنیم درخواست مورد نظر دریافت و پردازش شده‌است، باید در منطق عملیات مورد نظر دست برده و تغییراتی را اعمال کنیم. برای این منظور فرض کنید در بستری هستیم که می توانیم از مزایای خصوصیات ACID دیتابیس رابطه‌ای مانند SQLite استفاده کنیم. ایده به این شکل است که شناسه درخواست دریافتی را در تراکنش مشترک با عملیات اصلی ذخیره کنیم و در صورت بروز هر گونه خطا در اصل عملیات، کل تغییرات برگشت خورده و کلاینت امکان تلاش مجدد با شناسه‌ی مورد نظر را داشته باشد. برای این منظور مدل زیر را در نظر بگیرید:

public class IdempotentId(string id, DateTime time)
{
    public string Id { get; private init; } = id;
    public DateTime Time { get; private init; } = time;
}

هدف از این موجودیت ثبت و نگهداری شناسه‌های درخواست‌های دریافتی می‌باشد. در ادامه واسط IIdempotencyStorage را برای مدیریت نحوه ذخیره سازی و پاکسازی شناسه‌های دریافتی خواهیم داشت:

public interface IIdempotencyStorage
{
    Task<bool> TryPersist(string idempotentId, CancellationToken cancellationToken);
    Task CleanupOutdated(CancellationToken cancellationToken);
    bool IsKnownException(Exception ex);
}

در اینجا متد TryPersist سعی می‌کند با شناسه دریافتی یک رکورد را ثبت کند و اگر تکراری باشد، خروجی false خواهد داشت. متد CleanupOutdated برای پاکسازی شناسه‌هایی که زمان مشخصی (مثلا ۱۲ ساعت) از دریافت آنها گذشته است، استفاده خواهد شد که توسط یک وظیفه‌ی زمان‌بندی شده می تواند اجرا شود؛ به این صورت، امکان استفاده‌ی مجدد از آن شناسه‌ها برای کلاینت‌ها مهیا خواهد شد. پیاده سازی واسط تعریف شده، به شکل زیر خواهد بود:

/// <summary>
/// To prevent from race-condition, this default implementation relies on primary key constraints.
/// </summary>
file sealed class IdempotencyStorage(
    AppDbContext dbContext,
    TimeProvider dateTime,
    ILogger<IdempotencyStorage> logger) : IIdempotencyStorage
{
    private const string ConstraintName = "PK_IdempotentId";

    public Task CleanupOutdated(CancellationToken cancellationToken)
    {
        throw new NotImplementedException(); //TODO: cleanup the outdated ids based on configurable duration
    }

    public bool IsKnownException(Exception ex)
    {
        return ex is UniqueConstraintException e && e.ConstraintName.Contains(ConstraintName);
    }

    // To tackle race-condition issue, the implementation relies on storage capabilities, such as primary constraint for given IdempotentId.
    public async Task<bool> TryPersist(string idempotentId, CancellationToken cancellationToken)
    {
        try
        {
            dbContext.Add(new IdempotentId(idempotentId, dateTime.GetUtcNow().UtcDateTime));
            await dbContext.SaveChangesAsync(cancellationToken);

            return true;
        }
        catch (UniqueConstraintException e) when (e.ConstraintName.Contains(ConstraintName))
        {
            logger.LogInformation(e, "The given idempotentId [{IdempotentId}] already exists in the storage.", idempotentId);
            return false;
        }
    }
}

همانطور که مشخص است در اینجا سعی شده‌است تا با شناسه‌ی دریافتی، یک رکورد جدید ثبت شود که در صورت بروز خطای UniqueConstraint، خروجی با مقدار false را خروجی خواهد داد که می توان از آن نتیجه گرفت که این درخواست قبلا دریافت و پردازش شده‌است (در ادامه نحوه‌ی استفاده از آن را خواهیم دید).

در این پیاده سازی از کتابخانه MediatR استفاده می کنیم؛ در همین راستا برای مدیریت تراکنش ها به صورت زیر می توان TransactionBehavior را پیاده سازی کرد:

internal sealed class TransactionBehavior<TRequest, TResponse>(
    AppDbContext dbContext,
    ILogger<TransactionBehavior<TRequest, TResponse>> logger) :
    IPipelineBehavior<TRequest, TResponse>
    where TRequest : IBaseCommand
    where TResponse : IErrorOr
{
    public async Task<TResponse> Handle(
        TRequest command,
        RequestHandlerDelegate<TResponse> next,
        CancellationToken cancellationToken)
    {
        string commandName = typeof(TRequest).Name;
        await using var transaction = await dbContext.Database.BeginTransactionAsync(IsolationLevel.ReadCommitted, cancellationToken);

