مطالب
WF:Windows Workflow #۶
در این قسمت به تکمیل مثالی که در قسمت قبل زده شد پرداخته می‌شود و همچنین کنترل‌های Foreach , Try Catch نیز بررسی خواهند شد.
در ابتدا دو کلاس به نام‌های ItemInfo و OutOfStockException  را به برنامه اضافه می‌کنیم. کلاس اول برای ذخیره سازی مشخصات هر سفارش و کلاس دیگر برای مدیریت خطا‌ها می‌باشد.
public class ItemInfo
    {
        public string ItemCode { get; set; } 
        public string Description { get; set; } 
        public decimal Price { get; set; }
    }

public class OutOfStockException : Exception
    {
        public OutOfStockException() 
            : base() 
        { 

        }

        public OutOfStockException(string message) 
            : base(message) 
        { 

        }
    }
در Workflow مورد نظر که به نام OrderWF.xaml می‌باشد٬ پس از کنترل Assign که برای صفر کردن مقدار متغیر TotalAmount از آن استفاده می‌شود٬ یک کنترل ForEach را به Flow جاری اضافه می‌کنیم. این کنترل دارای دو خاصیت به نام‌های Type Arguments و Values می‌باشد. اولین خاصیت که مقدار پیش فرض آن، مقدار عددی Int32 است٬ برای مشخص کردن نوع متغییر حلقه و دیگری برای مشخص کردن نوع منبع داده حلقه تعریف شده‌اند.

همانطور که در شکل بالا مشخص می‌باشد٬ Type Arguments حلقه برابر با کلاس OrderItem می‌باشد. Values هم برابر با OrderInfo.Items است. از این جهت نوع حلقه  را از جنس کلاس OrderItem مشخص کرد‌‌ه‌ایم تا کنترل بر روی مقادیر Items اجرا شود (لیستی از کلاس مورد نظر).
حال همانند شکل بالا، در قسمت Body کنترل ForEach، یک کنترل Sequence را ایجاد کرده و سپس برای اینکه کنترل LookupItem را ایجاد کنیم٬ ابتدا باید یک Code Activity را به پروژه اضافه کنیم. به همین منظور پروژه جاری را انتخاب کرده و یک Code Activity به آن اضافه و نام آن را LookupItem  می‌گذاریم. سپس کد زیر را به آن اضافه می‌کنیم:
 public sealed class LookupItem : CodeActivity
    {
        // Define an activity input argument of type string
        public InArgument<string> ItemCode { get; set; }         
        public OutArgument<ItemInfo> Item { get; set; }

        // If your activity returns a value, derive from CodeActivity<TResult>
        // and return the value from the Execute method.
        protected override void Execute(CodeActivityContext context)
        {
            // Obtain the runtime value of the Text input argument
            ItemInfo i = new ItemInfo();             
            i.ItemCode = context.GetValue<string>(ItemCode);
            switch (i.ItemCode)
            {

                case "12345": 
                    i.Description = "Widget"; 
                    i.Price = (decimal)10.0; 
                    break;
                case "12346": 
                    i.Description = "Gadget"; 
                    i.Price = (decimal)15.0; 
                    break;
                case "12347": 
                    i.Description = "Super Gadget"; 
                    i.Price = (decimal)25.0; break;
            }
     
            context.SetValue(this.Item, i);
            
        }
    }
در این کد، دو متغییر تعریف شده‌اند؛ یکی از نوع رشته بوده و از طریق آن، دستور Switch تصمیم می‌گیرد که کلاس ItemInfo را با چه مقادیری پرکند. متغییر دیگر از نوع کلاس  ItemInfo می‌باشد و برای گرفتن مقدار کلاس از دستور Switch تعریف شده است.
حال برای اینکه بتوانیم از Code Activity مورد نظر استفاده کنیم٬ ابتدا باید پروژه را یکبار Build کنیم. اکنون در قسمت Toolbox یک٬ Tab ایی به نام پروژه ایجاد شده است و در آن یک کنترل به نام  LookupItem  موجود می‌باشد. آن را گرفته و به درون Sequence انتقال می‌دهیم.
سپس برای مقدار دادن به متغیر‌های تعریف شده در Code Activity، کنترل LookupItem را انتخاب کرده و در قسمت Properties به خصوصیت ItemCode، کد زیر را اضافه می‌کنیم:
item.ItemCode

نکته
: از کلاس Code Activity برای ارسال و دریافت مقادیر به درون Workflow استفاده می‌شود.

 Try Catch 
از این کنترل برای مدیریت خطا‌ها استفاده می‌شود.
ابتدا یک کنترل Try Catch را به Workflow اضافه کرده، مانند شکل زیر:

در بدنه Try می‌توان از کنترل‌های مورد نظر استفاده کنیم و همانطور که در شکل بالا مشخص است٬ از کنترل Throw برای ایجاد خطا استفاده شده‌است. کنترل جاری را انتخاب کرده و از قسمت Properties در خاصیت Exception کد زیر را اضافه می‌کنیم:
new OutOfStockException("Item Code"+item.ItemCode)
این  دستور باعث ایجاد یک خطا از نوع کلاس OutOfStockException می‌شود. برای کنترل خطای مورد نظر در قسمت Catches مانند شکل زیر عمل می‌کنیم.

مطالب
Roslyn #5
بررسی Semantic Models

همانطور که از قسمت قبل به‌خاطر دارید، برای دسترسی به اطلاعات semantics، نیاز به یک context مناسب که همان Compilation API است، می‌باشد. این context دارای اطلاعاتی مانند دسترسی به تمام نوع‌های تعریف شده‌ی توسط کاربر و متادیتاهای ارجاعی، مانند کلاس‌های پایه‌ی دات نت فریم‌ورک است. بنابراین پس از ایجاد وهله‌ای از Compilation API، کار با فراخوانی متد GetSemanticModel آن ادامه می‌یابد. در ادامه با مثال‌هایی، کاربرد این متد را بررسی خواهیم کرد.


ساختار جدید Optional

خروجی‌های تعدادی از متدهای Roslyn با ساختار جدیدی به نام Optional ارائه می‌شوند:
    public struct Optional<T>
    {
        public bool HasValue { get; }
        public T Value { get; }
    }
این ساختار که بسیار شبیه است به ساختار قدیمی <Nullable<T، منحصر به Value types نیست و Reference types را نیز شامل می‌شود و بیانگر این است که آیا یک Reference type، واقعا مقدار دهی شده‌است یا خیر؟


دریافت مقادیر ثابت Literals

فرض کنید می‌خواهیم مقدار ثابت ; int x = 42 را دریافت کنیم. برای اینکار ابتدا باید syntax tree آن تشکیل شود و سپس نیاز به یک سری حلقه و if و else و همچنین بررسی نال بودن بسیاری از موارد است تا به نود مقدار ثابت 42 برسیم. سپس متد GetConstantValue مربوط به GetSemanticModel را بر روی آن فراخوانی می‌کنیم تا به مقدار واقعی آن که ممکن است در اثر محاسبات جاری تغییر کرده باشد، برسیم.
اما روش بهتر و توصیه شده، استفاده از CSharpSyntaxWalker است که در انتهای قسمت سوم معرفی شد:
class ConsoleWriteLineWalker : CSharpSyntaxWalker
{
    public ConsoleWriteLineWalker()
    {
        Arguments = new List<ExpressionSyntax>();
    }
 
    public List<ExpressionSyntax> Arguments { get; }
 
    public override void VisitInvocationExpression(InvocationExpressionSyntax node)
    {
        var member = node.Expression as MemberAccessExpressionSyntax;
        var type = member?.Expression as IdentifierNameSyntax;
        if (type != null && type.Identifier.Text == "Console" && member.Name.Identifier.Text == "WriteLine")
        {
            if (node.ArgumentList.Arguments.Count == 1)
            {
                var arg = node.ArgumentList.Arguments.Single().Expression;
                Arguments.Add(arg);
                return;
            }
        }
 
        base.VisitInvocationExpression(node);
    }
}
اگر به کدهای ادامه‌ی بحث دقت کنید، قصد داریم مقادیر ثابت آرگومان‌های Console.WriteLine را استخراج کنیم. به همین جهت در این SyntaxWalker، نوع Console و متد WriteLine آن مورد بررسی قرار گرفته‌اند. اگر این نود دارای یک تک آرگومان بود، آین آرگومان استخراج شده و به لیست آرگومان‌های خروجی این کلاس اضافه می‌شود.
در ادامه نحوه‌ی استفاده‌ی از این SyntaxWalker را ملاحظه می‌کنید. در اینجا ابتدا سورس کدی حاوی یک سری Console.WriteLine که دارای تک آرگومان‌های ثابتی هستند، تبدیل به syntax tree می‌شود. سپس از روی آن CSharpCompilation تولید می‌گردد تا بتوان به اطلاعات semantics دسترسی یافت:
static void getConstantValue()
{
    // Get the syntax tree.
    var code = @"
                using System;
 
                class Foo
                {
                    void Bar(int x)
                    {
                        Console.WriteLine(3.14);
                        Console.WriteLine(""qux"");
                        Console.WriteLine('c');
                        Console.WriteLine(null);
                        Console.WriteLine(x * 2 + 1);
                    }
                }
                ";
 
    var tree = CSharpSyntaxTree.ParseText(code);
    var root = tree.GetRoot();
 
    // Get the semantic model from the compilation.
    var mscorlib = MetadataReference.CreateFromFile(typeof(object).Assembly.Location);
    var comp = CSharpCompilation.Create("Demo").AddSyntaxTrees(tree).AddReferences(mscorlib);
    var model = comp.GetSemanticModel(tree);
 
    // Traverse the tree.
    var walker = new ConsoleWriteLineWalker();
    walker.Visit(root);
 
