نظرات مطالب
تزریق وابستگی‌های رایج ASP.NET MVC به برنامه
یک نکته‌ی تکمیلی: وهله سازی با تاخیر IIdentity 
public class CurrentUser : ICurrentUser
{
        private readonly IIdentity _identity;
        public CurrentUser(IIdentity identity)
        {
اگر در سازنده‌ی کلاس کنترلر خود یک چنین تنظیمی را دارید (و یا سرویسی که به سازنده‌ی یک کنترلر تزریق می‌شود )، سبب خواهد شد تا HttpContext.Current.User دریافتی از آن همیشه نال باشد. علت اینجا است که وهله سازی کلاس‌های کنترلرها (و تمام وابستگی‌های آن‌ها)، پیش از شروع کامل چرخه‌ی درخواست جاری صورت می‌گیرد و در این حالت، کار به تنظیم اطلاعات شیء User نمی‌رسد. برای رفع این مشکل تنها کافی است تعریف آن‌را lazy load کرد:
public class CurrentUser : ICurrentUser
{
        private readonly Lazy<Func<IIdentity>> _identity;
        public CurrentUser(Lazy<Func<IIdentity>> identity)
        {
           _identity = identity;  
        }

        public int GetCurrentUserId()
        {
            return _identity.Value().GetUserId<int>();
        }
در این حالت در زمان وهله سازی این کلاس کنترلر، پارامتر سازنده‌ی آن وهله سازی نخواهد شد و دسترسی به آن موکول می‌شود به زمانیکه در کنترلر جاری ارجاعی به آن وجود داشته باشد. در این زمان، چون چرخه‌ی طول عمر درخواست آغاز شده‌است، شیء HttpContext.Current.User دیگر نال نخواهد بود.
اگر از StructureMap استفاده می‌کنید، استفاده از پارامترهای <<>Lazy<Func نیازی به تنظیمات اضافه‌تری ندارند و به صورت توکار پشتیبانی می‌شوند.
نظرات مطالب
EF Code First #12
طبق مطالبی که فرمودید جلو رفتم ولی یه سوال داشتم :
من یک کلاس پایه دارم و دو تا زیر کلاس . یک اینترفیس نوشتم که عملیات CRUD رو برای این دو کلاس انجام میده :
UnitOfWork رو طبق چیزی که گفتید نوشتم .
و اما اینترفیس رو به صورت زیر نوشتم :
  interface IPostService
    {
        void AddPost(Post post);
        IList<Post> GetPosts();
        Post GetPost(int PostId);
        int RemovePost(Post post);
        int UpdatePost(Post post);
    }
و کلاس زیر رو برای پیاده سازی اینترفیس بالا:
 public  class PostService<T>:IPostService where T:Post
    {
      private readonly IUnitOfWork _uow;
      private readonly IDbSet<T> _post;
      public PostService(IUnitOfWork uow)
      {
          _uow = uow;
          _post = _uow.Set<T>();
      }
        public void AddPost(T post)
        {}

        public IList<T> GetPosts()
        {}
//...
{
حال سوال من اینه : آیا به نظر شما بیام برای هر کدوم از زیر کلاس‌های یک کلاس جداگانه تعریف کنم یا همین چیزی که نوشتم درسته . مثلا یک کلاس برای subClassService, یکی برای Subclass2Service ؟
مطالب
امکان تعریف ساده‌تر کلاس‌های Immutable در C# 9.0 با معرفی نوع جدید record
در مطلب معرفی خواص init-only، با روش معرفی خواص immutable آشنا شدیم. نوع جدیدی که به C# 9.0 به نام record اضافه شده‌است، قسمتی از آن بر اساس همان خواص init-only کار می‌کند. به همین جهت مطالعه‌ی آن مطلب، پیش از ادامه‌ی بحث جاری، ضروری است.


