مطالب
بررسی تغییرات Blazor 8x - قسمت چهاردهم - امکان استفاده از کامپوننت‌های Blazor در برنامه‌های ASP.NET Core 8x
ASP.NET Core 8x به همراه یک IResult جدید به‌نام RazorComponentResult است که توسط آن می‌توان در Endpoint‌های Minimal-API و همچنین اکشن متدهای MVC، از کامپوننت‌های Blazor، خروجی گرفت. این خروجی نه فقط static یا به عبارتی SSR، بلکه حتی می‌تواند تعاملی هم باشد. در این مطلب، جزئیات فعالسازی و استفاده از این IResult جدید را در یک برنامه‌ی Minimal-API بررسی می‌کنیم.


ایجاد یک برنامه‌ی Minimal-API جدید در دات نت 8

پروژه‌ای را که در اینجا پیگیری می‌کنیم، بر اساس قالب استاندارد تولید شده‌ی توسط دستور dotnet new webapi تکمیل می‌شود.


ایجاد یک صفحه‌ی Blazor 8x به همراه مسیریابی و دریافت پارامتر

در ادامه قصد داریم که یک کامپوننت جدید را به نام SsrTest.razor در پوشه‌ی جدید Components\Tests ایجاد کرده و برای آن مسیریابی از نوع page@ هم تعریف کنیم. یعنی نه‌فقط قصد داریم آن‌را توسط RazorComponentResult رندر کنیم، بلکه می‌خواهیم اگر آدرس آن‌را در مرورگر هم وارد کردیم، قابل دسترسی باشد.
به همین جهت یک پوشه‌ی جدید را به نام Components در ریشه‌ی پروژه‌ی Web API جاری ایجاد می‌کنیم، با این محتوا:
برای ایده گرفتن از محتوای مورد نیاز، به «معرفی قالب‌های جدید شروع پروژه‌های Blazor در دات نت 8» قسمت دوم این سری مراجعه کرده و برای مثال قالب ساده‌ترین حالت ممکن را توسط دستور زیر تولید می‌کنیم (در یک پروژه‌ی مجزا، خارج از پروژه‌ی جاری):
dotnet new blazor --interactivity None
پس از اینکار، محتویات پوشه‌ی Components آن‌را مستقیما داخل پوشه‌ی پروژه‌ی Minimal-API جاری کپی می‌کنیم. یعنی در نهایت در این پروژه‌ی جدید Web API، به فایل‌های زیر می‌رسیم:
- فایل Imports.razor_ ساده شده برای سهولت کار با فضاهای نام در کامپوننت‌های Blazor (فضاهای نامی را که در آن وجود ندارند و مرتبط با پروژه‌ی دوم هستند، حذف می‌کنیم).
- فایل App.razor، برای تشکیل نقطه‌ی آغازین برنامه‌ی Blazor.
- فایل Routes.razor برای معرفی مسیریابی صفحات Blazor تعریف شده.
- پوشه‌ی Layout برای معرفی فایل MainLayout.razor که در Routes.razor استفاده شده‌است.

و ... یک فایل آزمایشی جدید به نام Components\Tests\SsrTest.razor با محتوای زیر:
@page "/ssr-page/{Data:int}"

<PageTitle>An SSR component</PageTitle>

<h1>An SSR component rendered by a Minimal-API!</h1>

<div>
    Data: @Data
</div>

@code {

    [Parameter]
    public int Data { get; set; }

}
این فایل، می‌تواند پارامتر Data را از طریق فراخوانی مستقیم آدرس فرضی http://localhost:5227/ssr-page/2 دریافت کند و یا ... از طریق خروجی جدید RazorComponentResult که توسط یک Endpoint سفارشی ارائه می‌شود:




تغییرات مورد نیاز در فایل Program.cs برنامه‌ی Web-API برای فعالسازی رندر سمت سرور Blazor

در ادامه کل تغییرات مورد نیاز جهت اجرای این برنامه را مشاهده می‌کنید:
var builder = WebApplication.CreateBuilder(args);

// ...

builder.Services.AddRazorComponents();

// ...

// http://localhost:5227/ssr-component?data=2
// or it can be called directly http://localhost:5227/ssr-page/2
app.MapGet("/ssr-component",
           (int data = 1) =>
           {
               var parameters = new Dictionary<string, object?>
                                {
                                    { nameof(SsrTest.Data), data },
                                };
               return new RazorComponentResult<SsrTest>(parameters);
           });

app.UseStaticFiles();
app.UseAntiforgery();

app.MapRazorComponents<App>();
app.Run();

// ...
توضیحات:
- همین اندازه تغییر در جهت فعالسازی رندر سمت سرور کامپوننت‌های Blazor در یک برنامه‌ی ASP.NET Core کفایت می‌کند. یعنی اضافه شدن:
AddRazorComponents ،UseAntiforgery و MapRazorComponents
- در اینجا نحوه‌ی ارسال پارامترها را به یک RazorComponentResult نیز مشاهده می‌کنید.
- در حالت فراخوانی از طریق مسیر endpoint (یعنی فراخوانی مسیر http://localhost:5227/ssr-component در مثال فوق)، خود کامپوننت فراخوانی شده، بدون layout تعریف شده‌ی در فایل App.razor، رندر می‌شود. علت اینجا است که layout برنامه به همراه کامپوننت Router و RouteView آن فعال می‌شود که این دو هم مختص به صفحات دارای مسیریابی Blazor هستند و برای رندر کامپوننت‌های خالص آن بکار گرفته نمی‌شوند. خروجی RazorComponentResult تنها یک static SSR خالص است؛ مگر اینکه فایل blazor.web.js را نیز بارگذاری کند.