 
    // Analyze the constant argument (if any).
    foreach (var arg in walker.Arguments)
    {
        var val = model.GetConstantValue(arg);
        if (val.HasValue)
        {
            Console.WriteLine(arg + " has constant value " + (val.Value ?? "null") + " of type " + (val.Value?.GetType() ?? typeof(object)));
        }
        else
        {
            Console.WriteLine(arg + " has no constant value");
        }
    }
}
در ادامه با استفاده از CSharpCompilation و متد GetSemanticModel آن به SemanticModel جاری دسترسی خواهیم یافت. اکنون SyntaxWalker را وارد به حرکت بر روی ریشه‌ی syntax tree سورس کد آنالیز شده می‌کنیم. به این ترتیب لیست آرگومان‌های متدهای Console.WriteLine بدست می‌آیند. سپس با فراخوانی متد model.GetConstantValue بر روی هر آرگومان دریافتی، مقادیر آن‌ها با فرمت <Optional<T استخراج می‌شوند.
خروجی نمایش داده شده‌ی توسط برنامه به صورت ذیل است:
 3.14 has constant value 3.14 of type System.Double
"qux" has constant value qux of type System.String
'c' has constant value c of type System.Char
null has constant value null of type System.Object
x * 2 + 1 has no constant value


درک مفهوم Symbols

اینترفیس ISymbol در Roslyn، ریشه‌ی تمام Symbolهای مختلف مدل سازی شده‌ی در آن است که تعدادی از آن‌ها را در تصویر ذیل مشاهده می‌کنید:


API کار با Symbols بسیار شبیه به API کار با Reflection است با این تفاوت که در زمان آنالیز کدها رخ می‌دهد و نه در زمان اجرای برنامه. همچنین در Symbols API امکان دسترسی به اطلاعاتی مانند locals, labels و امثال آن نیز وجود دارد که با استفاده از Reflection زمان اجرای برنامه قابل دسترسی نیستند. برای مثال فضاهای نام در Reflection صرفا به صورت رشته‌ای، با دات جدا شده از نوع‌های آنالیز شده‌ی توسط آن است؛ اما در اینجا مطابق تصویر فوق، یک اینترفیس مجزای خاص خود را دارد. جهت سهولت کار کردن با Symbols، الگوی Visitor با معرفی کلاس پایه‌ی SymbolVisitor نیز پیش بینی شده‌است.
static void workingWithSymbols()
{
    // Get the syntax tree.
    var code = @"
                using System;
 
                class Foo
                {
                    void Bar(int x)
                    {
                        // #insideBar
                    }
                }
 
                class Qux
                {
                    protected int Baz { get; set; }
                }
                ";
 
    var tree = CSharpSyntaxTree.ParseText(code);
    var root = tree.GetRoot();
 
    // Get the semantic model from the compilation.
    var mscorlib = MetadataReference.CreateFromFile(typeof(object).Assembly.Location);
    var comp = CSharpCompilation.Create("Demo").AddSyntaxTrees(tree).AddReferences(mscorlib);
    var model = comp.GetSemanticModel(tree);
 
    // Traverse enclosing symbol hierarchy.
    var cursor = code.IndexOf("#insideBar");
    var barSymbol = model.GetEnclosingSymbol(cursor);
    for (var symbol = barSymbol; symbol != null; symbol = symbol.ContainingSymbol)
    {
        Console.WriteLine(symbol);
    }
 
    // Analyze accessibility of Baz inside Bar.
    var bazProp = ((CompilationUnitSyntax)root)
        .Members.OfType<ClassDeclarationSyntax>()
        .Single(m => m.Identifier.Text == "Qux")
        .Members.OfType<PropertyDeclarationSyntax>()
        .Single();
    var bazSymbol = model.GetDeclaredSymbol(bazProp);
    var canAccess = model.IsAccessible(cursor, bazSymbol);
}
یکی از کاربردهای مهم Symbols API دریافت اطلاعات Symbols نقطه‌ای خاص از کدها می‌باشد. برای مثال در محل اشاره‌گر ادیتور، چه Symbols ایی تعریف شده‌اند و از آن‌ها در مباحث ساخت افزونه‌های آنالیز کدها زیاد استفاده می‌شود. نمونه‌ای از آن‌را در قطعه کد فوق ملاحظه می‌کنید. در اینجا با استفاده از متد GetEnclosingSymbol، سعی در یافتن Symbols قرار گرفته‌ی در ناحیه‌ی insideBar# کدهای فوق داریم؛ با خروجی ذیل که نام demo.exe آن از نام CSharpCompilation آن گرفته شده‌است:
 Foo.Bar(int)
Foo
<global namespace>
Demo.exe
Demo, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null


همچنین در ادامه‌ی کد، توسط متد IsAccessible قصد داریم بررسی کنیم آیا Symbol قرار گرفته در محل کرسر، دسترسی به خاصیت protected کلاس Qux را دارد یا خیر؟ که پاسخ آن خیر است.


آشنایی با Binding symbols

یکی از مراحل کامپایل کد، binding نام دارد و در این مرحله است که اطلاعات Symbolic هر نود از Syntax tree دریافت می‌شود. برای مثال در اینجا مشخص می‌شود که این x، آیا یک متغیر محلی است، یا یک فیلد و یا یک خاصیت؟
مثال ذیل بسیار شبیه است به مثال getConstantValue ابتدای بحث، با این تفاوت که در حلقه‌ی آخر کار از متد GetSymbolInfo استفاده شده‌است:
static void bindingSymbols()
{
    // Get the syntax tree.
    var code = @"
                using System;
 
                class Foo
                {
                    private int y;
 
                    void Bar(int x)
                    {
                        Console.WriteLine(x);
                        Console.WriteLine(y);
 
                        int z = 42;
                        Console.WriteLine(z);
 
                        Console.WriteLine(a);
                    }
                }";
 
    var tree = CSharpSyntaxTree.ParseText(code);
    var root = tree.GetRoot();
 
    // Get the semantic model from the compilation.
    var mscorlib = MetadataReference.CreateFromFile(typeof(object).Assembly.Location);
    var comp = CSharpCompilation.Create("Demo").AddSyntaxTrees(tree).AddReferences(mscorlib);
    var model = comp.GetSemanticModel(tree);
 
    // Traverse the tree.
    var walker = new ConsoleWriteLineWalker();
    walker.Visit(root);
 
    // Bind the arguments.
    foreach (var arg in walker.Arguments)
    {
        var symbol = model.GetSymbolInfo(arg);
        if (symbol.Symbol != null)
        {
            Console.WriteLine(arg + " is bound to " + symbol.Symbol + " of type " + symbol.Symbol.Kind);
        }
        else
        {
            Console.WriteLine(arg + " could not be bound");
        }
    }
}
با این خروجی:
 x is bound to int of type Parameter
y is bound to Foo.y of type Field
z is bound to z of type Local
a could not be bound
در مثال فوق، با استفاده از Syntax Walker طراحی شده در ابتدای بحث که کار استخراج آرگومان‌های متدهای Console.WriteLine را انجام می‌دهد، قصد داریم بررسی کنیم، هر آرگومان به چه Symbol ایی بایند شده‌است و نوعش چیست؟ برای مثال Console.WriteLine اول که از پارامتر x استفاده می‌کند، نوع x مورد استفاده‌اش چیست؟ آیا فیلد است، متغیر محلی است یا یک پارامتر؟ این اطلاعات را با استفاده از متد model.GetSymbolInfo می‌توان استخراج کرد.
مطالب
C# 7 - Throw Expressions
در طراحی زبان #C، واژه‌ی کلیدی throw همیشه یک statement بوده‌است و نه یک expression. برای مثال از آن نمی‌توان در قطعه کدهای شرطی و عبارات lambda استفاده کرد. برای رفع این محدودیت، در C# 7 کار معرفی «throw expressions» صورت گرفته‌است.


throw expressions در C# 7

روش تعریف throw expressions همانند روش متداول تعریف آن‌ها است و از این لحاظ تغییری صورت نگرفته‌است. تنها تغییر انجام شده، امکان استفاده‌ی از آن در محل‌هایی است که پیشتر مجاز نبوده‌است.
برای نمونه قطعه کد متداول ذیل را درنظر بگیرید:
public class MyApiType
{
    private object _loadedResource;
    private object _someProperty;
 
    public MyApiType()
    {
        _loadedResource = LoadResource();
        if (_loadedResource == null) throw new InvalidOperationException();
    }
 
    public object SomeProperty
    {
        get
        {
            return _someProperty;
        }
 
        set
        {
            if (value == null) throw new ArgumentNullException();
            _someProperty = value;
        }
    }
}
در اینجا با روش fail fast، کار بررسی null بودن مقادیر دریافتی در سازنده و همچنین یک خاصیت، صورت گرفته‌اند و در صورت نال بودن، یک استثناء صادر می‌شود.
اکنون در C# 7 می‌توان قطعه کد فوق را به صورت ذیل خلاصه کرد:
public class MyApiType
{
    private object _loadedResource = LoadResource() ?? throw new InvalidOperationException();
    private object _someProperty;
 
    public object SomeProperty
    {
        get
        {
            return _someProperty;
        } 
        set
        {
            _someProperty = value ?? throw new ArgumentNullException();
        }
    }
}
از این جهت که واژه‌ی کلیدی throw در C#7 هم statement است و هم expression، اکنون می‌توان از آن در عبارات شرطی و همچنین null-coalescing expressions نیز استفاده کرد. به علاوه امکان استفاده‌ی از آن‌را در یک «initialization expression» مانند loadedResource_ نیز مشاهده می‌کنید.

به علاوه اگر نکات «Expression-bodied Members» را نیز اعمال کنیم، اینبار به قطعه کد خلاصه‌تر ذیل خواهیم رسید:
public class MyApiType
{
    private object _loadedResource = LoadResource() ?? throw new InvalidOperationException();
    private object _someProperty;
 
    public object SomeProperty
    {
        get => _someProperty;
        set => _someProperty = value ?? throw new ArgumentNullException();
    }
}


یک مثال ترکیبی دیگر

قطعا تا پیش از C# 7 یک چنین بررسی‌های شرطی را در حین تزریق وابستگی‌ها، در سازنده‌ی کلاس‌های سرویس خود انجام داده‌اید:
public partial class ShippingAddressPage
{
    private readonly IWebDriver driver;
    public ShippingAddressPage(IWebDriver driver)
    {
        if (driver == null)
        {
            throw new ArgumentNullException(nameof(driver));
        }
        this.driver = driver;
    }
}
اکنون در C# 7 می‌توان قطعه کد فوق را به صورت ذیل خلاصه کرد:
public partial class ShippingAddressPage
{
    private readonly IWebDriver driver;
    public ShippingAddressPage(IWebDriver driver) =>
      this.driver = driver ?? throw new ArgumentNullException(nameof(driver));
}
که ترکیبی است از throw expressions و همچنین Expression-bodied Members.