چرا در C# 9.0 تا این اندازه بر روی سادگی ایجاد اشیاء Immutable تمرکز شده‌است؟

به شیءای Immutable گفته می‌شود که پس از وهله سازی ابتدایی آن، وضعیت آن دیگر قابل تغییر نباشد. همچنین به کلاسی Immutable گفته می‌شود که تمام وهله‌های ساخته شده‌ی از آن نیز Immutable باشند. نمونه‌ی یک چنین شیءای را از نگارش 1 دات نت در حال استفاده هستیم: رشته‌ها. رشته‌ها در دات نت غیرقابل تغییر هستند و هرگونه تغییری بر روی آن‌ها، سبب ایجاد یک رشته‌ی جدید (یک شیء جدید) می‌شود. نوع جدید record نیز به همین صورت عمل می‌کند.

مزایای وجود Immutability:

- اشیاء Immutable یا غیرقابل تغییر، thread-safe هستند که در نتیجه، برنامه نویسی همزمان و موازی را بسیار ساده می‌کنند؛ چون چندین thread می‌توانند با شیءای کار کنند که دسترسی به آن، تنها read-only است.
- اشیاء Immutable از اثرات جانبی، مانند تغییرات آن‌ها در متدهای مختلف در امان هستند. می‌توانید آن‌ها را به هر متدی ارسال کنید و مطمئن باشید که پس از پایان کار، این شیء تغییری نکرده‌است.
- کار با اشیاء Immutable، امکان بهینه سازی حافظه را میسر می‌کنند. برای مثال NET runtime.، هش رشته‌های تعریف شده‌ی در برنامه را در پشت صحنه نگهداری می‌کند تا مطمئن شود که تخصیص حافظه‌ی اضافی، برای رشته‌های تکراری صورت نمی‌گیرد. نمونه‌ی دیگر آن نمایش حرف "a" در یک ادیتور یا نمایشگر است. زمانیکه یک شیء Immutable حاوی اطلاعات حرف "a"، ایجاد شود، به سادگی می‌توان این تک وهله را جهت نمایش هزاران حرف "a" مورد استفاده‌ی مجدد قرار داد، بدون اینکه نگران مصرف حافظه‌ی بالای برنامه باشیم.
- کار با اشیاء Immutable به باگ‌های کمتری ختم می‌شود؛ چون همواره امکان تغییر حالت درونی یک شیء، توسط قسمت‌های مختلف برنامه، می‌تواند به باگ‌های ناخواسته‌ای منتهی شوند.
- Hash list‌ها که در جهت بهبود کارآیی برنامه‌ها بسیار مورد استفاده قرار می‌گیرند، بر اساس کلیدهایی Immutable قابل تشکیل هستند.


روش تعریف نوع‌های جدید record

کلاس ساده‌ی زیر را در نظر بگیرید:
public class User
{
   public string Name { set; get; }
}
برای تبدیل آن به یک نوع جدید record فقط کافی است واژه‌ی کلیدی class آن‌را با record جایگزین کنیم (به آن nominal record هم می‌گویند):
public record User
{
   public string Name { set; get; }
}
نحوه‌ی کار با آن و وهله سازی آن نیز دقیقا مانند کلاس‌ها است:
var user = new User();
user.Name = "User 1";
و ... در اینجا امکان انتساب مقداری به خاصیت Name وجود دارد؛ یعنی این خاصیت به صورت پیش‌فرض Immutable نیست.

روش تعریف دومی نیز در اینجا میسر است (به آن positional record هم می‌گویند):
public record User(string Name);
با این‌کار، به صورت خودکار یک record جدید تشکیل می‌شود که به همراه خاصیت Name است؛ چیزی شبیه به record قبلی که تعریف کردیم (به همین جهت نیاز است نام آن‌را شروع شده‌ی با حروف بزرگ درنظر بگیریم). با این تفاوت که این record، اینبار دارای سازنده است و همچنین خاصیت Name آن از نوع init-only است. در این حالت است که کل record به صورت immutable معرفی می‌شود؛ وگرنه روش تعریف یک خاصیت معمولی که از نوع init-only نیست (مانند مثال اول)، سبب بروز Immutability نخواهد شد.