یک نکته: اگر در حالت رندر توسط RazorComponentResult، علاقمند به استفاده‌ی از layout هستید، می‌توان از کامپوننت LayoutView داخل یک کامپوننت فرضی به صورت زیر استفاده کرد؛ اما این مورد هم شامل اطلاعات فایل App.razor نمی‌شود:
<LayoutView Layout="@typeof(MainLayout)">
    <PageTitle>Home</PageTitle>

    <h2>Welcome to your new app.</h2>
</LayoutView>


سؤال: آیا در این حالت کامپوننت‌های تعاملی هم کار می‌کنند؟

پاسخ: بله. فقط برای ایده گرفتن، یک نمونه پروژه‌ی تعاملی Blazor 8x را در ابتدا ایجاد کنید و قسمت‌های اضافی AddRazorComponents و MapRazorComponents آن‌را در اینجا کپی کنید؛ یعنی برای مثال جهت فعالسازی کامپوننت‌های تعاملی Blazor Server، به این دو تغییر زیر نیاز است:
// ...

builder.Services.AddRazorComponents()
       .AddInteractiveServerComponents();

// ...

app.MapRazorComponents<App>().AddInteractiveServerRenderMode();

// ...
همچنین باید دقت داشت که امکانات تعاملی، به دلیل وجود و دسترسی به یک سطر ذیل که در فایل Components\App.razor واقع شده، اجرایی می‌شوند:
<script src="_framework/blazor.web.js"></script>
و همانطور که عنوان شد، اگر از روش new RazorComponentResult استفاده می‌شود، باید این سطر را به صورت دستی اضافه‌کرد؛ چون به همراه رندر layout تعریف شده‌ی در فایل App.razor نیست. برای مثال فرض کنید کامپوننت معروف Counter را به صورت زیر داریم که حالت رندر آن به InteractiveServer تنظیم شده‌است:
@rendermode InteractiveServer

<h1>Counter</h1>

<p role="status">Current count: @_currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
    private int _currentCount;

    private void IncrementCount()
    {
        _currentCount++;
    }

}
در این حالت پس از تعریف endpoint زیر، خروجی آن فقط یک صفحه‌ی استاتیک SSR خواهد بود و دکمه‌ی Click me آن کار نمی‌کند:
// http://localhost:5227/server-interactive-component
app.MapGet("/server-interactive-component", () => new RazorComponentResult<Counter>());
علت اینجا است که اگر به سورس HTML رندر شده مراجعه کنیم، خبری از درج اسکریپت blazor.web.js در انتهای آن نیست. به همین جهت برای مثال فایل جدید CounterInteractive.razor را به صورت زیر اضافه می‌‌کنیم که ساختار آن شبیه به فایل App.razor است:
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Interactive server component</title>
    <base href="/"/>
</head>
<body>
   <h1>Interactive server component</h1>

   <Counter/>

  <script src="_framework/blazor.web.js"></script>
</body>
</html>
و هدف اصلی از آن، تشکیل یک قالب و درج اسکریپت blazor.web.js در انتهای آن است.
سپس تعریف endpoint متناظر را به صورت زیر تغییر می‌دهیم:
// http://localhost:5227/server-interactive-component
app.MapGet("/server-interactive-component", () => new RazorComponentResult<CounterInteractive>());
اینبار به علت بارگذاری فایل blazor.web.js، امکانات تعاملی کامپوننت Counter فعال شده و قابل استفاده می‌شوند.


سؤال: آیا می‌توان این خروجی static SSR کامپوننت‌های بلیزر را در سرویس‌های یک برنامه ASP.NET Core هم دریافت کرد؟

منظور این است که آیا می‌توان از یک کامپوننت Blazor، به همراه تمام پیشرفت‌های Razor در آن که در Viewهای MVC قابل دسترسی نیستند، به‌شکل یک رشته‌ی خالص، خروجی گرفت و برای مثال از آن به‌عنوان قالب پویای محتوای ایمیل‌ها استفاده کرد؟
پاسخ: بله! زیر ساخت RazorComponentResult که از سرویس HtmlRenderer استفاده می‌کند، بدون نیاز به برپایی یک endpoint هم قابل دسترسی است:
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Web;

namespace WebApi8x.Services;

public class BlazorStaticRendererService
{
    private readonly HtmlRenderer _htmlRenderer;

    public BlazorStaticRendererService(HtmlRenderer htmlRenderer) => _htmlRenderer = htmlRenderer;

    public Task<string> StaticRenderComponentAsync<T>() where T : IComponent
        => RenderComponentAsync<T>(ParameterView.Empty);

    public Task<string> StaticRenderComponentAsync<T>(Dictionary<string, object?> dictionary) where T : IComponent
        => RenderComponentAsync<T>(ParameterView.FromDictionary(dictionary));

    private Task<string> RenderComponentAsync<T>(ParameterView parameters) where T : IComponent =>
        _htmlRenderer.Dispatcher.InvokeAsync(async () =>
                                             {
                                                 var output = await _htmlRenderer.RenderComponentAsync<T>(parameters);
                                                 return output.ToHtmlString();
                                             });
}
برای کار با آن، ابتدا باید سرویس فوق را به صورت زیر ثبت و معرفی کرد:
builder.Services.AddScoped<HtmlRenderer>();
builder.Services.AddScoped<BlazorStaticRendererService>();
و سپس یک نمونه مثال فرضی نحوه‌ی تزریق و فراخوانی سرویس BlazorStaticRendererService به صورت زیر است که در آن روش ارسال پارامترها هم بررسی شده‌است:
app.MapGet("/static-renderer-service-test",
           async (BlazorStaticRendererService renderer, int data = 1) =>
           {
               var parameters = new Dictionary<string, object?>
                                {
                                    { nameof(SsrTest.Data), data },
                                };
               var html = await renderer.StaticRenderComponentAsync<SsrTest>(parameters);
               return Results.Content(html, "text/html");
           });

کدهای کامل این مطلب را می‌توانید از اینجا دریافت کنید: WebApi8x.zip
مطالب
C# 8.0 - Pattern Matching
در نگارش‌های پیشین #C، بهبودهایی در زمینه‌ی Pattern matching وجود داشتند. در نگارش 8 نیز این بهبودها ادامه پیدا کرده‌اند که نتیجه‌ی آن به‌وجود آمدن روش جدیدی برای نوشتن عبارات switch است.