مثالی از کاربرد throw expressions در یک conditional ternary operator

private static int ThrowUsageInAnExpression(int value = 40)
{
    return value < 20 ? value : throw new ArgumentOutOfRangeException("Argument value must be less than 20");
}
مثال‌هایی را که تا اینجا بررسی کردیم بیشتر به null-coalescing expressions مرتبط بودند. در اینجا یک نمونه کاربرد throw expression را در یک conditional ternary operator مشاهده می‌کنید.
نظرات مطالب
C# 12.0 - Primary Constructors
یک نکته‌ی تکمیلی: در C# 12 می‌توان کلاس‌ها، structها و interfaceهای بدون بدنه داشت!

اگر به متن دقت کرده باشید، یک چنین تعریفی هم در آن هست:
public class MyBaseClass(string s); // no body required
این مورد هم جزو تازه‌های C# 12 است. برای مثال بجای {}class Foo می‌توان نوشت ;class Foo. تمام موارد زیر در C# 12 مجاز هستند:
class Foo;

struct Bar;

interface IFoo;
معمولا از اینترفیس‌های بدون بدنه برای علامتگذاری یک‌سری کلاس‌ها و یافتن ساده‌تر آن‌ها از طریق Reflection استفاده می‌شود.
مطالب
پیاده سازی INotifyPropertyChanged با استفاده از Unity Container
AOP یکی از فناوری‌های مرتبط با توسعه نرم افزار محسوب می‌شود که توسط آن می‌توان اعمال مشترک و متداول موجود در برنامه را در یک یا چند ماژول مختلف قرار داد (که به آن‌ها Aspects نیز گفته می‌شود) و سپس آن‌ها را به مکان‌های مختلفی در برنامه متصل ساخت. عموما Aspects، قابلیت‌هایی را که قسمت عمده‌ای از برنامه را تحت پوشش قرار می‌دهند، کپسوله می‌کنند. اصطلاحا به این نوع قابلیت‌های مشترک، تکراری و پراکنده مورد نیاز در قسمت‌های مختلف برنامه، Cross cutting concerns نیز گفته می‌شود؛ مانند اعمال ثبت وقایع سیستم، امنیت، مدیریت تراکنش‌ها و امثال آن. با قرار دادن این نیازها در Aspects مجزا، می‌توان برنامه‌ای را تشکیل داد که از کدهای تکراری عاری است.

پیاده سازی INotifyPropertyChanged یکی از این مسائل می‌باشد که می‌توان آن را در یک Aspect محصور و در ماژول‌های مختلف استفاده کرد.

مسئله:
کلاس زیر مفروض است:
public class Foo
{
        public virtual int Id { get; set; }

        public virtual string Name { get; set; }
}
اکنون می‌خواهیم  کلاس Foo را به INotifyPropertyChanged مزین، و  یک Subscriber به قسمت set پراپرتی‌های کلاس‌ تزریق کنیم.

راه حل:
ابتدا پکیچ‌های Unity را از Nuget دریافت کنید:
PM> Install-Package Unity.Interception
این پکیچ وابستگی‌های خود را که Unity و CommonServiceLocator هستند نیز دریافت می‌کند.

حال یک Interceptor که اینترفیس IInterceptionBehavior را پیاده سازی می‌کند، می‌نویسیم:
namespace NotifyPropertyChangedInterceptor.Interceptions
{
    using System;
    using System.Collections.Generic;
    using System.ComponentModel;
    using System.Reflection;
    using Microsoft.Practices.Unity.InterceptionExtension;

    class NotifyPropertyChangedBehavior : IInterceptionBehavior
    {
        private event PropertyChangedEventHandler PropertyChanged;

        private readonly MethodInfo _addEventMethodInfo =
            typeof(INotifyPropertyChanged).GetEvent("PropertyChanged").GetAddMethod();

        private readonly MethodInfo _removeEventMethodInfo =
            typeof(INotifyPropertyChanged).GetEvent("PropertyChanged").GetRemoveMethod();

        
        public IMethodReturn Invoke(IMethodInvocation input, GetNextInterceptionBehaviorDelegate getNext)
        {
            if (input.MethodBase == _addEventMethodInfo)
            {
                return AddEventSubscription(input);
            }

            if (input.MethodBase == _removeEventMethodInfo)
            {
                return RemoveEventSubscription(input);
            }
            
            if (IsPropertySetter(input))
            {
                return InterceptPropertySet(input, getNext);
            }
            
            return getNext()(input, getNext);
        }

        public bool WillExecute
        {
            get { return true; }
        }

        public IEnumerable<Type> GetRequiredInterfaces()
        {
            yield return typeof(INotifyPropertyChanged);
        }

        private IMethodReturn AddEventSubscription(IMethodInvocation input)
        {
            var subscriber = (PropertyChangedEventHandler)input.Arguments[0];
            PropertyChanged += subscriber;

            return input.CreateMethodReturn(null);
        }

        private IMethodReturn RemoveEventSubscription(IMethodInvocation input)
        {
            var subscriber = (PropertyChangedEventHandler)input.Arguments[0];
            PropertyChanged -= subscriber;

            return input.CreateMethodReturn(null);
        }

        private bool IsPropertySetter(IMethodInvocation input)
        {
            return input.MethodBase.IsSpecialName && input.MethodBase.Name.StartsWith("set_");
        }

        private IMethodReturn InterceptPropertySet(IMethodInvocation input, GetNextInterceptionBehaviorDelegate getNext)
        {
            var propertyName = input.MethodBase.Name.Substring(4);

            var subscribers = PropertyChanged;
            if (subscribers != null)
            {
                subscribers(input.Target, new PropertyChangedEventArgs(propertyName));
            }

            return getNext()(input, getNext);
        }
    }
}

متد Invoke : این متد Behavior مورد نظر را پردازش می‌کند (در اینجا، تزریق یک Subscriber در قسمت set پراپرتی ها).
متد GetRequiredInterfaces : یک روش است برای یافتن کلاس هایی که با اینترفیس IInterceptionBehavior مزین شده‌اند.
پراپرتی WillExecute : ابن پراپرتی به Unity می‌گوید که این Behavior اعمال شود یا نه. اگر مقدار برگشتی آن false باشد، متد Invoke اجرا نخواهد شد.
همانطور که در متد Invoke مشاهد می‌کنید، شرط هایی برای افزودن و حذف یک  Subscriber و چک کردن متد set نوشته شده و در غیر این صورت کنترل به متد بعدی داده می‌شود.

اتصال Interceptor به کلاس ها
در ادامه Unity را برای ساخت یک نمونه از کلاس پیکربندی می‌کنیم:
var container = new UnityContainer();

container.RegisterType<Foo, Foo>(
                new AdditionalInterface<INotifyPropertyChanged>(),
                new Interceptor<VirtualMethodInterceptor>(),
                new InterceptionBehavior<NotifyPropertyChangedBehavior>())
                .AddNewExtension<Interception>();
توسط متد RegisterType یک Type را با پیکربندی دلخواه به Unity معرفی می‌کنیم. در اینجا به ازای درخواست Foo (اولین پارامتر جنریک)، یک Foo (دومین پارامتر جنریک ) برگشت داده می‌شود. این متد تعدادی InjetctionMember (بصورت params) دریافت می‌کند که در این مثال سه InjetctionMember  به آن پاس داه شده است:
  • Interceptor : اطلاعاتی در مورد IInterceptor و نحوه‌ی Intercept یک شیء را نگه داری می‌کند. در اینجا از  VirtualMethodInterceptor برای تزریق کد استفاده شده.
  • InterceptionBehavior : این کلاس Behavior مورد نظر را به کلاس تزریق می‌کند.
  • AddintionalInterface  : کلاس target را مجبور به پیاده سازی اینترفیس دریافتی از پارامتر می‌کند.  اگر کلاس behavior، متد  GetRequiredInterfaces  اینترفیس INotifyPropertyChanged را برمی گرداند، نیازی نیست از AddintionalInterface در پارامتر متد فوق استفاده کنید. 

نکته :
کلاس VirtualMethodInterceptor فقط اعضای virtual را تحت تاثیر قرار می‌دهد.
اکنون نحوه‌ی ساخت یک نمونه از کلاس Foo به شکل زیر است:
var foo = container.Resolve<Foo>();
(foo as INotifyPropertyChanged).PropertyChanged += FooPropertyChanged;
private void FooPropertyChanged (object sender, PropertyChangedEventArgs e)
 {
      // Do some things.......
 }

نکته‌ی تکمیلی
طبق مستندات MSDN، کلاس VirtualMethodInterceptor  یک کلاس جدید مشتق شده از کلاس target (در اینجا Foo) می‌سازد. بنابراین اگر کلاس‌های شما دارای Data annotation و یا در کلاس‌های Mapper یک ORM استفاده شده‌اند (مانند کلاس‌های لایه Domain)، بجای  VirtualMethodInterceptor  از TransparentProxyInterceptor استفاده کنید.
سرعت اجرای VirtualMethodInterceptor سریعتر است ؛ اما به یاد داشته که برای استفاده از  TransparentProxyInterceptor  باید کلاس target از کلاس MarshalByRefObject ارث بری کند.
نظرات اشتراک‌ها
روش امن نگهداری پسورد کاربران
پیاده سازی روش گفته شده در این سایت :
/* 
 * Password Hashing With PBKDF2 (http://crackstation.net/hashing-security.htm).
 * Copyright (c) 2013, Taylor Hornby
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, 
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation 
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
 * POSSIBILITY OF SUCH DAMAGE.
 */

using System;
using System.Text;
using System.Security.Cryptography;

namespace PasswordHash
{
    /// <summary>
    /// Salted password hashing with PBKDF2-SHA1.
    /// Author: havoc AT defuse.ca
    /// www: http://crackstation.net/hashing-security.htm
    /// Compatibility: .NET 3.0 and later.
    /// </summary>
    public class PasswordHash
    {
        // The following constants may be changed without breaking existing hashes.
        public const int SALT_BYTE_SIZE = 24;
        public const int HASH_BYTE_SIZE = 24;
        public const int PBKDF2_ITERATIONS = 1000;

        public const int ITERATION_INDEX = 0;
        public const int SALT_INDEX = 1;
        public const int PBKDF2_INDEX = 2;