برای کار با رکورد دومی که تعریف کردیم باید سازند‌ه‌ی این record را مقدار دهی کرد:
var user = new User("User 1");
// Error: Init-only property or indexer 'User.Name' can only be assigned
// in an object initializer, or on 'this' or 'base' in an instance constructor
// or an 'init' accessor. [CS9Features]csharp(CS8852)
user.Name = "User 1";
و همانطور که ملاحظه می‌کنید، چون خاصیت Name از نوع init-only است و در سازنده‌ی record تعریف شده مقدار دهی شده‌است، دیگر نمی‌توان آن‌را مقدار دهی مجدد کرد. همچنین در اینجا امکان استفاده‌ی از object initializers مانند new User { Name = "User 1" } نیز وجود ندارد؛ چون به همراه یک سازنده‌ی به صورت خودکار تولید شده‌است که خاصیتی init-only را مقدار دهی کرده‌است.


نوع جدید record چه اطلاعاتی را به صورت خودکار تولید می‌کند؟

روش دوم تعریف recordها اگر در نظر بگیریم:
public record User(string Name);
و در این حالت برنامه را کامپایل کنیم، به کدهای زیر که حاصل از دی‌کامپایل است، می‌رسیم:
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Text;
using CS9Features;

public class User : IEquatable<User>
{
 protected virtual Type EqualityContract
 {
  [System.Runtime.CompilerServices.NullableContext(1)]
  [CompilerGenerated]
  get
  {
   return typeof(User);
  }
 }

 public string Name
 {
  get;
  set/*init*/;
 }

 public User(string Name)
 {
  this.Name = Name;
  base..ctor();
 }

 public override string ToString()
 {
  StringBuilder stringBuilder = new StringBuilder();
  stringBuilder.Append("User");
  stringBuilder.Append(" { ");
  if (PrintMembers(stringBuilder))
  {
   stringBuilder.Append(" ");
  }
  stringBuilder.Append("}");
  return stringBuilder.ToString();
 }

 protected virtual bool PrintMembers(StringBuilder builder)
 {
  builder.Append("Name");
  builder.Append(" = ");
  builder.Append((object?)Name);
  return true;
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator !=(User? r1, User? r2)
 {
  return !(r1 == r2);
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator ==(User? r1, User? r2)
 {
  return (object)r1 == r2 || (r1?.Equals(r2) ?? false);
 }

 public override int GetHashCode()
 {
  return EqualityComparer<Type>.Default.GetHashCode(EqualityContract) * -1521134295 + EqualityComparer<string>.Default.GetHashCode(Name);
 }

 public override bool Equals(object? obj)
 {
  return Equals(obj as User);
 }

 public virtual bool Equals(User? other)
 {
  return (object)other != null && EqualityContract == other!.EqualityContract && EqualityComparer<string>.Default.Equals(Name, other!.Name);
 }

 public virtual User <Clone>$()
 {
  return new User(this);
 }

 protected User(User original)
 {
  Name = original.Name;
 }

 public void Deconstruct(out string Name)
 {
  Name = this.Name;
 }
}
این خروجی به صورت خودکار تولید شده‌ی توسط کامپایلر، چنین نکاتی را به همراه دارد:
- record‌ها هنوز هم در اصل همان class‌های استاندارد #C هستند (یعنی در اصل reference type هستند).
- این کلاس به همراه یک سازنده و یک خاصیت init-only است (بر اساس تعاریف ما).
- متد ToString آن بازنویسی شده‌است تا اگر آن‌را بر روی شیء حاصل، فراخوانی کردیم، به صورت خودکار نمایش زیبایی را از محتوای آن ارائه دهد.
- این کلاس از نوع  <IEquatable<User است که امکان مقایسه‌ی اشیاء record را به سادگی میسر می‌کند. برای این منظور متدهای GetHashCode و Equals آن به صورت خودکار بازنویسی و تکمیل شده‌اند (یعنی مقایسه‌ی آن شبیه به value-type است).
- این کلاس امکان clone کردن اطلاعات جاری را مهیا می‌کند.
- همچنین به همراه یک متد Deconstruct هم هست که جهت انتساب خواص تعریف شده‌ی در آن، به یک tuple مفید است.