معرفی روش جدید نوشتن عبارات switch در C#8.0

فرض کنید یک enum که معرف تعدادی رنگ است را تعریف کرده‌ایم:
    public enum Rainbow
    {
        Red,
        Orange,
        Yellow,
        Green,
        Blue,
        Indigo,
        Violet
    }
همچنین کلاسی را نیز جهت تشکیل اشیاء رنگ مبتنی بر RGB تدارک دیده‌ایم:
    class RGBColor
    {
        internal byte Red { get; }
        internal byte Green { get; }
        internal byte Blue { get; }

        internal RGBColor(byte red, byte green, byte blue)
        {
            Red = red;
            Green = green;
            Blue = blue;
        }

        public override string ToString() => $"rgb({Red}, {Green}, {Blue})";
    }
اکنون هدف ما این است که اگر یکی از اعضای این enum را انتخاب کردیم، بتوانیم معادل رنگ RGB آن‌را نیز داشته باشیم. برای این منظور می‌توان switch ساده‌ی زیر را تشکیل داد:
        internal static RGBColor FromRainbow(Rainbow rainbowBolor)
        {
            switch (rainbowBolor)
            {
                case Rainbow.Red:
                    return new RGBColor(0xFF, 0x00, 0x00);
                case Rainbow.Orange:
                    return new RGBColor(0xFF, 0x7F, 0x00);
                case Rainbow.Yellow:
                    return new RGBColor(0xFF, 0xFF, 0x00);
                case Rainbow.Green:
                    return new RGBColor(0x00, 0xFF, 0x00);
                case Rainbow.Blue:
                    return new RGBColor(0x00, 0x00, 0xFF);
                case Rainbow.Indigo:
                    return new RGBColor(0x4B, 0x00, 0x82);
                case Rainbow.Violet:
                    return new RGBColor(0x94, 0x00, 0xD3);
                default:
                    throw new ArgumentException(message: "invalid enum value", paramName: nameof(rainbowBolor));
            };
        }
این کاری است که تا پیش از C# 8.0 به صورت متداولی انجام می‌شود. اکنون در C# 8.0 می‌توان عبارت switch فوق را به صورت زیر خلاصه کرد:
        internal static RGBColor TasteTheRainbow(Rainbow rainbowColor) =>
            rainbowColor switch
        {
            Rainbow.Red => new RGBColor(0xFF, 0x00, 0x00),
            Rainbow.Orange => new RGBColor(0xFF, 0x7F, 0x00),
            Rainbow.Yellow => new RGBColor(0xFF, 0xFF, 0x00),
            Rainbow.Green => new RGBColor(0x00, 0xFF, 0x00),
            Rainbow.Blue => new RGBColor(0x00, 0x00, 0xFF),
            Rainbow.Indigo => new RGBColor(0x4B, 0x00, 0x82),
            Rainbow.Violet => new RGBColor(0x94, 0x00, 0xD3),
            _ => throw new ArgumentException(message: "invalid enum value", paramName: nameof(rainbowColor)),
        };
- در این روش جدید، بجای اینکه با ذکر switch و سپس، مقداری/نوعی شروع شود، ابتدا با نوع شروع می‌شود و سپس واژه‌ی کلیدی switch ذکر خواهد شد.
- در ادامه تمام caseها حذف می‌شوند و بجای آن‌ها صرفا مقادیر مدنظر باقی می‌ماند. در اینجا <= به صورت expressed as خوانده می‌شود.
- caseهای مختلف با کاما از هم جدا می‌شوند.
- همچنین در سطر آخر آن نیز از یک discard استفاده شده‌است که معادل همان حالت default یا حالتی است که هیچ تطابقی صورت نگرفته باشد.
- به علاوه اگر دقت کنید، نتیجه‌ی نهایی این switch جدید، به صورت یک مقدار، توسط متد TasteTheRainbow، بازگشت داده شده‌است. بنابراین نوشتن یک چنین عباراتی در C# 8.0، مجاز است:
var operation = "+";
int a = 1, b = 2;
var result = operation switch
{
   "+" => a + b,
   "-" => a - b,
   "/" => a / b,
     _ => throw new NotSupportedException()
};


معرفی Property Patterns در C# 8.0

کلاس زیر را درنظر بگیرید که از تعدادی خاصیت عمومی تشکیل شده‌است:
    class Address
    {
        public string AddressLine1 { get; set; }
        public string AddressLine2 { get; set; }
        public string City { get; set; }
        public string State { get; set; }
        public string PostalCode { get; set; }
        public string CountryRegion { get; set; }
    }
اکنون فرض کنید که می‌خواهیم مالیات فروش را بر اساس آدرس و محل آن، محاسبه کنیم. در C# 8.0 با معرفی قابلیت الگوهای خواص، می‌توان بر روی آدرس، یک switch را تشکیل داد و سپس تک تک خواص آن‌را ارزیابی کرد:
    static class PropertyPatterns
    {
        internal static decimal ComputeSalesTax(
            Address location,
            decimal salePrice) =>
            location switch
        {
            { State: "Fars" } => salePrice * 0.06m,
            { State: "Tehran", City: "Tehran" } => salePrice * 0.056m,

            // Other cases removed for brevity...
            _ => 0M
        };
    }
در اینجا، سمت چپ هر case، داخل یک {} قرار می‌گیرد و در آن می‌توان مقادیر چندین خاصیت شیء location دریافتی را بررسی کرد. برای نمونه در سطر دوم آن، روش ارزیابی بیش از یک خاصیت را نیز مشاهده می‌کنید که روش ذکر آن شبیه به تعریف شیء‌های JSON است. در آخر نیز توسط یک discard، حالت default ذکر شده‌است.


معرفی Tuple Patterns در C# 8.0

در switch‌های C# 8.0، می‌توان از tuples نیز برای تشکیل قسمت case و همچنین مقداری که قرار است switch بر روی آن صورت گیرد، استفاده کرد:
    static class TuplePatterns
    {
        internal static string RockPaperScissors(
            string first,
            string second)
            => (first, second) switch
        {
            ("rock", "paper") => "Rock is covered by Paper. Paper wins!",
            ("rock", "scissors") => "Rock breaks Scissors. Rock wins!",
            ("paper", "rock") => "Paper covers Rock. Paper wins!",
            ("paper", "scissors") => "Paper is cut by Scissors. Scissors wins!",
            ("scissors", "rock") => "Scissors is broken by Rock. Rock wins!",
            ("scissors", "paper") => "Scissors cuts Paper. Scissors wins!",
            (_, _) => "tie"
        };
    }
در اینجا بر روی tuple ای که به صورت (first, second) تعریف شده، یک switch تعریف می‌شود. سپس برای نمونه 6 حالت مختلف برای آن پیش‌بینی شده و یک حالت default که آن نیز توسط discards معرفی می‌شود.