        /// <summary>
        /// Creates a salted PBKDF2 hash of the password.
        /// </summary>
        /// <param name="password">The password to hash.</param>
        /// <returns>The hash of the password.</returns>
        public static string CreateHash(string password)
        {
            // Generate a random salt
            RNGCryptoServiceProvider csprng = new RNGCryptoServiceProvider();
            byte[] salt = new byte[SALT_BYTE_SIZE];
            csprng.GetBytes(salt);

            // Hash the password and encode the parameters
            byte[] hash = PBKDF2(password, salt, PBKDF2_ITERATIONS, HASH_BYTE_SIZE);
            return PBKDF2_ITERATIONS + ":" +
                Convert.ToBase64String(salt) + ":" +
                Convert.ToBase64String(hash);
        }

        /// <summary>
        /// Validates a password given a hash of the correct one.
        /// </summary>
        /// <param name="password">The password to check.</param>
        /// <param name="correctHash">A hash of the correct password.</param>
        /// <returns>True if the password is correct. False otherwise.</returns>
        public static bool ValidatePassword(string password, string correctHash)
        {
            // Extract the parameters from the hash
            char[] delimiter = { ':' };
            string[] split = correctHash.Split(delimiter);
            int iterations = Int32.Parse(split[ITERATION_INDEX]);
            byte[] salt = Convert.FromBase64String(split[SALT_INDEX]);
            byte[] hash = Convert.FromBase64String(split[PBKDF2_INDEX]);

            byte[] testHash = PBKDF2(password, salt, iterations, hash.Length);
            return SlowEquals(hash, testHash);
        }

        /// <summary>
        /// Compares two byte arrays in length-constant time. This comparison
        /// method is used so that password hashes cannot be extracted from
        /// on-line systems using a timing attack and then attacked off-line.
        /// </summary>
        /// <param name="a">The first byte array.</param>
        /// <param name="b">The second byte array.</param>
        /// <returns>True if both byte arrays are equal. False otherwise.</returns>
        private static bool SlowEquals(byte[] a, byte[] b)
        {
            uint diff = (uint)a.Length ^ (uint)b.Length;
            for (int i = 0; i < a.Length && i < b.Length; i++)
                diff |= (uint)(a[i] ^ b[i]);
            return diff == 0;
        }

        /// <summary>
        /// Computes the PBKDF2-SHA1 hash of a password.
        /// </summary>
        /// <param name="password">The password to hash.</param>
        /// <param name="salt">The salt.</param>
        /// <param name="iterations">The PBKDF2 iteration count.</param>
        /// <param name="outputBytes">The length of the hash to generate, in bytes.</param>
        /// <returns>A hash of the password.</returns>
        private static byte[] PBKDF2(string password, byte[] salt, int iterations, int outputBytes)
        {
            Rfc2898DeriveBytes pbkdf2 = new Rfc2898DeriveBytes(password, salt);
            pbkdf2.IterationCount = iterations;
            return pbkdf2.GetBytes(outputBytes);
        }
    }
}
مطالب
C# 7 - Local Functions
توابع محلی، امکان تعریف یک تابع را درون یک متد، فراهم می‌کنند. هدف آن‌ها تدارک توابعی کمکی است که به سایر قسمت‌های کلاس مرتبط نمی‌شوند. برای مثال اگر متدی نیاز به کار با یک private method دیگر را دارد و این متد خصوصی در جای دیگری استفاده نمی‌شود، می‌توان جهت بالابردن خوانایی برنامه و سهولت یافتن متد مرتبط، این متد خصوصی را تبدیل به یک تابع محلی، درون همان متد کرد.
static void Main(string[] args)
{
    int Add(int a, int b)
    {
        return a + b;
    }
 
    Console.WriteLine(Add(3, 4)); 
}


بازنویسی کدهای C# 6 با توابع محلی C# 7

کلاس زیر را که بر اساس امکانات C# 6 تهیه شده‌است، در نظر بگیرید:
public class PersonWithPrivateMethod
{
    public string Name { get; set; }
    public int Age { get; set; }

    public override string ToString()
    {
        string ageSuffix = GenerateAgeSuffix(Age);
        return $"{Name} is {Age} year{ageSuffix} old";
    }

    private string GenerateAgeSuffix(int age)
    {
        return age > 1 ? "s" : "";
    }
}
متد خصوصی همین کلاس را توسط Func delegates می‌توان به صورت ذیل خلاصه کرد (باز هم بر اساس امکانات C# 6):
public class PersonWithLocalFuncDelegate
{
    public string Name { get; set; }
    public int Age { get; set; }

    public override string ToString()
    {
        Func<int, string> generateAgeSuffix = age => age > 1 ? "s" : "";
        return $"{Name} is {Age} year{generateAgeSuffix(Age)} old";
    }
}
به این ترتیب نیاز به تعریف یک متد private دیگر کمتر خواهد شد.
اکنون در C# 7 می‌توان این Func delegate را به نحو ذیل تبدیل به یک local function کرد:
public class PersonWithLocalFunction
{
    public string Name { get; set; }
    public int Age { get; set; }

    public override string ToString()
    {
        return $"{Name} is {Age} year{GenerateAgeSuffix(Age)} old";
        // Define a local function:
        string GenerateAgeSuffix(int age)
        {
            return age > 1 ? "s" : "";
        }
    }
}


مزیت کار با local functions نسبت به Func delegates محلی

در قطعه کد فوق، کار انجام شده صرفا استفاده‌ی از یک Syntax جدید نیست؛ بلکه از لحاظ کارآیی نیز سربار کمتری را به همراه دارد. زمانیکه Func Delegates تعریف می‌شوند، کار ایجاد یک anonymous type، وهله سازی و فراخوانی آن‌ها توسط کامپایلر صورت می‌گیرد. اما حین کار با توابع محلی، کامپایلر با یک متد استاندارد سروکار دارد و هیچکدام از مراحل یاد شده و سربارهای آن‌ها رخ نمی‌دهند (هیچگونه GC allocation ایی نخواهیم داشت). به علاوه اینبار کامپایلر فرصت in-line تعریف کردن متد را به نحو بهتری یافته و به این ترتیب کار سوئیچ بین متدهای مختلف کاهش پیدا می‌کند که در نهایت سرعت برنامه را افزایش می‌دهند.


میدان دید توابع محلی

البته با توجه به اینکه متد مثال فوق محلی است، به تمام متغیرها و پارامترهای متد دربرگیرنده‌ی آن نیز دسترسی دارد. بنابراین می‌توان پارامتر int age آن‌را نیز حذف کرد:
public class PersonWithLocalFunctionEnclosing
{
    public string Name { get; set; }
    public int Age { get; set; }

    public override string ToString()
    {
        return $"{Name} is {Age} year{GenerateAgeSuffix()} old";
        // Define a local function:
        string GenerateAgeSuffix()
        {
            return Age > 1 ? "s" : "";
        }
    }
}
به همین جهت نمی‌توانید داخل یک تابع محلی، متغیری را تعریف کنید که هم‌نام یکی از متغیرها یا پارامترهای متد دربرگیرنده‌ی آن باشد.


خلاصه نویسی توابع محلی به کمک expression bodies

می‌توان این متد محلی را به صورت یک expression body ارائه شده‌ی در C# 6 نیز بیان کرد:
public class PersonWithLocalFunctionExpressionBodied
{
    public string Name { get; set; }
    public int Age { get; set; }

    public override string ToString()
    {
        return $"{Name} is {Age} year{GenerateAgeSuffix(Age)} old";
        // Define a local function:
        string GenerateAgeSuffix(int age) => age > 1 ? "s" : "";
    }
}


روش ارسال یک local function به متدی دیگر

امکان ارسال یک تابع محلی به صورت یک Func delegate به متدی دیگر نیز وجود دارد:
public class LocalFunctionsTest
{
    public void PassAnonFunctionToMethod()
    {
        var p = new SimplePerson
        {
            Name = "Name1",
            Age = 42
        };
        OutputSimplePerson(p, GenerateAgeSuffix);
        string GenerateAgeSuffix(int age) => age > 1 ? "s" : "";
    }
 
    private void OutputSimplePerson(SimplePerson person, Func<int, string> suffixFunction)
    {
        Output.WriteLine(
        $"{person.Name} is {person.Age} year{suffixFunction(person.Age)} old");
    }
}
در این مثال GenerateAgeSuffix یک Local function است که به صورت expression body نیز بیان شده‌است. برای ارسال آن به متد OutputSimplePerson، پارامتر دریافتی آن باید به صورت Func تعریف شود.
مطالب
حذف فضاهای خالی در خروجی صفحات ASP.NET MVC
صفحات خروجی وب سایت زمانی که رندر شده و در مرورگر نشان داده می‌شود شامل فواصل اضافی است که تاثیری در نمایش سایت نداشته و صرفا این کاراکترها فضای اضافی اشغال می‌کنند. با حذف این کاراکترهای اضافی می‌توان تا حد زیادی صفحه را کم حجم کرد. برای این کار در ASP.NET Webform کارهایی (^ ) انجام شده است.
روال کار به این صورت بوده که قبل از رندر شدن صفحه در سمت سرور خروجی نهایی بررسی شده و با استفاده از عبارات با قاعده الگوهای مورد نظر لیست شده و سپس حذف می‌شوند و در نهایت خروجی مورد نظر حاصل خواهد شد. برای راحتی کار و عدم نوشتن این روال در تمامی صفحات می‌تواند در مستر پیج این عمل را انجام داد. مثلا:
private static readonly Regex RegexBetweenTags = new Regex(@">\s+<", RegexOptions.Compiled);
        private static readonly Regex RegexLineBreaks = new Regex(@"\r\s+", RegexOptions.Compiled);

        protected override void Render(HtmlTextWriter writer)
        {
            using (var htmlwriter = new HtmlTextWriter(new System.IO.StringWriter()))
            {
                base.Render(htmlwriter);
                var html = htmlwriter.InnerWriter.ToString();