بنابراین یک رکورد به همراه قابلیت‌هایی است که سال‌ها در زبان #C وجود داشته‌اند و شاید ما به سادگی حاضر به تشکیل و تکمیل آن‌ها نمی‌شدیم؛ اما اکنون کامپایلر زحمت کدنویسی خودکار آن‌ها را متقبل می‌شود!


ساخت یک وهله‌ی جدید از یک record با clone کردن آن

اگر به کدهای حاصل از دی‌کامپایل فوق دقت کنید، یک قسمت جدید clone هم با syntax خاصی در آن ظاهر شده‌است:
public virtual User <Clone>$()
{
  return new User(this);
}
زمانیکه یک شیء Immutable است، دیگر نمی‌توان مقادیر خواص آن‌را در ادامه تغییر داد. اما اگر نیاز به اینکار وجود داشت، باید چکار کنیم؟ در C# 9.0 برای ایجاد وهله‌ی جدید معادلی از یک record، واژه‌ی کلیدی جدیدی را به نام with، اضافه کرده‌اند. برای نمونه اگر record زیر را در نظر بگیریم که دارای دو خاصیت نام و سن است:
public record User(string Name, int Age);
وهله سازی متداول آن به صورت زیر خواهد بود:
var user1 = new User("User 1", 21);
اما اگر خواستیم خاصیت سن آن‌را تغییر دهیم، می‌توان با استفاده از واژه‌ی کلیدی with، به صورت زیر عمل کرد:
var user2 = user1 with { Age = 31 };
کاری که در اصل در اینجا انجام می‌شود، ابتدا clone کردن شیء user1 است (یعنی دقیقا یک وهله‌ی جدید از user1 را با تمام اطلاعات قبلی آن در اختیار ما قرار می‌دهد که این وهله، ارجاعی را به شیء قبلی ندارد و از آن منقطع است). بنابراین نام user2، دقیقا همان "User 1" است که پیشتر تنظیم کردیم؛ با این تفاوت که اینبار مقدار سن آن متفاوت است. با استفاده از cloning، هنوز شیء user1 که immutable است، دست نخورده باقی مانده‌است و توسط with می‌توان خواص آن‌را تغییر داد و حاصل کار، یک شیء کاملا جدید است که مکان آن در حافظه، با مکان شیء user1 در حافظه، یکی نیست.


مقایسه‌ی نوع‌های record

در کدهای حاصل از دی‌کامپایل فوق، قسمت عمده‌ای از آن به تکمیل اینترفیس <IEquatable<User پرداخته شده بود. به همین جهت اکنون دو رکورد با مقادیر خواص یکسانی را ایجاد می‌کنیم:
var user1 = new User("User 1", 21);
var user2 = new User("User 1", 21);
سپس یکبار آن‌ها را از طریق عملگر == و بار دیگر به کمک متد Equals، مقایسه می‌کنیم:
Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
خروجی هر دو حالت، True است:
user1.Equals(user2) -> True
user1 == user2 -> True
این مورد، یکی از مهم‌ترین تفاوت‌های recordها با classها هستند.
- زمانیکه عملگر == را بر روی شیء user1 و user2 اعمال می‌کنیم، اگر User، از نوع کلاس معمولی باشد، حاصل آن false خواهد بود؛ چون این دو، به یک مکان از حافظه اشاره نمی‌کنند، حتی با اینکه مقادیر خواص هر دو شیء یکی است.
- اما اگر به قطعه کد دی‌کامپایل شده دقت کنید، در یک رکورد که هر چند در اصل یک کلاس است، حتی عملگر == نیز بازنویسی شده‌است تا در پشت صحنه همان متد Equals را فراخوانی کند و این متد با توجه به پیاده سازی اینترفیس <IEquatable<User، اینبار دقیقا مقادیر خواص رکورد را یک به یک مقایسه کرده و نتیجه‌ی حاصل را باز می‌گرداند:
public virtual bool Equals(User? other)
{
   return (object)other != null &&
 EqualityContract == other!.EqualityContract &&
 EqualityComparer<string>.Default.Equals(Name, other!.Name) && 
EqualityComparer<int>.Default.Equals(Age, other!.Age);
}
این متدی است که به صورت خودکار توسط کامپایلر جهت مقایسه‌ی مقادیر خواص رکورد جدید تعریف شده، تشکیل شده‌است. به عبارتی recordها از لحاظ مقایسه، شبیه به value objects عمل می‌کنند؛ هرچند در اصل یک کلاس هستند.