        TResponse? result;
        try
        {
            logger.LogInformation("Begin transaction {TransactionId} for handling {CommandName} ({@Command})", transaction.TransactionId, commandName, command);

            result = await next();
            if (result.IsError)
            {
                await transaction.RollbackAsync(cancellationToken);

                logger.LogInformation("Rollback transaction {TransactionId} for handling {CommandName} ({@Command}) due to failure result.", transaction.TransactionId, commandName, command);

                return result;
            }

            await transaction.CommitAsync(cancellationToken);

            logger.LogInformation("Commit transaction {TransactionId} for handling {CommandName} ({@Command})", transaction.TransactionId, commandName, command);
        }
        catch (Exception ex)
        {
            await transaction.RollbackAsync(cancellationToken);

            logger.LogError(ex, "An exception occured within transaction {TransactionId} for handling {CommandName} ({@Command})", transaction.TransactionId, commandName, command);

            throw;
        }

        return result;
    }
}

در اینجا مستقیما AppDbContext تزریق شده و با استفاده از خصوصیت Database آن، کار مدیریت تراکنش انجام شده‌است. همچنین باتوجه به اینکه برای مدیریت خطاها از کتابخانه‌ی ErrorOr استفاده می کنیم و خروجی همه‌ی Command های سیستم، حتما یک وهله از کلاس ErrorOr است که واسط IErrorOr را پیاده سازی کرده‌است، یک محدودیت روی تایپ جنریک اعمال کردیم که این رفتار، فقط برروی IBaseCommand ها اجرا شود. تعریف واسط IBaseCommand به شکل زیر می‌باشد:

 
/// <summary>
/// This is marker interface which is used as a constraint of behaviors.
/// </summary>
public interface IBaseCommand
{
}

public interface ICommand : IBaseCommand, IRequest<ErrorOr<Unit>>
{
}

public interface ICommand<T> : IBaseCommand, IRequest<ErrorOr<T>>
{
}

public interface ICommandHandler<in TCommand> : IRequestHandler<TCommand, ErrorOr<Unit>>
    where TCommand : ICommand
{
    Task<ErrorOr<Unit>> IRequestHandler<TCommand, ErrorOr<Unit>>.Handle(TCommand request, CancellationToken cancellationToken)
    {
        return Handle(request, cancellationToken);
    }

    new Task<ErrorOr<Unit>> Handle(TCommand command, CancellationToken cancellationToken);
}

public interface ICommandHandler<in TCommand, T> : IRequestHandler<TCommand, ErrorOr<T>>
    where TCommand : ICommand<T>
{
    Task<ErrorOr<T>> IRequestHandler<TCommand, ErrorOr<T>>.Handle(TCommand request, CancellationToken cancellationToken)
    {
        return Handle(request, cancellationToken);
    }

    new Task<ErrorOr<T>> Handle(TCommand command, CancellationToken cancellationToken);
}

در ادامه برای پیاده‌سازی IdempotencyBehavior و محدود کردن آن، واسط IIdempotentCommand را به شکل زیر خواهیم داشت:

/// <summary>
/// This is marker interface which is used as a constraint of behaviors.
/// </summary>
public interface IIdempotentCommand
{
    string IdempotentId { get; }
}

public abstract class IdempotentCommand : ICommand, IIdempotentCommand
{
    public string IdempotentId { get; init; } = string.Empty;
}

public abstract class IdempotentCommand<T> : ICommand<T>, IIdempotentCommand
{
    public string IdempotentId { get; init; } = string.Empty;
}

در اینجا یک پراپرتی، برای نگهداری شناسه‌ی درخواست دریافتی با نام IdempotentId در نظر گرفته شده‌است. این پراپرتی باید از طریق مقداری که از هدر درخواست HTTP دریافت می‌کنیم مقداردهی شود. به عنوان مثال برای ثبت کاربر جدید، به شکل زیر باید عمل کرد:

[HttpPost]
public async Task<ActionResult<long>> Register(
     [FromBody] RegisterUserCommand command,
     [FromIdempotencyToken] string idempotentId,
     CancellationToken cancellationToken)
{
     command.IdempotentId = idempotentId;
     var result = await sender.Send(command, cancellationToken);

     return result.ToActionResult();
}

در اینجا از همان Command به عنوان DTO ورودی استفاده شده‌است که وابسته به سطح Backward compatibility مورد نیاز، می توان از DTO مجزایی هم استفاده کرد. سپس از طریق FromIdempotencyToken سفارشی، شناسه‌ی درخواست، دریافت شده و بر روی command مورد نظر، تنظیم شده‌است.

رفتار سفارشی IdempotencyBehavior از ۲ بخش تشکیل شده‌است؛ در قسمت اول سعی می شود، قبل از اجرای هندلر مربوط به command مورد نظر، شناسه‌ی دریافتی را در storage تعبیه شده ثبت کند:

internal sealed class IdempotencyBehavior<TRequest, TResponse>(
    IIdempotencyStorage storage,
    ILogger<IdempotencyBehavior<TRequest, TResponse>> logger) :
    IPipelineBehavior<TRequest, TResponse>
    where TRequest : IIdempotentCommand
    where TResponse : IErrorOr
{
    public async Task<TResponse> Handle(
        TRequest command,
        RequestHandlerDelegate<TResponse> next,
        CancellationToken cancellationToken)
    {
        string commandName = typeof(TRequest).Name;