                html = RegexBetweenTags.Replace(html, "> <");
                html = RegexLineBreaks.Replace(html, string.Empty);
                html = html.Replace("//<![CDATA[", "").Replace("//]]>", "");
                html = html.Replace("// <![CDATA[", "").Replace("// ]]>", "");

                writer.Write(html.Trim());
            }
        }
در هر صفحه رویدادی به نام Render وجود دارد که خروجی نهایی را می‌توان در آن تغییر داد. همانگونه که مشاهده می‌شود عملیات یافتن و حذف فضاهای خالی در این متد انجام می‌شود.
این عمل در ASP.NET Webform به آسانی انجام شده و باعث حذف فضاهای خالی در خروجی صفحه می‌شود.
برای انجام این عمل در ASP.NET MVC روال کار به این صورت نیست و نمی‌توان مانند ASP.NET Webform عمل کرد.
چون در MVC از ViewPage استفاده می‌شود و ما مستقیما به خروجی آن دسترسی نداریم یک روش این است که می‌توانیم یک کلاس برای ViewPage تعریف کرده و رویداد Write آن را تحریف کرده و مانند مثال بالا فضای خالی را در خروجی حذف کرد. البته برای استفاده باید کلاس ایجاد شده را به عنوان فایل پایه جهت ایجاد صفحات در MVC فایل web.config معرفی کنیم. این روش در اینجا به وضوح شرح داده شده است.
اما هدف ما پیاده سازی با استفاده از اکشن فیلتر هاست. برای پیاده سازی ایتدا یک اکشن فیلتر به نام CompressAttribute تعریف می‌کنیم مانند زیر:
using System;
using System.IO;
using System.IO.Compression;
using System.Text;
using System.Text.RegularExpressions;
using System.Web;
using System.Web.Mvc;

namespace PWS.Common.ActionFilters
{
    public class CompressAttribute : ActionFilterAttribute
    {
         #region Methods (2) 

        // Public Methods (1) 

        /// <summary>
        /// Called by the ASP.NET MVC framework before the action method executes.
        /// </summary>
        /// <param name="filterContext">The filter context.</param>
        public override void OnActionExecuting(ActionExecutingContext filterContext)
        {
            var response = filterContext.HttpContext.Response;
            if (IsGZipSupported(filterContext.HttpContext.Request))
            {
                String acceptEncoding = filterContext.HttpContext.Request.Headers["Accept-Encoding"];
                if (acceptEncoding.Contains("gzip"))
                {
                    response.Filter = new GZipStream(response.Filter, CompressionMode.Compress);
                    response.AppendHeader("Content-Encoding", "gzip");
                }
                else
                {
                    response.Filter = new DeflateStream(response.Filter, CompressionMode.Compress);
                    response.AppendHeader("Content-Encoding", "deflate");
                }
            }
            // Allow proxy servers to cache encoded and unencoded versions separately
            response.AppendHeader("Vary", "Content-Encoding");
           //حذف فضاهای خالی
response.Filter = new WhitespaceFilter(response.Filter); } // Private Methods (1)  /// <summary> /// Determines whether [is G zip supported] [the specified request]. /// </summary> /// <param name="request">The request.</param> /// <returns></returns> private Boolean IsGZipSupported(HttpRequestBase request) { String acceptEncoding = request.Headers["Accept-Encoding"]; if (acceptEncoding == null) return false; return !String.IsNullOrEmpty(acceptEncoding) && acceptEncoding.Contains("gzip") || acceptEncoding.Contains("deflate"); } #endregion Methods  } /// <summary> /// Whitespace Filter /// </summary> public class WhitespaceFilter : Stream { #region Fields (3)  private readonly Stream _filter; /// <summary> /// /// </summary> private static readonly Regex RegexAll = new Regex(@"\s+|\t\s+|\n\s+|\r\s+", RegexOptions.Compiled); /// <summary> /// /// </summary> private static readonly Regex RegexTags = new Regex(@">\s+<", RegexOptions.Compiled); #endregion Fields  #region Constructors (1)  /// <summary> /// Initializes a new instance of the <see cref="WhitespaceFilter" /> class. /// </summary> /// <param name="filter">The filter.</param> public WhitespaceFilter(Stream filter) { _filter = filter; } #endregion Constructors  #region Properties (5)  //methods that need to be overridden from stream /// <summary> /// When overridden in a derived class, gets a value indicating whether the current stream supports reading. /// </summary> /// <returns>true if the stream supports reading; otherwise, false.</returns> public override bool CanRead { get { return true; } } /// <summary> /// When overridden in a derived class, gets a value indicating whether the current stream supports seeking. /// </summary> /// <returns>true if the stream supports seeking; otherwise, false.</returns> public override bool CanSeek { get { return true; } } /// <summary> /// When overridden in a derived class, gets a value indicating whether the current stream supports writing. /// </summary> /// <returns>true if the stream supports writing; otherwise, false.</returns> public override bool CanWrite { get { return true; } } /// <summary> /// When overridden in a derived class, gets the length in bytes of the stream. /// </summary> /// <returns>A long value representing the length of the stream in bytes.</returns> public override long Length { get { return 0; } } /// <summary> /// When overridden in a derived class, gets or sets the position within the current stream. /// </summary> /// <returns>The current position within the stream.</returns> public override long Position { get; set; } #endregion Properties  #region Methods (6)  // Public Methods (6)  /// <summary> /// Closes the current stream and releases any resources (such as sockets and file handles) associated with the current stream. Instead of calling this method, ensure that the stream is properly disposed. /// </summary> public override void Close() { _filter.Close(); } /// <summary> /// When overridden in a derived class, clears all buffers for this stream and causes any buffered data to be written to the underlying device. /// </summary> public override void Flush() { _filter.Flush(); } /// <summary> /// When overridden in a derived class, reads a sequence of bytes from the current stream and advances the position within the stream by the number of bytes read. /// </summary> /// <param name="buffer">An array of bytes. When this method returns, the buffer contains the specified byte array with the values between <paramref name="offset" /> and (<paramref name="offset" /> + <paramref name="count" /> - 1) replaced by the bytes read from the current source.</param> /// <param name="offset">The zero-based byte offset in <paramref name="buffer" /> at which to begin storing the data read from the current stream.</param> /// <param name="count">The maximum number of bytes to be read from the current stream.</param> /// <returns> /// The total number of bytes read into the buffer. This can be less than the number of bytes requested if that many bytes are not currently available, or zero (0) if the end of the stream has been reached. /// </returns> public override int Read(byte[] buffer, int offset, int count) { return _filter.Read(buffer, offset, count); } /// <summary> /// When overridden in a derived class, sets the position within the current stream. /// </summary> /// <param name="offset">A byte offset relative to the <paramref name="origin" /> parameter.</param> /// <param name="origin">A value of type <see cref="T:System.IO.SeekOrigin" /> indicating the reference point used to obtain the new position.</param> /// <returns> /// The new position within the current stream. /// </returns> public override long Seek(long offset, SeekOrigin origin) { return _filter.Seek(offset, origin); } /// <summary> /// When overridden in a derived class, sets the length of the current stream. /// </summary> /// <param name="value">The desired length of the current stream in bytes.</param> public override void SetLength(long value) { _filter.SetLength(value); } /// <summary> /// When overridden in a derived class, writes a sequence of bytes to the current stream and advances the current position within this stream by the number of bytes written. /// </summary> /// <param name="buffer">An array of bytes. This method copies <paramref name="count" /> bytes from <paramref name="buffer" /> to the current stream.</param> /// <param name="offset">The zero-based byte offset in <paramref name="buffer" /> at which to begin copying bytes to the current stream.</param> /// <param name="count">The number of bytes to be written to the current stream.</param> public override void Write(byte[] buffer, int offset, int count) { string html = Encoding.Default.GetString(buffer); //remove whitespace html = RegexTags.Replace(html, "> <"); html = RegexAll.Replace(html, " "); byte[] outdata = Encoding.Default.GetBytes(html); //write bytes to stream _filter.Write(outdata, 0, outdata.GetLength(0)); } #endregion Methods  } }
در این کلاس فشرده سازی (gzip و deflate نیز اعمال شده است) در متد OnActionExecuting ابتدا در خط 24 بررسی می‌شود که آیا درخواست رسیده gzip را پشتیبانی می‌کند یا خیر. در صورت پشتیبانی خروجی صفحه را با استفاده از gzip یا deflate فشرده سازی می‌کند. تا اینجای کار ممکن است مورد نیاز ما نباشد. اصل کار ما (حذف کردن فضاهای خالی) در خط 42 اعمال شده است. در واقع برای حذف فضاهای خالی باید یک کلاس که از Stream ارث بری دارد تعریف شده و خروجی کلاس مورد نظر به فیلتر درخواست ما اعمال شود.
در کلاس WhitespaceFilter با تحریف متد Write الگوهای فضای خالی موجود در درخواست یافت شده و آنها را حذف می‌کنیم. در نهایت خروجی این کلاس که از نوع استریم است به ویژگی فیلتر صفحه اعمال می‌شود.

برای معرفی فیلتر تعریف شده می‌توان در فایل Global.asax در رویداد Application_Start به صورت زیر فیلتر مورد نظر را به فیلترهای MVC اعمال کرد.
GlobalFilters.Filters.Add(new CompressAttribute());
برای آشنایی بیشتر فیلترها در ASP.NET MVC را مطالعه نمایید.
پ.ن: جهت سهولت، در این کلاس ها، صفحات فشرده سازی و همزمان فضاهای خالی آنها حذف شده است.
مطالب
اعمال تزریق وابستگی‌ها به مثال رسمی ASP.NET Identity
پروژه‌ی ASP.NET Identity که نسل جدید سیستم Authentication و Authorization مخصوص ASP.NET است، دارای دو سری مثال رسمی است:
الف) مثال‌های کدپلکس
 ب) مثال نیوگت

در ادامه قصد داریم مثال نیوگت آن‌را که مثال کاملی است از نحوه‌ی استفاده از ASP.NET Identity در ASP.NET MVC، جهت اعمال الگوی واحد کار و تزریق وابستگی‌ها، بازنویسی کنیم.