یک نکته: بازنویسی عملگر == در SDK نگارش rc2 فعلی رخ‌داده‌است و در نگارش‌های قبلی preview، اینگونه نبود.


امکان ارث‌بری در recordها

دو رکورد زیر را در نظر بگیرید که اولی به همراه Name است و نمونه‌ی مشتق شده‌ی از آن، خاصیت init-only سن را نیز به همراه دارد:
    public record User
    {
        public string Name { get; init; }

        public User(string name)
        {
            Name = name;
        }
    }

    public record UserWithAge : User
    {
        public int Age { get; init; }

        public UserWithAge(string name, int age) : base(name)
        {
            Age = age;
        }
    }
در اینجا روش دیگر تعریف recordها را ملاحظه می‌کنید که شبیه به کلاس‌ها است و خواص آن init-only هستند. در این حالت اگر مقایسه‌ی زیر را انجام دهیم:
var user1 = new User("User 1");
var user2 = new UserWithAge("User 1", 21);

Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
به خروجی زیر خواهیم رسید:
user1.Equals(user2) -> False
user1 == user2 -> False
علت آن را هم پیشتر بررسی کردیم. تساوی رکوردها بر اساس مقایسه‌ی مقدار تک تک خواص آن‌ها صورت می‌گیرد و چون user1 به همراه سن نیست، مقایسه‌ی این دو، false را بر می‌گرداند.

امکان تعریف ارث‌بری رکوردها به صورت زیر نیز وجود دارد و الزاما نیازی به روش تعریف کلاس مانند آن‌ها، مانند مثال فوق نیست:
public abstract record Food(int Calories);
public record Milk(int C, double FatPercentage) : Food(C);


رکوردها متد ToString را بازنویسی می‌کنند

در مثال قبلی اگر یک ToString را بر روی اشیاء تشکیل شده فراخوانی کنیم:
Console.WriteLine(user1.ToString());
Console.WriteLine(user2.ToString());
به این خروجی‌ها می‌رسیم:
User { Name = User 1 }
UserWithAge { Name = User 1, Age = 21 }
که حاصل بازنویسی خودکار متد ToString در پشت صحنه است.


امکان استفاده‌ی از Deconstruct در رکوردها

دو روش برای تعریف رکوردها وجود دارند؛ یکی شبیه به تعریف کلاس‌ها است و دیگری تعریف یک سطری، که positional record نیز نامیده می‌شود:
public record Person(string Name, int Age);
 فقط در حالت تعریف یک سطری positional record فوق است که خروجی خودکار نهایی تولیدی، به همراه public void Deconstruct نیز خواهد بود:
public void Deconstruct(out string Name, out int Age)
{
  Name = this.Name;
  Age = this.Age;
}
در این حالت می‌توان از tuples نیز برای کار با آن استفاده کرد:
var (name, age) = new Person("User 1", 21);
واژه‌ی «positional» نیز دقیقا به همین قابلیت اشاره می‌کند که بر اساس موقعیت خواص تعریف شده‌ی در رکورد، امکان Deconstruct آن‌ها به متغیرهای یک tuple وجود دارد. حالت تعریف کلاس مانند رکوردها، nominal نام دارد.


امکان استفاده‌ی از نوع‌های record در ASP.NET Core 5x

سیستم model binding در ASP.NET Core 5x، از نوع‌های record نیز پشتیبانی می‌کند؛ یک مثال:
 public record Person([Required] string Name, [Range(0, 150)] int Age);

 public class PersonController
 {
   public IActionResult Index() => View();

   [HttpPost]
   public IActionResult Index(Person person)
   {
    // ...
   }
 }


پرسش و پاسخ

آیا نوع‌های record به صورت value type معرفی می‌شوند؟
پاسخ: خیر. رکوردها در اصل reference type هستند؛ اما از لحاظ مقایسه، شبیه به value types عمل می‌کنند.