بهبودهای Pattern Matching بر روی اشیاء در C# 8.0

فرض کنید شیء پایه‌ی Shape را تعریف و بر اساس آن دو شیء جدید دایره و مستطیل را ایجاد کرده‌ایم:
    class Shape
    {
        protected internal double Height { get; }
        protected internal double Length { get; }

        protected Shape(double height = 0, double length = 0)
        {
            Height = height;
            Length = length;
        }
    }

    class Circle : Shape
    {
        internal double Radius => Height / 2;
        internal double Diameter => Radius * 2;
        internal double Circumference => 2 * Math.PI * Radius;

        internal Circle(double height = 10, double length = 10)
            : base(height, length) { }
    }

    class Rectangle : Shape
    {
        internal bool IsSquare => Height == Length;

        internal Rectangle(double height = 10, double length = 10)
            : base(height, length) { }
    }
امکان Pattern Matching بر روی اشیاء، در C# 7x نیز وجود دارد؛ اما در C# 8.0 می‌توان از روش جدید بیان عبارت switch آن به صورت زیر نیز در این حالت استفاده کرد:
    static class ObjectPatterns
    {
        internal static string ShapeDetails(this Shape shape)
            => shape switch
        {
            Circle c => $"circle with (C): {c.Circumference}",
            Rectangle s when s.IsSquare => $"L:{s.Length} H:{s.Height}, square",
            Rectangle r => $"L:{r.Length} H:{r.Height}, rectangle",
            _ => "Unknown shape!" // Discard
        };
    }
در اینجا یک شیء، به متد ShapeDetails ارسال شده و سپس جزئیاتی از آن دریافت می‌شود. مطابق روش C# 8.0، در اینجا نیز کار با ذکر نوع و سپس عبارت switch، شروع می‌شود. در ادامه روش بررسی نوع‌ها را در caseهای این سوئیچ ملاحظه می‌کنید. اگر در قسمت case آن Circle c ذکر شد، یعنی نوع shape از نوع دایره بوده و همچنین در همینجا می‌توان متغیر c را بر این اساس تعریف کرد و از آن استفاده نمود و یا می‌توان به کمک واژه‌ی کلیدی when، بر روی این متغیری که جدید تعریف شده، شرطی را نیز بررسی کرد. حالت default آن هم توسط discards معرفی می‌شود.


معرفی Positional Patterns در C# 8.0

در اینجا یک Point را داریم که می‌خواهیم بر اساس آن یک Quadrant را استخراج کنیم:
    class Point
    {
        public int X { get; }

        public int Y { get; }

        public Point(int x, int y) => (X, Y) = (x, y);

        public void Deconstruct(out int x, out int y) => (x, y) = (X, Y);
    }

    enum Quadrant
    {
        Unknown,
        Origin,
        One,
        Two,
        Three,
        Four,
        OnBorder
    }
برای این منظور می‌توان از الگوهای موقعیتی C# 8.0 استفاده کرد:
    static class PositionalPatterns
    {
        internal static Quadrant AsQuadrant(Point point) => point switch
        {
            (0, 0) => Quadrant.Origin,
            var (x, y) when x > 0 && y > 0 => Quadrant.One,
            var (x, y) when x < 0 && y > 0 => Quadrant.Two,
            var (x, y) when x < 0 && y < 0 => Quadrant.Three,
            var (x, y) when x > 0 && y < 0 => Quadrant.Four,
            (_, _) => Quadrant.OnBorder, // Either are 0, but not both
            _ => Quadrant.Unknown
        };
    }
اگر به کلاس Point دقت کنید، یک قسمت Deconstruct هم دارد. به همین جهت در قسمت‌های case این switch، زمانیکه برای مثال (0,0) ذکر می‌شود (که یک tuple literal است)، به صورت خودکار یک شیء Point متناظر را با مقادیر X و Y آن، تشکیل می‌دهد. همچنین روش‌های مختلف مقایسه‌ی مقادیر x و y این tuple را نیز در caseهای مختلف آن مشاهده می‌کنید.
در اینجا اگر دقت کنید و case مخصوص discards معرفی شده‌است. اولی برای حالت‌هایی است که هیچکدام از شرایط پیش از آن را برآورده نمی‌کند، مانند حالت (1,0)، در غیراینصورت سطر بعد از آن بازگشت داده می‌شود.
مطالب
C# 8.0 - Nullable Reference Types
نوع‌های ارجاعی (Reference Types) در #C، همیشه نال‌پذیر بوده‌اند؛ در مقابل نوع‌های مقداری (value types) مانند DateTime که برای نال‌پذیر کردن آن‌ها باید یک علامت سؤال را در حین تعریف نوع آن‌ها ذکر کرد تا تبدیل به یک نوع نال‌پذیر شود (DateTime? Created). بنابراین عنوانی مانند «نوع‌های ارجاعی نال‌نپذیر» شاید آنچنان مفهوم نباشد.
خالق Null در زبان‌های برنامه نویسی، آن‌را یک اشتباه چند میلیارد دلاری می‌داند! و به عنوان یک توسعه دهنده‌ی دات نت، غیرممکن است که در حین اجرای برنامه‌های خود تابحال به null reference exception برخورد نکرده باشید. هدف از ارائه‌ی قابلیت جدید «نوع‌های ارجاعی نال‌نپذیر» در C# 8.0، مقابله‌ی با یک چنین مشکلاتی است و خصوصا غنی سازی IDEها برای ارائه‌ی اخطارهایی پیش از کامپایل برنامه، در مورد قسمت‌هایی از کد که ممکن است سبب بروز null reference exception شوند.