پیشنیازها
- برای درک مطلب جاری نیاز است ابتدا دور‌ه‌ی مرتبطی را در سایت مطالعه کنید و همچنین با نحوه‌ی پیاده سازی الگوی واحد کار در EF Code First آشنا باشید.
- به علاوه فرض بر این است که یک پروژه‌ی خالی ASP.NET MVC 5 را نیز آغاز کرده‌اید و توسط کنسول پاور شل نیوگت، فایل‌های مثال Microsoft.AspNet.Identity.Samples را به آن افزوده‌اید:
 PM> Install-Package Microsoft.AspNet.Identity.Samples -Pre


ساختار پروژه‌ی تکمیلی

همانند مطلب پیاده سازی الگوی واحد کار در EF Code First، این پروژه‌ی جدید را با چهار اسمبلی class library دیگر به نام‌های
AspNetIdentityDependencyInjectionSample.DataLayer
AspNetIdentityDependencyInjectionSample.DomainClasses
AspNetIdentityDependencyInjectionSample.IocConfig
AspNetIdentityDependencyInjectionSample.ServiceLayer
تکمیل می‌کنیم.


ساختار پروژه‌ی AspNetIdentityDependencyInjectionSample.DomainClasses

مثال Microsoft.AspNet.Identity.Samples بر مبنای primary key از نوع string است. برای نمونه کلاس کاربران آن‌را به نام ApplicationUser در فایل Models\IdentityModels.cs می‌توانید مشاهده کنید. در مطلب جاری، این نوع پیش فرض، به نوع متداول int تغییر خواهد یافت. به همین جهت نیاز است کلاس‌های ذیل را به پروژه‌ی DomainClasses اضافه کرد:
using System.ComponentModel.DataAnnotations.Schema;
using Microsoft.AspNet.Identity.EntityFramework;
 
namespace AspNetIdentityDependencyInjectionSample.DomainClasses
{
  public class ApplicationUser : IdentityUser<int, CustomUserLogin, CustomUserRole, CustomUserClaim>
  {
   // سایر خواص اضافی در اینجا
 
   [ForeignKey("AddressId")]
   public virtual Address Address { get; set; }
   public int? AddressId { get; set; }
  }
}

using System.Collections.Generic;
 
namespace AspNetIdentityDependencyInjectionSample.DomainClasses
{
  public class Address
  {
   public int Id { get; set; }
   public string City { get; set; }
   public string State { get; set; }
 
   public virtual ICollection<ApplicationUser> ApplicationUsers { set; get; }
  }
}

using Microsoft.AspNet.Identity.EntityFramework;
 
namespace AspNetIdentityDependencyInjectionSample.DomainClasses
{
  public class CustomRole : IdentityRole<int, CustomUserRole>
  {
   public CustomRole() { }
   public CustomRole(string name) { Name = name; }
 
 
  }
}

using Microsoft.AspNet.Identity.EntityFramework;
 
namespace AspNetIdentityDependencyInjectionSample.DomainClasses
{
  public class CustomUserClaim : IdentityUserClaim<int>
  {
 
  }
}

using Microsoft.AspNet.Identity.EntityFramework;
 
namespace AspNetIdentityDependencyInjectionSample.DomainClasses
{
  public class CustomUserLogin : IdentityUserLogin<int>
  {
 
  }
}

using Microsoft.AspNet.Identity.EntityFramework;
 
namespace AspNetIdentityDependencyInjectionSample.DomainClasses
{
  public class CustomUserRole : IdentityUserRole<int>
  {
 
  }
}
در اینجا نحوه‌ی تغییر primary key از نوع string را به نوع int، مشاهده می‌کنید. این تغییر نیاز به اعمال به کلاس‌های کاربران و همچنین نقش‌های آن‌ها نیز دارد. به همین جهت صرفا تغییر کلاس ابتدایی ApplicationUser کافی نیست و باید کلاس‌های فوق را نیز اضافه کرد و تغییر داد.
بدیهی است در اینجا کلاس پایه کاربران را می‌توان سفارشی سازی کرد و خواص دیگری را نیز به آن افزود. برای مثال در اینجا یک کلاس جدید آدرس تعریف شده‌است که ارجاعی از آن در کلاس کاربران نیز قابل مشاهده است.
سایر کلاس‌های مدل‌های اصلی برنامه که جداول بانک اطلاعاتی را تشکیل خواهند داد نیز در آینده به همین اسمبلی DomainClasses اضافه می‌شوند.


ساختار پروژه‌ی AspNetIdentityDependencyInjectionSample.DataLayer جهت اعمال الگوی واحد کار

اگر به همان فایل Models\IdentityModels.cs ابتدایی پروژه که اکنون کلاس ApplicationUser آن‌را به پروژه‌ی DomainClasses منتقل کرده‌ایم، مجددا مراجعه کنید، کلاس DbContext مخصوص ASP.NET Identity نیز در آن تعریف شده‌است:
 public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
این کلاس را به پروژه‌ی DataLayer منتقل می‌کنیم و از آن به عنوان DbContext اصلی برنامه استفاده خواهیم کرد. بنابراین دیگر نیازی نیست چندین DbContext در برنامه داشته باشیم. IdentityDbContext، در اصل از DbContext مشتق شده‌است.
اینترفیس IUnitOfWork برنامه، در پروژه‌ی DataLayer چنین شکلی را دارد که نمونه‌ای از آن‌را در مطلب آشنایی با نحوه‌ی پیاده سازی الگوی واحد کار در EF Code First، پیشتر ملاحظه کرده‌اید.
using System.Collections.Generic;
using System.Data.Entity;
 
namespace AspNetIdentityDependencyInjectionSample.DataLayer.Context
{
  public interface IUnitOfWork
  {
   IDbSet<TEntity> Set<TEntity>() where TEntity : class;
   int SaveAllChanges();
   void MarkAsChanged<TEntity>(TEntity entity) where TEntity : class;
   IList<T> GetRows<T>(string sql, params object[] parameters) where T : class;
   IEnumerable<TEntity> AddThisRange<TEntity>(IEnumerable<TEntity> entities) where TEntity : class;
   void ForceDatabaseInitialize();
  }
}
اکنون کلاس ApplicationDbContext منتقل شده به DataLayer یک چنین امضایی را خواهد یافت:
public class ApplicationDbContext :
  IdentityDbContext<ApplicationUser, CustomRole, int, CustomUserLogin, CustomUserRole, CustomUserClaim>,
  IUnitOfWork
{
  public DbSet<Category> Categories { set; get; }
  public DbSet<Product> Products { set; get; }
  public DbSet<Address> Addresses { set; get; }
تعریف آن باید جهت اعمال کلاس‌های سفارشی سازی شده‌ی کاربران و نقش‌های آن‌ها برای استفاده از primary key از نوع int به شکل فوق، تغییر یابد. همچنین در انتهای آن مانند قبل، IUnitOfWork نیز ذکر شده‌است. پیاده سازی کامل این کلاس را از پروژه‌ی پیوست انتهای بحث می‌توانید دریافت کنید.
کار کردن با این کلاس، هیچ تفاوتی با DbContext‌های متداول EF Code First ندارد و تمام اصول آن‌ها یکی است.

در ادامه اگر به فایل App_Start\IdentityConfig.cs مراجعه کنید، کلاس ذیل در آن قابل مشاهده‌است:
 public class ApplicationDbInitializer : DropCreateDatabaseIfModelChanges<ApplicationDbContext>
نیازی به این کلاس به این شکل نیست. آن‌را حذف کنید و در پروژه‌ی DataLayer، کلاس جدید ذیل را اضافه نمائید:
using System.Data.Entity.Migrations;
 
namespace AspNetIdentityDependencyInjectionSample.DataLayer.Context
{
  public class Configuration : DbMigrationsConfiguration<ApplicationDbContext>
  {
   public Configuration()
   {
    AutomaticMigrationsEnabled = true;
    AutomaticMigrationDataLossAllowed = true;
   }
  }
}
در این مثال، بحث migrations به حالت خودکار تنظیم شده‌است و تمام تغییرات در پروژه‌ی DomainClasses را به صورت خودکار به بانک اطلاعاتی اعمال می‌کند. تا همینجا کار تنظیم DataLayer به پایان می‌رسد.


ساختار پروژ‌ه‌ی AspNetIdentityDependencyInjectionSample.ServiceLayer

در ادامه مابقی کلاس‌‌های موجود در فایل App_Start\IdentityConfig.cs را به لایه سرویس برنامه منتقل خواهیم کرد. همچنین برای آن‌ها یک سری اینترفیس جدید نیز تعریف می‌کنیم، تا تزریق وابستگی‌ها به نحو صحیحی صورت گیرد. اگر به فایل‌های کنترلر این مثال پیش فرض مراجعه کنید (پیش از تغییرات بحث جاری)، هرچند به نظر در کنترلرها، کلاس‌های موجود در فایل App_Start\IdentityConfig.cs تزریق شده‌اند، اما به دلیل عدم استفاده از اینترفیس‌ها، وابستگی کاملی بین جزئیات پیاده سازی این کلاس‌ها و نمونه‌های تزریق شده به کنترلرها وجود دارد و عملا معکوس سازی واقعی وابستگی‌ها رخ نداده‌است. بنابراین نیاز است این مسایل را اصلاح کنیم.