آیا می‌توان در یک کلاس، خاصیتی از نوع رکورد را تعریف کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان در رکوردها، از struct و یا کلاس‌ها جهت تعریف خواص استفاده کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان از واژه‌ی کلیدی with با کلاس‌ها و یا structها استفاده کرد؟
پاسخ: خیر. این واژه‌ی کلیدی در C# 9.0 مختص به رکوردها است.

آیا رکوردها به صورت پیش‌فرض Immutable هستند؟
پاسخ: اگر آن‌ها را به صورت positional records تعریف کنید، بله. چون در این حالت خواص تشکیل شده‌ی توسط آن‌ها از نوع init-only هستند. در غیراینصورت، می‌توان خواص غیر init-only را نیز به تعریف رکوردها اضافه کرد.
نظرات مطالب
امکان تعریف ساده‌تر کلاس‌های Immutable در C# 9.0 با معرفی نوع جدید record
بهبودهای جزئی کار با رکوردها در C# 10.0

الف) در C# 10.0 می‌توان از واژه‌ی کلیدی اختیاری class هم در کنار واژه‌ی کلیدی record، استفاده کرد. هر دو سطر ذیل در C# 10.0 به یک معنا هستند:
public record class Test(string Name, string Surname);
public record Test(string Name, string Surname);

ب) امکان تعریف structها به صورت رکورد در C# 10.0
علت امکان ذکر واژه‌ی کلیدی class را در اینجا می‌توان دریافت. structها از نوع value type هستند و اکنون در C# 10.0 می‌توان struct‌ها را هم به صورت record تعریف کرد:
record struct Test(string Name, string Surname)
بنابراین ذکر اختیاری واژه‌ی class، صرفا تاکیدی بر reference type بودن record‌ها در حالت پیش‌فرض آن‌ها است.
البته در اینجا یک تفاوت مهم نیز با recordهای کلاسی وجود دارد؛ در حالت رکوردهای از نوع struct، خواص تعریف شده‌ی توسط آن‌ها، به صورت پیش‌فرض mutable هستند:
string Name { get; set; }
string Surname { get; set; }
یعنی بجای set، از init استفاده نشده‌است (برخلاف record‌های کلاسی).
اگر خواستیم خواص آن‌ها نیز immutable شوند، فقط کافی است یک واژه‌ی کلیدی readonly را به تعریف آن‌ها اضافه کنیم:
readonly record struct Test(string Name, string Surname);
به این ترتیب اینبار خواص تعریف شده‌ی توسط رکورد، init دار می‌شوند:
string Name { get; init; }
string Surname { get; init; }

ج) امکان ارث‌بری ToString
همانطور که در مطلب فوق نیز عنوان شده‌است، رکوردها به همراه یک متد ToString از پیش تهیه شده‌ی توسط کامپایلر هستند. در C# 9.0، اشیاء ارث‌بری شده‌ی از رکوردها، قابلیت ارث‌بری نمونه‌ی بازنویسی شده‌ی این متد را ندارند (یعنی هر رکورد، یک ToString خاص خودش را پیدا می‌کند؛ حتی اگر ارث‌بری شده باشد). در C# 10.0 می‌توان متد ToString پایه را به صورت sealed تعریف کرد:
public record TestRec(string name, string surname)
{
    public sealed override string ToString()
    {
        return $"{name} {surname}";
    }
}
این مورد سبب می‌شود تا کامپایلر به اشیاء ارث‌بری شده نیز امکان دسترسی به ToString کلاس پایه را بدهد و به ازای هر نمونه‌ی ارث‌بری شده، یک ToString خاص آن‌را به صورت خودکار تولید نکند.
مطالب
آشنایی با NHibernate - قسمت هفتم

مدیریت بهینه‌ی سشن فکتوری

ساخت یک شیء SessionFactory بسیار پر هزینه و زمانبر است. به همین جهت لازم است که این شیء یکبار حین آغاز برنامه ایجاد شده و سپس در پایان کار برنامه تخریب شود. انجام اینکار در برنامه‌های معمولی ویندوزی (WinForms ،WPF و ...)، ساده است اما در محیط Stateless وب و برنامه‌های ASP.Net ، نیاز به راه حلی ویژه وجود خواهد داشت و تمرکز اصلی این مقاله حول مدیریت صحیح سشن فکتوری در برنامه‌های ASP.Net است.