        if (string.IsNullOrWhiteSpace(command.IdempotentId))
        {
            logger.LogWarning(
                "The given command [{CommandName}] ({@Command}) marked as idempotent but has empty IdempotentId",
                commandName, command);
            return await next();
        }

        if (await storage.TryPersist(command.IdempotentId, cancellationToken) == false)
        {
            return (dynamic)Error.Conflict(
                $"The given command [{commandName}] with idempotent-id [{command.IdempotentId}] has already been received and processed.");
        }

        return await next();
    }
}

در اینجا IIdempotencyStorage تزریق شده و در صورتی که امکان ذخیره سازی وجود نداشته باشد، خطای Confilict که به‌خطای 409 ترجمه خواهد شد، برگشت داده می‌شود. در غیر این صورت ادامه‌ی عملیات اصلی باید اجرا شود. پس از آن اگر به هر دلیلی در زمان پردازش عملیات اصلی،‌ درخواست همزمانی با همان شناسه، توسط سرور دریافت شده و پردازش شود، عملیات جاری با خطای UniqueConstaint برروی PK_IdempotentId در زمان نهایی سازی تراکنش جاری، مواجه خواهد شد. برای این منظور بخش دوم این رفتار به شکل زیر خواهد بود:

internal sealed class IdempotencyExceptionBehavior<TRequest, TResponse>(IIdempotencyStorage storage) :
    IPipelineBehavior<TRequest, TResponse>
    where TRequest : IIdempotentCommand
    where TResponse : IErrorOr
{
    public async Task<TResponse> Handle(
        TRequest command,
        RequestHandlerDelegate<TResponse> next,
        CancellationToken cancellationToken)
    {
        if (string.IsNullOrWhiteSpace(command.IdempotentId)) return await next();

        string commandName = typeof(TRequest).Name;
        try
        {
            return await next();
        }
        catch (Exception ex) when (storage.IsKnownException(ex))
        {
            return (dynamic)Error.Conflict(
                $"The given command [{commandName}] with idempotent-id [{command.IdempotentId}] has already been received and processed.");
        }
    }
}

در اینجا عملیات اصلی در بدنه try اجرا شده و در صورت بروز خطایی مرتبط با Idempotency، خروجی Confilict برگشت داده خواهد شد. باید توجه داشت که نحوه ثبت رفتارهای تعریف شده تا اینجا باید به ترتیب زیر انجام شود:

services.AddMediatR(config =>
{
   config.RegisterServicesFromAssemblyContaining(typeof(DependencyInjection));

   // maintaining the order of below behaviors is crucial.
   config.AddOpenBehavior(typeof(LoggingBehavior<,>));
   config.AddOpenBehavior(typeof(IdempotencyExceptionBehavior<,>));
   config.AddOpenBehavior(typeof(TransactionBehavior<,>));
   config.AddOpenBehavior(typeof(IdempotencyBehavior<,>));
});

به این ترتیب بدنه اصلی هندلرهای موجود در سیستم هیچ تغییری نخواهند داشت و به صورت ضمنی و انتخابی، امکان تعیین command هایی که نیاز است به صورت Idempotent اجرا شوند را خواهیم داشت.

References

https://www.mscharhag.com/p/rest-api-design

https://www.manning.com/books/api-design-patterns

https://codeopinion.com/idempotent-commands/

اشتراک‌ها
روش های مقایسه اشیاء با null

Check

Code 

Description

Is Null
if(variable is null) return true;

  • 🙂 This syntax supports static analysis such that later code will know whether variable is null or not.
  • 🙁 Doesn’t produce a warning even when comparing against a non-nullable value type making the code to check pointless.
  • 😐 Requires C# 7.0 because it leverages type pattern matching.
Is Not Null
if(variable is { }) return false

  • 🙂 This syntax supports static analysis such that later code will know whether variable is null or not.
  • 😐 Requires C# 8.0 since this is the method for checking for not null using property pattern matching.
Is Not Null
if(variable is object) return false

  • 🙂 Triggers a warning when comparing a non-nullable value type which could never be null
  • 🙂 This syntax works with C# 8.0’s static analysis so later code will know that variable has been checked for null.
  • Checks if the value not null by testing whether it is of type object.  (Relies on the fact that null values are not of type object.)
Is Null
if(variable == null) return true

  • 🙂 The only way to check for null prior to C# 7.0.
  • 🙁 However, because the equality operator can be overridden, this has the (remote) possibility of failing or introducing a performance issue.
Is Not Null
if(variable != null) return false

  • 🙂 The only way to check for not null prior to C# 7.0.
  • 😐 Since the not-equal operator can be overridden, this has the (remote) possibility of failing or introducing a performance issue. 
روش های مقایسه اشیاء با null
اشتراک‌ها
سری آموزشی Angular 15

Angular 15 Tutorials for beginners 

After the releasing Angular 14 this year, now Angular 15 is released this month (November 2022) with a couple of features including performance improvement. Previously we saw a new feature added to Angular 14. The released Angular 15 version is a stable version.

 

سری آموزشی Angular 15