فعالسازی «نوع‌های ارجاعی نال‌نپذیر»

قابلیت «نوع‌های ارجاعی نال‌نپذیر» به صورت پیش‌فرض غیرفعال است. برای فعالسازی آن می‌توان فایل csproj را به صورت زیر، با افزودن خاصیت NullableContextOptions، ویرایش کرد:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>netcoreapp3.0</TargetFramework>
    <LangVersion>8.0</LangVersion>
    <NullableContextOptions>enable</NullableContextOptions>
  </PropertyGroup>
</Project>
یک نکته: در نگارش‌های بعدی NET Core SDK. و همچنین ویژوال استودیو (از نگارش 16.2.0 به بعد)، خاصیت NullableContextOptions به صرفا Nullable تغییر نام یافته و ساده شده‌است. بنابراین اگر در این نگارش‌ها به خطاهای ذیل برخوردید:
CS8632: The annotation for nullable reference types should only be used in code within a ‘#nullable’ context.
CS8627: A nullable type parameter must be known to be a value-type or non-nullable reference type. Consider adding a ‘class’, ‘struct’ or type constraint.
صرفا به معنای استفاده‌ی از نام قدیمی این ویژگی است که باید به Nullable تغییر پیدا کند:
<PropertyGroup>
  <LangVersion>preview</LangVersion>
  <Nullable>enable</Nullable>
</PropertyGroup>
اما در زمان نگارش این مطلب که 3.0.100-preview5-011568 در دسترس است، فعلا همان نام قدیمی NullableContextOptions کار می‌کند.


تغییر ماهیت نوع‌های ارجاعی #C با فعالسازی NullableContextOptions


در #C ای که ما می‌شناسیم، رشته‌ها قابلیت پذیرش نال را دارند و همچنین ذکر آن‌ها به صورت nullable بی‌معنا است. اما پس از فعالسازی ویژگی نوع‌های ارجاعی نال‌نپذیر، اکنون عکس آن رخ می‌دهد. رشته‌ها نال‌نپذیر می‌شوند؛ اما می‌توان در صورت نیاز، آن‌ها را nullable نیز تعریف کرد.


یک مثال: بررسی تاثیر فعالسازی NullableContextOptions بر روی یک پروژه

کلاس زیر را در نظر بگیرید:
    public class Person
    {
        public string FirstName { get; set; }

        public string MiddleName { get; set; }

        public string LastName { get; set; }

        public Person(string first, string last) =>
            (FirstName, LastName) = (first, last);

        public Person(string first, string middle, string last) =>
            (FirstName, MiddleName, LastName) = (first, middle, last);

        public override string ToString() => $"{FirstName} {MiddleName} {LastName}";
    }
با فعالسازی خاصیت NullableContextOptions، بلافاصله اخطار زیر در IDE ظاهر می‌شود (اگر ظاهر نشد، یکبار پروژه را بسته و مجددا بارگذاری کنید):


در این کلاس، دو سازنده وجود دارند که یکی MiddleName را دریافت می‌کند و دیگری خیر. در اینجا کامپایلر تشخیص داده‌است که چون در سازنده‌ی اولی که MiddleName را دریافت نمی‌کند، مقدار پیش‌فرض خاصیت MiddleName، نال خواهد بود و همچنین ما NullableContextOptions را نیز فعال کرده‌ایم، بنابراین این خاصیت دیگر به صورت معمول و متداول یک نوع ارجاعی نال‌پذیر عمل نمی‌کند و دیگر نمی‌توان نال را به عنوان مقدار پیش‌فرض آن، به آن نسبت داد. به همین جهت اخطار فوق ظاهر شده‌است.
برای رفع این مشکل:
به کامپایلر اعلام می‌کنیم: «می‌دانیم که MiddleName می‌تواند نال هم باشد» و آن‌را در این زمینه راهنمایی می‌کنیم:
public string? MiddleName { get; set; }
پس از این تغییر، اخطار فوق که ذیل سازنده‌ی اول کلاس Person ظاهر شده بود، محو می‌شود. اما اکنون مجددا کامپایلر، در جائیکه می‌خواهیم از آن استفاده کنیم:
    public static class NullableReferenceTypes
    {
        //#nullable enable // Toggle to enable

        public static string Exemplify()
        {
            var vahid = new Person("Vahid", "N");
            var length = GetLengthOfMiddleName(vahid);

            return $"{vahid.FirstName}'s middle name has {length} characters in it.";

            static int GetLengthOfMiddleName(Person person)
            {
                string middleName = person.MiddleName;
                return middleName.Length;
            }
        }
    }
اخطارهایی را صادر می‌کند:


در اینجا در متد محلی (local function) تعریف شده، سعی در دسترسی به خاصیت MiddleName وجود دارد و اکنون با تغییر جدیدی که اعمال کردیم، به صورت نال‌پذیر تعریف شده‌است.
همچنین در سطر بعدی آن نیز نتیجه‌ی نهایی middleName، مورد استفاده قرار گرفته‌است که آن نیز مشکل‌دار تشخیص داده شده‌است.
مشکل اولین سطر را به این صورت می‌توانیم برطرف کنیم:
var middleName = person.MiddleName;
در اینجا بجای ذکر صریح نوع string، از var استفاده شده‌است. پیشتر با ذکر صریح نوع string، آن‌را یک رشته‌ی نال‌نپذیر تعریف کرده بودیم. اما اکنون چون person.MiddleName نال‌پذیر تعریف شده‌است، var نیز به صورت خودکار به این رشته‌ی نال‌پذیر اشاره می‌کند.
اما مشکل سطر دوم هنوز باقی است:


علت اینجا است که متغیر middleName نیز اکنون ممکن است مقدار نال را داشته باشد. برای رفع این مشکل می‌توان از اپراتور .? استفاده کرد و سپس اگر مقدار نهایی این عبارت نال بود، مقدار صفر را بازگشت می‌دهیم:
static int GetLengthOfMiddleName(Person person)
{
   var middleName = person.MiddleName;
   return middleName?.Length ?? 0;
}
هدف از این قابلیت و ویژگی کامپایلر، کمک کردن به توسعه دهنده‌ها جهت نوشتن کدهایی امن‌تر و مقاوم‌تر به null reference exception‌ها است.


امکان خاموش و روشن کردن ویژگی نوع‌های ارجاعی نال‌نپذیر به صورت موضعی

زمانیکه خاصیت NullableContextOptions را فعال می‌کنیم، بر روی کل پروژه تاثیر می‌گذارد. برای مثال اگر یک چنین قابلیتی را بر روی پروژه‌های قدیمی خود فعال کنید، با صدها اخطار مواجه خواهید شد. به همین جهت است که این ویژگی حتی با فعالسازی C# 8.0 و انتخاب آن، به صورت پیش‌فرض غیرفعال است. بنابراین برای اینکه بتوان پروژه‌های قدیمی را قدم به قدم و سر فرصت، «مقاوم‌تر» کرد، می‌توان تعیین کرد که کدام قسمت، تحت تاثیر این ویژگی قرار بگیرد و کدام قسمت‌ها خیر:
public static class NullableReferenceTypes
{
#nullable disable // Toggle to enable
در اینجا می‌توان با استفاده از compiler directive جدید nullable# به کامپایلر اعلام کرد که از این قسمت صرفنظر کن. مقدار آن می‌تواند disable و یا enable باشد.