برای پیاده سازی شیء سشن فکتوری به صورتی که یکبار در طول برنامه ایجاد شود و بارها مورد استفاده قرار گیرد باید از یکی از الگوهای معروف طراحی برنامه نویسی شیء گرا به نام Singleton Pattern استفاده کرد. پیاده سازی نمونه‌ی thread safe آن که در برنامه‌های ذاتا چند ریسمانی وب و همچنین برنامه‌های معمولی ویندوزی می‌تواند مورد استفاده قرار گیرد، در آدرس ذیل قابل مشاهده است:



از پنجمین روش ذکر شده در این مقاله جهت ایجاد یک lazy, lock-free, thread-safe singleton استفاده خواهیم کرد.

بررسی مدل برنامه

در این مدل ساده ما یک یا چند پارکینگ داریم که در هر پارکینگ یک یا چند خودرو می‌توانند پارک شوند.


یک برنامه ASP.Net را آغاز کرده و ارجاعاتی را به اسمبلی‌های زیر به آن اضافه نمائید:
FluentNHibernate.dll
NHibernate.dll
NHibernate.ByteCode.Castle.dll
NHibernate.Linq.dll
و همچنین ارجاعی به اسمبلی استاندارد System.Data.Services.dll دات نت فریم ورک سه و نیم

تصویر نهایی پروژه ما به شکل زیر خواهد بود:



پروژه ما دارای یک پوشه domain ، تعریف کننده موجودیت‌های برنامه جهت تهیه نگاشت‌های لازم از روی ‌آن‌ها است. سپس یک پوشه جدید را به نام NHSessionManager به آن جهت ایجاد یک Http module مدیریت کننده سشن‌های NHibernate در برنامه اضافه خواهیم کرد.

ساختار دومین برنامه (مطابق کلاس دیاگرام فوق):

namespace NHSample3.Domain
{
public class Car
{
public virtual int Id { get; set; }
public virtual string Name { get; set; }
public virtual string Color { get; set; }
}
}

using System.Collections.Generic;

namespace NHSample3.Domain
{
public class Parking
{
public virtual int Id { get; set; }
public virtual string Name { get; set; }
public virtual string Location { get; set; }
public virtual IList<Car> Cars { get; set; }

public Parking()
{
Cars = new List<Car>();
}
}
}
مدیریت سشن فکتوری در برنامه‌های وب

در این قسمت قصد داریم Http Module ایی را جهت مدیریت سشن‌های NHibernate ایجاد نمائیم.

در ابتدا کلاس Config را در پوشه مدیریت سشن NHibernate با محتویات زیر ایجاد کنید:

using FluentNHibernate.Automapping;
using FluentNHibernate.Cfg;
using FluentNHibernate.Cfg.Db;
using NHibernate.Tool.hbm2ddl;

namespace NHSessionManager
{
public class Config
{
public static FluentConfiguration GetConfig()
{
return
Fluently.Configure()
.Database(
MsSqlConfiguration
.MsSql2008
.ConnectionString(x => x.FromConnectionStringWithKey("DbConnectionString"))
)
.ExposeConfiguration(
x => x.SetProperty("current_session_context_class", "managed_web")
)
.Mappings(
m => m.AutoMappings.Add(
new AutoPersistenceModel()
.Where(x => x.Namespace.EndsWith("Domain"))
.AddEntityAssembly(typeof(NHSample3.Domain.Car).Assembly))
);
}