الف) انتقال کلاس ApplicationUserManager به لایه سرویس برنامه
کلاس ApplicationUserManager فایل App_Start\IdentityConfig.c را به لایه سرویس منتقل می‌کنیم:
using System;
using System.Security.Claims;
using System.Threading.Tasks;
using AspNetIdentityDependencyInjectionSample.DomainClasses;
using AspNetIdentityDependencyInjectionSample.ServiceLayer.Contracts;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin.Security.Cookies;
using Microsoft.Owin.Security.DataProtection;
 
namespace AspNetIdentityDependencyInjectionSample.ServiceLayer
{
  public class ApplicationUserManager
   : UserManager<ApplicationUser, int>, IApplicationUserManager
  {
   private readonly IDataProtectionProvider _dataProtectionProvider;
   private readonly IIdentityMessageService _emailService;
   private readonly IApplicationRoleManager _roleManager;
   private readonly IIdentityMessageService _smsService;
   private readonly IUserStore<ApplicationUser, int> _store;
 
   public ApplicationUserManager(IUserStore<ApplicationUser, int> store,
    IApplicationRoleManager roleManager,
    IDataProtectionProvider dataProtectionProvider,
    IIdentityMessageService smsService,
    IIdentityMessageService emailService)
    : base(store)
   {
    _store = store;
    _roleManager = roleManager;
    _dataProtectionProvider = dataProtectionProvider;
    _smsService = smsService;
    _emailService = emailService;
 
    createApplicationUserManager();
   }
 
 
   public void SeedDatabase()
   {
   }
 
   private void createApplicationUserManager()
   {
    // Configure validation logic for usernames
    this.UserValidator = new UserValidator<ApplicationUser, int>(this)
    {
      AllowOnlyAlphanumericUserNames = false,
      RequireUniqueEmail = true
    };
 
    // Configure validation logic for passwords
    this.PasswordValidator = new PasswordValidator
    {
      RequiredLength = 6,
      RequireNonLetterOrDigit = true,
      RequireDigit = true,
      RequireLowercase = true,
      RequireUppercase = true,
    };
 
    // Configure user lockout defaults
    this.UserLockoutEnabledByDefault = true;
    this.DefaultAccountLockoutTimeSpan = TimeSpan.FromMinutes(5);
    this.MaxFailedAccessAttemptsBeforeLockout = 5;
 
    // Register two factor authentication providers. This application uses Phone and Emails as a step of receiving a code for verifying the user
    // You can write your own provider and plug in here.
    this.RegisterTwoFactorProvider("PhoneCode", new PhoneNumberTokenProvider<ApplicationUser, int>
    {
      MessageFormat = "Your security code is: {0}"
    });
    this.RegisterTwoFactorProvider("EmailCode", new EmailTokenProvider<ApplicationUser, int>
    {
      Subject = "SecurityCode",
      BodyFormat = "Your security code is {0}"
    });
    this.EmailService = _emailService;
    this.SmsService = _smsService;
 
    if (_dataProtectionProvider != null)
    {
      var dataProtector = _dataProtectionProvider.Create("ASP.NET Identity");
      this.UserTokenProvider = new DataProtectorTokenProvider<ApplicationUser, int>(dataProtector);
    }
   } 
  }
}
تغییراتی که در اینجا اعمال شده‌اند، به شرح زیر می‌باشند:
- متد استاتیک Create این کلاس حذف و تعاریف آن به سازنده‌ی کلاس منتقل شده‌اند. به این ترتیب با هربار وهله سازی این کلاس توسط IoC Container به صورت خودکار این تنظیمات نیز به کلاس پایه UserManager اعمال می‌شوند.
- اگر به کلاس پایه UserManager دقت کنید، به آرگومان‌های جنریک آن یک int هم اضافه شده‌است. این مورد جهت استفاده از primary key از نوع int ضروری است.
- در کلاس پایه UserManager تعدادی متد وجود دارند. تعاریف آن‌ها را به اینترفیس IApplicationUserManager منتقل خواهیم کرد. نیازی هم به پیاده سازی این متدها در کلاس جدید ApplicationUserManager نیست؛ زیرا کلاس پایه UserManager پیشتر آن‌ها را پیاده سازی کرده‌است. به این ترتیب می‌توان به یک تزریق وابستگی واقعی و بدون وابستگی به پیاده سازی خاص UserManager رسید. کنترلری که با IApplicationUserManager بجای ApplicationUserManager کار می‌کند، قابلیت تعویض پیاده سازی آن‌را جهت آزمون‌های واحد خواهد یافت.
- در کلاس اصلی ApplicationDbInitializer پیش فرض این مثال، متد Seed هم قابل مشاهده‌است. این متد را از کلاس جدید Configuration اضافه شده به DataLayer حذف کرده‌ایم. از این جهت که در آن از متدهای کلاس ApplicationUserManager مستقیما استفاده شده‌است. متد Seed اکنون به کلاس جدید اضافه شده به لایه سرویس منتقل شده و در آغاز برنامه فراخوانی خواهد شد. DataLayer نباید وابستگی به لایه سرویس داشته باشد. لایه سرویس است که از امکانات DataLayer استفاده می‌کند.
- اگر به سازنده‌ی کلاس جدید ApplicationUserManager دقت کنید، چند اینترفیس دیگر نیز به آن تزریق شده‌اند. اینترفیس IApplicationRoleManager را ادامه تعریف خواهیم کرد. سایر اینترفیس‌های تزریق شده مانند IUserStore، IDataProtectionProvider و IIdentityMessageService جزو تعاریف اصلی ASP.NET Identity بوده و نیازی به تعریف مجدد آن‌ها نیست. فقط کلاس‌های EmailService و SmsService فایل App_Start\IdentityConfig.c را نیز به لایه سرویس منتقل کرده‌ایم. این کلاس‌ها بر اساس تنظیمات IoC Container مورد استفاده، در اینجا به صورت خودکار ترزیق خواهند شد. حالت پیش فرض آن، وهله سازی مستقیم است که مطابق کدهای فوق به حالت تزریق وابستگی‌ها بهبود یافته‌است.


ب) انتقال کلاس ApplicationSignInManager به لایه سرویس برنامه
کلاس ApplicationSignInManager فایل App_Start\IdentityConfig.c را نیز به لایه سرویس منتقل می‌کنیم.
using AspNetIdentityDependencyInjectionSample.DomainClasses;
using AspNetIdentityDependencyInjectionSample.ServiceLayer.Contracts;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin.Security;
 
namespace AspNetIdentityDependencyInjectionSample.ServiceLayer
{
  public class ApplicationSignInManager :
   SignInManager<ApplicationUser, int>, IApplicationSignInManager
  {
   private readonly ApplicationUserManager _userManager;
   private readonly IAuthenticationManager _authenticationManager;
 
   public ApplicationSignInManager(ApplicationUserManager userManager,
              IAuthenticationManager authenticationManager) :
    base(userManager, authenticationManager)
   {
    _userManager = userManager;
    _authenticationManager = authenticationManager;
   }
  }
}
در اینجا نیز اینترفیس جدید IApplicationSignInManager را برای مخفی سازی پیاده سازی کلاس پایه توکار SignInManager، اضافه کرده‌ایم. این اینترفیس دقیقا حاوی تعاریف متدهای کلاس پایه SignInManager است و نیازی به پیاده سازی مجدد در کلاس ApplicationSignInManager نخواهد داشت.


ج) انتقال کلاس ApplicationRoleManager به لایه سرویس برنامه
کلاس ApplicationRoleManager فایل App_Start\IdentityConfig.c را نیز به لایه سرویس منتقل خواهیم کرد:
using AspNetIdentityDependencyInjectionSample.DomainClasses;
using AspNetIdentityDependencyInjectionSample.ServiceLayer.Contracts;
using Microsoft.AspNet.Identity;
 
namespace AspNetIdentityDependencyInjectionSample.ServiceLayer
{
  public class ApplicationRoleManager : RoleManager<CustomRole, int>, IApplicationRoleManager
  {
   private readonly IRoleStore<CustomRole, int> _roleStore;
   public ApplicationRoleManager(IRoleStore<CustomRole, int> roleStore)
    : base(roleStore)
   {
    _roleStore = roleStore;
   }
 
 
   public CustomRole FindRoleByName(string roleName)
   {
    return this.FindByName(roleName); // RoleManagerExtensions
   }
 
   public IdentityResult CreateRole(CustomRole role)
   {
    return this.Create(role); // RoleManagerExtensions
   }
  }
}
روش کار نیز در اینجا همانند دو کلاس قبل است. اینترفیس جدید IApplicationRoleManager را که حاوی تعاریف متدهای کلاس پایه توکار RoleManager است، به لایه سرویس اضافه می‌کنیم. کنترلرهای برنامه با این اینترفیس بجای استفاده مستقیم از کلاس ApplicationRoleManager کار خواهند کرد.

تا اینجا کار تنظیمات لایه سرویس برنامه به پایان می‌رسد.


ساختار پروژه‌ی AspNetIdentityDependencyInjectionSample.IocConfig 

پروژه‌ی IocConfig جایی است که تنظیمات StructureMap را به آن منتقل کرده‌ایم:
using System;
using System.Data.Entity;
using System.Threading;
using System.Web;
using AspNetIdentityDependencyInjectionSample.DataLayer.Context;
using AspNetIdentityDependencyInjectionSample.DomainClasses;
using AspNetIdentityDependencyInjectionSample.ServiceLayer;
using AspNetIdentityDependencyInjectionSample.ServiceLayer.Contracts;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.Owin.Security;
using StructureMap;
using StructureMap.Web;
 
namespace AspNetIdentityDependencyInjectionSample.IocConfig
{
  public static class SmObjectFactory
  {
   private static readonly Lazy<Container> _containerBuilder =
    new Lazy<Container>(defaultContainer, LazyThreadSafetyMode.ExecutionAndPublication);
 
   public static IContainer Container
   {
    get { return _containerBuilder.Value; }
   }
 
   private static Container defaultContainer()
   {
    return new Container(ioc =>
    {
      ioc.For<IUnitOfWork>()
        .HybridHttpOrThreadLocalScoped()
        .Use<ApplicationDbContext>();
 
      ioc.For<ApplicationDbContext>().HybridHttpOrThreadLocalScoped().Use<ApplicationDbContext>();
      ioc.For<DbContext>().HybridHttpOrThreadLocalScoped().Use<ApplicationDbContext>();
 
      ioc.For<IUserStore<ApplicationUser, int>>()
       .HybridHttpOrThreadLocalScoped()
       .Use<UserStore<ApplicationUser, CustomRole, int, CustomUserLogin, CustomUserRole, CustomUserClaim>>();
 
      ioc.For<IRoleStore<CustomRole, int>>()
       .HybridHttpOrThreadLocalScoped()
       .Use<RoleStore<CustomRole, int, CustomUserRole>>();
 
      ioc.For<IAuthenticationManager>()
        .Use(() => HttpContext.Current.GetOwinContext().Authentication);
 
      ioc.For<IApplicationSignInManager>()
        .HybridHttpOrThreadLocalScoped()
        .Use<ApplicationSignInManager>();
 
      ioc.For<IApplicationUserManager>()
        .HybridHttpOrThreadLocalScoped()
        .Use<ApplicationUserManager>();
 
      ioc.For<IApplicationRoleManager>()
        .HybridHttpOrThreadLocalScoped()
        .Use<ApplicationRoleManager>();
 
      ioc.For<IIdentityMessageService>().Use<SmsService>();
      ioc.For<IIdentityMessageService>().Use<EmailService>();
      ioc.For<ICustomRoleStore>()
        .HybridHttpOrThreadLocalScoped()
        .Use<CustomRoleStore>();
 
      ioc.For<ICustomUserStore>()
        .HybridHttpOrThreadLocalScoped()
        .Use<CustomUserStore>();
 