مجبور ساختن خود به «مقاوم سازی» برنامه

اگر NullableContextOptions را فعال کنید، کامپایلر صرفا یکسری اخطار را در مورد مشکلات احتمالی صادر می‌کند؛ اما برنامه هنوز کامپایل می‌شود. برای اینکه خود را مقید به «مقاوم سازی» برنامه کنیم، می‌توانیم با فعالسازی ویژگی TreatWarningsAsErrors در فایل csprj، این اخطارها را تبدیل به خطای کامپایلر کرده و از کامپایل برنامه جلوگیری کنیم:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>netcoreapp3.0</TargetFramework>
    <LangVersion>8.0</LangVersion>
    <NullableContextOptions>enable</NullableContextOptions>
    <TreatWarningsAsErrors>true</TreatWarningsAsErrors>
  </PropertyGroup>
</Project>
البته TreatWarningsAsErrors تمام اخطارهای برنامه را تبدیل به خطا می‌کند. اگر می‌خواهید انتخابی‌تر عمل کنید، می‌توان از خاصیت WarningsAsErrors استفاده کرد:
<WarningsAsErrors>CS8600;CS8602;CS8603</WarningsAsErrors>


آیا اگر برنامه‌ای با C# 7.0 کامپایل شود، کتابخانه‌های تهیه شده‌ی با C# 8.0 را می‌تواند استفاده کند؟

پاسخ: بله. از دیدگاه برنامه‌های قدیمی، کتابخانه‌های تهیه شده‌ی با C# 8.0، تفاوتی با سایر کتابخانه ندارند. آن‌ها نوع‌های نال‌پذیر جدید را مانند ?string مشاهده نمی‌کنند؛ آن‌ها فقط string را مشاهده می‌کنند و روش کار کردن با آن‌ها نیز همانند قبل است. بدیهی است در این حالت از مزایای کامپایلر C# 8.0 در تشخیص زود هنگام مشکلات برنامه محروم خواهند بود؛ اما عملکرد برنامه تفاوتی نمی‌کند.


وضعیت برنامه‌ی C# 8.0 ای که از کتابخانه‌های C# 7.0 و یا قبل از آن استفاده می‌کند، چگونه خواهد بود؟

چون کتابخانه‌های قدیمی‌تر از مزایای کامپایلر C# 8.0 استفاده نمی‌کنند، خروجی‌های آن بدون بروز خطایی توسط کامپایلر C# 8.0 استفاده می‌شوند؛ چون حجم اخطارهای صادر شده‌ی در این حالت بیش از حد خواهد بود. یعنی این بررسی‌های کامپایلر صرفا برای کتابخانه‌های جدید فعال هستند و نه برای کتابخانه‌های قدیمی.


مهارت‌های مواجه شدن با اخطارهای ناشی از فعالسازی NullableContextOptions

در مثالی که بررسی شد، یک نمونه از روش‌های مواجه شدن با اخطارهای ناشی از فعالسازی ویژگی نوع‌های ارجاعی نال‌نپذیر را بررسی کردیم. در ادامه روش‌های تکمیلی دیگری را بررسی می‌کنیم.

1- هرجائیکه قرار است متغیر ارجاعی نال‌پذیر باشد، آن‌را صراحتا اعلام کنید.
string name = null; // ERROR
string? name = null; // OK!
این مثال را پیشتر بررسی کردیم. با فعالسازی ویژگی نوع‌های ارجاعی نال‌نپذیر، ماهیت آن‌ها نیز تغییر می‌کند و دیگر نمی‌توان به آن‌ها null را انتساب داد. اگر نیاز است حتما اینکار صورت گیرد، آن‌ها را توسط ? به صورت nullable تعریف کنید.
نمونه‌ی دیگر آن مثال زیر است:
public class Person
{
    public Address? Address { get; set; };
    public string Country => Address?.Country;   // ERROR! 
}
در اینجا Address یک نوع ارجاعی نال‌پذیر است. بنابراین حاصل Address?.Country می‌تواند نال باشد و به Country نال‌نپذیر قابل انتساب نیست. برای رفع این مشکل کافی است دقیقا مشخص کنیم که این رشته نیز نال‌پذیر است:
public class Person
{
    public Address? Address { get; set; };
    public string? Country => Address?.Country;  // OK!
}

البته در این حالت باید به مثال زیر دقت داشت:
var node = this; // Initialize non-nullable variable
while (node != null)
{
   node = null; // ERROR!
}
چون node در اینجا توسط var تعریف شده‌است، دقیقا نوع this را که non-nullable است، پیدا می‌کند. بنابراین بعدها نمی‌توان به آن null را انتساب داد. اگر چنین موردی نیاز بود، باید صریحا نوع آن‌را بدو امر، nullable تعریف کرد؛ چون هنوز امکان تعریف ?var میسر نیست:
Node? node = this;   // Initialize nullable variable
while (node != null) {
   node = null; // OK!
}


2- نوع‌های خود را مقدار دهی اولیه کنید.
در مثال زیر:
public class Person
{
   public string Name { get; set; } // ERROR!
}
در این حالت چون خاصیت Name، در سازنده‌ی کلاس مقدار دهی اولیه نشده‌است، یک اخطار صادر می‌شود که بیانگر احتمال نال بودن آن است. یک روش مواجه شدن با این مشکل، تعریف آن به صورت یک خاصیت نال‌پذیر است:
public class Person
{
   public string? Name { get; set; }
}

یا یک استثناء را صادر کنید:
public class Person
{
    public string Name { get; set; }
    public Person(string name) {
        Name = name ?? throw new ArgumentNullException(nameof(name));
    }
}
به این ترتیب کامپایلر می‌داند که اگر نام دریافتی نال بود، دقیقا باید چگونه رفتار کند.
البته در این حالت برای مقدار دهی اولیه‌ی Name، حتما نیاز به تعریف یک سازنده‌است و در این حالت کدهایی را که از سازنده‌ی پیش‌فرض استفاده کرده بودند (مانند new Person { Name = "Vahid" })، باید تغییر دهید.