      //config.For<IDataProtectionProvider>().Use(()=> app.GetDataProtectionProvider()); // In Startup class
 
      ioc.For<ICategoryService>().Use<EfCategoryService>();
      ioc.For<IProductService>().Use<EfProductService>();
    });
   }
  }
}
در اینجا نحوه‌ی اتصال اینترفیس‌های برنامه را به کلاس‌ها و یا نمونه‌هایی که آن‌ها را می‌توانند پیاده سازی کنند، مشاهده می‌کنید. برای مثال IUnitOfWork به ApplicationDbContext مرتبط شده‌است و یا دوبار تعاریف متناظر با DbContext را مشاهده می‌کنید. از این تعاریف به صورت توکار توسط ASP.NET Identity زمانیکه قرار است UserStore و RoleStore را وهله سازی کند، استفاده می‌شوند و ذکر آن‌ها الزامی است.
در تعاریف فوق یک مورد را به فایل Startup.cs موکول کرده‌ایم. برای مشخص سازی نمونه‌ی پیاده سازی کننده‌ی IDataProtectionProvider نیاز است به IAppBuilder کلاس Startup برنامه دسترسی داشت. این کلاس آغازین Owin اکنون به نحو ذیل بازنویسی شده‌است و در آن، تنظیمات IDataProtectionProvider را به همراه وهله سازی CreatePerOwinContext مشاهده می‌کنید:
using System;
using AspNetIdentityDependencyInjectionSample.IocConfig;
using AspNetIdentityDependencyInjectionSample.ServiceLayer.Contracts;
using Microsoft.AspNet.Identity;
using Microsoft.Owin;
using Microsoft.Owin.Security.Cookies;
using Microsoft.Owin.Security.DataProtection;
using Owin;
using StructureMap.Web;
 
namespace AspNetIdentityDependencyInjectionSample
{
  public class Startup
  {
   public void Configuration(IAppBuilder app)
   {
    configureAuth(app);
   }
 
   private static void configureAuth(IAppBuilder app)
   {
    SmObjectFactory.Container.Configure(config =>
    {
      config.For<IDataProtectionProvider>()
        .HybridHttpOrThreadLocalScoped()
        .Use(()=> app.GetDataProtectionProvider());
    });
    SmObjectFactory.Container.GetInstance<IApplicationUserManager>().SeedDatabase();
 
    // Configure the db context, user manager and role manager to use a single instance per request
    app.CreatePerOwinContext(() => SmObjectFactory.Container.GetInstance<IApplicationUserManager>());
 
    // Enable the application to use a cookie to store information for the signed in user
    // and to use a cookie to temporarily store information about a user logging in with a third party login provider
    // Configure the sign in cookie
    app.UseCookieAuthentication(new CookieAuthenticationOptions
    {
      AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
      LoginPath = new PathString("/Account/Login"),
      Provider = new CookieAuthenticationProvider
      {
       // Enables the application to validate the security stamp when the user logs in.
       // This is a security feature which is used when you change a password or add an external login to your account.
       OnValidateIdentity = SmObjectFactory.Container.GetInstance<IApplicationUserManager>().OnValidateIdentity()
      }
    });
    app.UseExternalSignInCookie(DefaultAuthenticationTypes.ExternalCookie);
 
    // Enables the application to temporarily store user information when they are verifying the second factor in the two-factor authentication process.
    app.UseTwoFactorSignInCookie(DefaultAuthenticationTypes.TwoFactorCookie, TimeSpan.FromMinutes(5));
 
    // Enables the application to remember the second login verification factor such as phone or email.
    // Once you check this option, your second step of verification during the login process will be remembered on the device where you logged in from.
    // This is similar to the RememberMe option when you log in.
    app.UseTwoFactorRememberBrowserCookie(DefaultAuthenticationTypes.TwoFactorRememberBrowserCookie); 
   }
 
  }
}
این تعاریف از فایل پیش فرض Startup.Auth.cs پوشه‌ی App_Start دریافت و جهت کار با IoC Container برنامه، بازنویسی شده‌اند.


تنظیمات برنامه‌ی اصلی ASP.NET MVC، جهت اعمال تزریق وابستگی‌ها

الف) ابتدا نیاز است فایل Global.asax.cs را به نحو ذیل بازنویسی کنیم:
using System;
using System.Data.Entity;
using System.Web;
using System.Web.Mvc;
using System.Web.Optimization;
using System.Web.Routing;
using AspNetIdentityDependencyInjectionSample.DataLayer.Context;
using AspNetIdentityDependencyInjectionSample.IocConfig;
using StructureMap.Web.Pipeline;
 
namespace AspNetIdentityDependencyInjectionSample
{
  public class MvcApplication : HttpApplication
  {
   protected void Application_Start()
   {
    AreaRegistration.RegisterAllAreas();
    FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
    RouteConfig.RegisterRoutes(RouteTable.Routes);
    BundleConfig.RegisterBundles(BundleTable.Bundles);
 
 
    setDbInitializer();
    //Set current Controller factory as StructureMapControllerFactory
    ControllerBuilder.Current.SetControllerFactory(new StructureMapControllerFactory());
   }
 
   protected void Application_EndRequest(object sender, EventArgs e)
   {
    HttpContextLifecycle.DisposeAndClearAll();
   }
 
   public class StructureMapControllerFactory : DefaultControllerFactory
   {
    protected override IController GetControllerInstance(RequestContext requestContext, Type controllerType)
    {
      if (controllerType == null)
       throw new InvalidOperationException(string.Format("Page not found: {0}", requestContext.HttpContext.Request.RawUrl));
      return SmObjectFactory.Container.GetInstance(controllerType) as Controller;
    }
   }
 
   private static void setDbInitializer()
   {
    Database.SetInitializer(new MigrateDatabaseToLatestVersion<ApplicationDbContext, Configuration>());
    SmObjectFactory.Container.GetInstance<IUnitOfWork>().ForceDatabaseInitialize();
   }
  }
}
در اینجا در متد setDbInitializer، نحوه‌ی استفاده و تعریف فایل Configuration لایه Data را ملاحظه می‌کنید؛ به همراه متد آغاز بانک اطلاعاتی و اعمال تغییرات لازم به آن در ابتدای کار برنامه. همچنین ControllerFactory برنامه نیز به StructureMapControllerFactory تنظیم شده‌است تا کار تزریق وابستگی‌ها به کنترلرهای برنامه به صورت خودکار میسر شود. در پایان کار هر درخواست نیز منابع Disposable رها می‌شوند.

ب) به پوشه‌ی Models برنامه مراجعه کنید. در اینجا در هر کلاسی که Id از نوع string وجود داشت، باید تبدیل به نوع int شوند. چون primary key برنامه را به نوع int تغییر داده‌ایم. برای مثال کلاس‌های EditUserViewModel و RoleViewModel باید تغییر کنند.

ج) اصلاح کنترلرهای برنامه جهت اعمال تزریق وابستگی‌ها

اکنون اصلاح کنترلرها جهت اعمال تزریق وابستگی‌ها ساده‌است. در ادامه نحوه‌ی تغییر امضای سازنده‌های این کنترلرها را جهت استفاده از اینترفیس‌های جدید مشاهده می‌کنید:
  [Authorize]
public class AccountController : Controller
{
  private readonly IAuthenticationManager _authenticationManager;
  private readonly IApplicationSignInManager _signInManager;
  private readonly IApplicationUserManager _userManager;
  public AccountController(IApplicationUserManager userManager,
          IApplicationSignInManager signInManager,
          IAuthenticationManager authenticationManager)
  {
   _userManager = userManager;
   _signInManager = signInManager;
   _authenticationManager = authenticationManager;
  }

  [Authorize]
public class ManageController : Controller
{
  // Used for XSRF protection when adding external logins
  private const string XsrfKey = "XsrfId";
 
  private readonly IAuthenticationManager _authenticationManager;
  private readonly IApplicationUserManager _userManager;
  public ManageController(IApplicationUserManager userManager, IAuthenticationManager authenticationManager)
  {
   _userManager = userManager;
   _authenticationManager = authenticationManager;
  }

  [Authorize(Roles = "Admin")]
public class RolesAdminController : Controller
{
  private readonly IApplicationRoleManager _roleManager;
  private readonly IApplicationUserManager _userManager;
  public RolesAdminController(IApplicationUserManager userManager,
           IApplicationRoleManager roleManager)
  {
   _userManager = userManager;
   _roleManager = roleManager;
  }


  [Authorize(Roles = "Admin")]
public class UsersAdminController : Controller
{
  private readonly IApplicationRoleManager _roleManager;
  private readonly IApplicationUserManager _userManager;
  public UsersAdminController(IApplicationUserManager userManager,
           IApplicationRoleManager roleManager)
  {
   _userManager = userManager;
   _roleManager = roleManager;
  }
پس از این تغییرات، فقط کافی است بجای خواص برای مثال RoleManager سابق از فیلدهای تزریق شده در کلاس، مثلا roleManager_ جدید استفاده کرد. امضای متدهای یکی است و تنها به یک search و replace نیاز دارد.
البته تعدادی اکشن متد نیز در اینجا وجود دارند که از string id استفاده می‌کنند. این‌ها را باید به int? Id تغییر داد تا با نوع primary key جدید مورد استفاده تطابق پیدا کنند.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید:
AspNetIdentityDependencyInjectionSample


معادل این پروژه جهت ASP.NET Core Identity : «سفارشی سازی ASP.NET Core Identity - قسمت اول - موجودیت‌های پایه و DbContext برنامه »