راه‌حل دیگر، مقدار دهی اولیه‌ی این خواص بدون تعریف یک سازنده‌ی اضافی است:
public class Person
{
   public string Name { get; set; } = string.Empty;
   // -or-
   public string Name { get; set; } = "";
}
برای مثال می‌توان از مقادیر خالی زیر برای مقدار دهی اولیه‌ی رشته‌ها، آرایه‌ها و مجموعه‌ها استفاده کرد:
String.Empty
Array.Empty<T>()
Enumerable.Empty<T>()
یا حتی می‌توان اشیاء دیگر را نیز به صورت زیر مقدار دهی اولیه کرد:
public class Person
{
   public Address Address { get; set; } = new Address();
}
البته در این حالت باید مفهوم فلسفی «خالی بودن» را پیش خودتان تفسیر و تعریف کنید که دقیقا مقصود از یک آدرس خالی چیست؟ به همین جهت شاید تعریف این شیء به صورت nullable بهتر باشد.
اشتراک‌ها
بومی سازی در برنامه‌های Angular

Part of the new Angular rendering engine, Ivy, includes a new approach to localizing applications — specifically extracting and translating text. This article explains the benefits and some of the implementation of this new approach. 

بومی سازی در برنامه‌های Angular
مطالب
C# 8.0 - Default implementations in interfaces
اگر مطلب «تفاوت بین Interface و کلاس Abstract در چیست؟» را مطالعه کرده باشید، به این نتیجه می‌رسید که طراحی یک کتابخانه‌ی عمومی با اینترفیس‌ها، بسیار شکننده‌است. اگر عضو جدیدی را به یک اینترفیس عمومی اضافه کنیم، تمام پیاده سازی کننده‌های آن‌را از درجه‌ی اعتبار ساقط می‌کند و آن‌ها نیز باید این عضو را حتما پیاده سازی کنند تا برنامه‌ای که پیش از این به خوبی کار می‌کرده، باز هم بدون مشکل کامپایل شده و کار کند. هدف از ویژگی جدید «پیاده سازی‌های پیش‌فرض در اینترفیس‌ها» در C# 8.0، پایان دادن به این مشکل مهم است. با استفاده از این ویژگی جدید، می‌توان یک عضو جدید را با پیاده سازی پیش‌فرضی داخل خود اینترفیس قرار داد. به این ترتیب تمام برنامه‌هایی که از کتابخانه‌های عمومی شما استفاده می‌کنند، با به روز رسانی آن، به یکباره از کار نخواهند افتاد.
همچنین مزیت دیگر آن، انتقال ساده‌تر کدهای جاوا به سی‌شارپ است؛ از این لحاظ که ویژگی مشابهی در زبان جاوا تحت عنوان «Default Methods» سال‌ها است که وجود دارد.


یک مثال از ویژگی «پیاده سازی‌های پیش‌فرض در اینترفیس‌ها»

interface ILogger
{
    void Log(string message);
}

class ConsoleLogger : ILogger
{
    public void Log(string message)
    {
        Console.WriteLine(message);
    }
}
فرض کنید کتابخانه‌ی شما، اینترفیس ILogger را ارائه داده‌است و در برنامه‌ای دیگر، استفاده کننده، کلاس ConsoleLogger را بر مبنای آن پیاده سازی و استفاده کرده‌است.
مدتی بعد بر اساس نیازمندی‌های مشخصی به این نتیجه خواهید رسید که بهتر است overload دیگری را برای متد Log در اینترفیس ILogger، درنظر بگیریم. مشکلی که این تغییر به همراه دارد، کامپایل نشدن کلاس ConsoleLogger در یک برنامه‌ی ثالث است و این کلاس باید الزاما این overload جدید را پیاده سازی کند؛ در غیراینصورت قادر به کامپایل برنامه‌ی خود نخواهد شد. اکنون در C# 8.0 می‌توان برای این نوع تغییرات، در همان اینترفیس اصلی، یک پیاده سازی پیش‌فرض را نیز قرار داد:
interface ILogger
{
    void Log(string message);
    void Log(Exception exception) => Console.WriteLine(exception);
}
به این ترتیب استفاده کنندگان از این اینترفیس، برای کامپایل برنامه‌ی خود به مشکلی برنخواهند خورد و اگر از این overload جدید استفاده کنند، از همان پیاده سازی پیش‌فرض آن بهره خواهند برد. بدیهی است هنوز هم پیاده سازی کننده‌های اینترفیس ILogger می‌توانند پیاده سازی‌های سفارشی خودشان را در مورد این overload جدید ارائه دهند. در این حالت از پیاده سازی پیش‌فرض صرفنظر خواهد شد.


ویژگی «پیاده سازی‌های پیش‌فرض در اینترفیس‌ها» چگونه پیاده سازی شده‌است؟

واقعیت این است که امکان پیاده سازی این ویژگی، سال‌ها است که در سطح کدهای IL دات نت وجود داشته (از زمان دات نت 2) و اکنون از طریق کدهای برنامه با بهبود کامپایلر آن، قابل دسترسی شده‌است.


تاثیر زمینه‌ی کاری بر روی دسترسی به پیاده سازی‌های پیش‌فرض

مثال زیر را درنظر بگیرید:
    interface IDeveloper
    {
        void LearnNewLanguage(string language, DateTime dueDate);

        void LearnNewLanguage(string language)
        {
            // default implementation
            LearnNewLanguage(language, DateTime.Now.AddMonths(6));
        }
    }

    class BackendDev : IDeveloper // compiles OK
    {
        public void LearnNewLanguage(string language, DateTime dueDate)
        {
            // Learning new language...
        }
    }
در اینجا اینترفیس IDeveloper، به همراه یک پیاده سازی پیش‌فرض است و بر این اساس، کلاس BackendDev پیاده سازی کننده‌ی آن، دیگر نیازی به پیاده سازی اجباری متد LearnNewLanguage ای که تنها یک رشته را می‌پذیرد، ندارد.
سؤال: به نظر شما اکنون کدامیک از کاربردهای زیر از کلاس BackendDev، کامپایل می‌شود و کدامیک خیر؟
IDeveloper dev1 = new BackendDev();
dev1.LearnNewLanguage("Rust");

var dev2 = new BackendDev();
dev2.LearnNewLanguage("Rust");
پاسخ: فقط مورد اول. مورد دوم با خطای کامپایلر زیر مواجه خواهد شد:
 There is no argument given that corresponds to the required formal parameter 'dueDate' of 'BackendDev.LearnNewLanguage(string, DateTime)' (CS7036) [ConsoleApp]
به این معنا که اگر کلاس BackendDev را به خودی خود (دقیقا از نوع BackendDev) و بدون معرفی آن از نوع اینترفیس IDeveloper، بکار بگیریم، فقط همان متدهایی که داخل این کلاس تعریف شده‌اند، قابل دسترسی می‌باشند و نه متدهای پیش‌فرض تعریف شده‌ی در اینترفیس مشتق شده‌ی از آن.


ارث‌بری چندگانه چطور؟

احتمالا حدس زده‌اید که این قابلیت ممکن است ارث‌بری چندگانه را که در سی‌شارپ ممنوع است، میسر کند. تا C# 8.0، یک کلاس تنها از یک کلاس دیگر می‌تواند مشتق شود؛ اما این محدودیت در مورد اینترفیس‌ها وجود ندارد. به علاوه تاکنون اینترفیس‌ها مانند کلاس‌ها، امکان تعریف پیاده سازی خاصی را نداشتند و صرفا یک قرارداد بیشتر نبودند. بنابراین اکنون این سؤال مطرح می‌شود که آیا می‌توان با ارائه‌ی پیاده سازی پیش‌فرض متدها در اینترفیس‌ها، ارث‌بری چندگانه را در سی‌شارپ پیاده سازی کرد؛ مانند مثال زیر؟!
using System;

namespace ConsoleApp
{
    public interface IDev
    {
        void LearnNewLanguage(string language) => Console.Write($"Learning {language} in a default way.");
    }

    public interface IBackendDev : IDev
    {
        void LearnNewLanguage(string language) => Console.Write($"Learning {language} in a backend way.");
    }

    public interface IFrontendDev : IDev
    {
        void LearnNewLanguage(string language) => Console.Write($"Learning {language} in a frontend way.");
    }

    public interface IFullStackDev : IBackendDev, IFrontendDev { }

    public class Dev : IFullStackDev { }
}
سؤال: کد فوق بدون مشکل کامپایل می‌شود. اما در فراخوانی زیر، دقیقا از کدام متد LearnNewLanguage استفاده خواهد شد؟ آیا پیاده سازی آن از IBackendDev فراهم می‌شود و یا از IFrontendDev؟
IFullStackDev dev = new Dev();
dev.LearnNewLanguage("TypeScript");
پاسخ: هیچکدام! برنامه با خطای زیر کامپایل نخواهد شد:
The call is ambiguous between the following methods or properties: 'IBackendDev.LearnNewLanguage(string)' and 'IFrontendDev.LearnNewLanguage(string)' (CS0121)
کامپایلر سی‌شارپ در این مورد خاص از قانونی به نام «the most specific override rule» استفاده می‌کند. یعنی اگر برای مثال در IFullStackDev متد LearnNewLanguage به صورت صریحی بازنویسی و تامین شد، آنگاه امکان استفاده‌ی از آن وجود خواهد داشت. یا حتی می‌توان این پیاده سازی را در کلاس Dev نیز ارائه داد و از نوع آن (بجای نوع اینترفیس) استفاده کرد.


تفاوت امکانات کلاس‌های Abstract با متدهای پیش‌فرض اینترفیس‌ها چیست؟

اینترفیس‌ها هنوز نمی‌توانند مانند کلاس‌ها، سازنده‌ای را تعریف کنند. نمی‌توانند متغیرها/فیلدهایی را در سطح اینترفیس داشته باشند. همچنین در اینترفیس‌ها همه‌چیز public است و امکان تعریف سطح دسترسی دیگری وجود ندارد.
بنابراین باید بخاطر داشت که هدف از تعریف اینترفیس‌ها، ارائه‌ی «یک رفتار» است و هدف از تعریف کلاس‌ها، ارائه «یک حالت».


یک نکته: در نگارش‌های پیش از C# 8.0 هم می‌توان ویژگی «متدهای پیش‌فرض» را شبیه سازی کرد

واقعیت این است که توسط ویژگی «متدهای الحاقی»، سال‌ها است که امکان افزودن «متدهای پیش‌فرضی» به اینترفیس‌ها در زبان سی‌شارپ وجود دارد:
namespace MyNamespace
{
    public interface IMyInterface
    {
        IList<int> Values { get; set; }
    }

    public static class MyInterfaceExtensions
    {
        public static int CountGreaterThan(this IMyInterface myInterface, int threshold)
        {
            return myInterface.Values?.Where(p => p > threshold).Count() ?? 0;
        }
    }
}
و در این حالت هرچند به نظر اینترفیس IMyInterface دارای متدی نیست، اما فراخوانی زیر مجاز است:
var myImplementation = new MyInterfaceImplementation();
// Note that there's no typecast to IMyInterface required
var countGreaterThanFive = myImplementation.CountGreaterThan(5);
اشتراک‌ها
ReSharper Ultimate 2019.2 منتشر شد
  • Smart support for C# 8.0 language features such as indices, ranges, and unmanaged generic structs, as well as many new quick-fixes, inspections, and context actions. 
ReSharper Ultimate 2019.2 منتشر شد
اشتراک‌ها
NET 8.0.10. منتشر شد
.NET 8.0.10 - October 08, 2024
The .NET 8.0.10 and .NET SDK 8.0.403 releases are available for download. The latest 8.0 release is always listed at .NET 8.0 Releases.
NET 8.0.10. منتشر شد
اشتراک‌ها
معرفی 3 ویژگی جدید در C# 8.0

C# is rapidly approaching its third decade of life. Originally released in 2000, the language has grown and changed across 7 major versions. Once a knock off of Java in all but name has jumped out ahead on many aspects. 

معرفی 3 ویژگی جدید در C# 8.0