public static void CreateDb()
{
bool script = false;//آیا خروجی در کنسول هم نمایش داده شود
bool export = true;//آیا بر روی دیتابیس هم اجرا شود
bool dropTables = false;//آیا جداول موجود دراپ شوند
new SchemaExport(GetConfig().BuildConfiguration()).Execute(script, export, dropTables);
}
}
}
با این کلاس در قسمت‌های قبل آشنا شده‌اید. در این کلاس با کمک امکانات Auto mapping موجود در Fluent Nhibernate (مطلب قسمت قبلی این سری آموزشی) اقدام به تهیه نگاشت‌های خودکار از کلاس‌های قرار گرفته در پوشه دومین خود خواهیم کرد (فضای نام این پوشه به دومین ختم می‌شود که در متد GetConfig مشخص است).
دو نکته جدید در متد GetConfig وجود دارد:
الف) استفاده از متد FromConnectionStringWithKey ، بجای تعریف مستقیم کانکشن استرینگ در متد مذکور که روشی است توصیه شده. به این صورت فایل وب کانفیگ ما باید دارای تعریف کلید مشخص شده در متد GetConfig به نام DbConnectionString باشد:

<connectionStrings>
<!--NHSessionManager-->
<add name="DbConnectionString"
connectionString="Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true" />
</connectionStrings>
ب) قسمت ExposeConfiguration آن نیز جدید است.
در اینجا به AutoMapper خواهیم گفت که قصد داریم از امکانات مدیریت سشن مخصوص وب فریم ورک NHibernate استفاده کنیم. فریم ورک NHibernate دارای کلاسی است به نام NHibernate.Context.ManagedWebSessionContext که جهت مدیریت سشن‌های خود در پروژه‌های وب ASP.Net پیش بینی کرده است و از این متد در Http module ایی که ایجاد خواهیم کرد جهت ردگیری سشن جاری آن کمک خواهیم گرفت.

اگر متد CreateDb را فراخوانی کنیم، جداول نگاشت شده به کلاس‌های پوشه دومین برنامه، به صورت خودکار ایجاد خواهند شد که دیتابیس دیاگرام آن به صورت زیر می‌باشد:



سپس کلاس SingletonCore را جهت تهیه تنها و تنها یک وهله از شیء سشن فکتوری در کل برنامه ایجاد خواهیم کرد (همانطور که عنوان شده، ایده پیاده سازی این کلاس thread safe ، از مقاله معرفی شده در ابتدای بحث گرفته شده است):

using NHibernate;

namespace NHSessionManager
{
/// <summary>
/// lazy, lock-free, thread-safe singleton
/// </summary>
public class SingletonCore
{
private readonly ISessionFactory _sessionFactory;

SingletonCore()
{
_sessionFactory = Config.GetConfig().BuildSessionFactory();
}

public static SingletonCore Instance
{
get
{
return Nested.instance;
}
}

public static ISession GetCurrentSession()
{
return Instance._sessionFactory.GetCurrentSession();
}

public static ISessionFactory SessionFactory
{
get { return Instance._sessionFactory; }
}

class Nested
{
// Explicit static constructor to tell C# compiler
// not to mark type as beforefieldinit
static Nested()
{
}

internal static readonly SingletonCore instance = new SingletonCore();
}
}
}
اکنون می‌توان از این Singleton object جهت تهیه یک Http Module کمک گرفت. برای این منظور کلاس SessionModule را به برنامه اضافه کنید:

using System;
using System.Web;
using NHibernate;
using NHibernate.Context;

namespace NHSessionManager
{
public class SessionModule : IHttpModule
{
public void Dispose()
{ }

public void Init(HttpApplication context)
{
if (context == null)
throw new ArgumentNullException("context");

context.BeginRequest += Application_BeginRequest;
context.EndRequest += Application_EndRequest;
}

private void Application_BeginRequest(object sender, EventArgs e)
{
ISession session = SingletonCore.SessionFactory.OpenSession();
ManagedWebSessionContext.Bind(HttpContext.Current, session);
session.BeginTransaction();
}

private void Application_EndRequest(object sender, EventArgs e)
{
ISession session = ManagedWebSessionContext.Unbind(
HttpContext.Current, SingletonCore.SessionFactory);
if (session == null) return;

try
{
if (session.Transaction != null &&
!session.Transaction.WasCommitted &&
!session.Transaction.WasRolledBack)
{
session.Transaction.Commit();
}
else
{
session.Flush();
}
}
catch (Exception)
{
session.Transaction.Rollback();
}
finally
{
if (session != null && session.IsOpen)
{
session.Close();
session.Dispose();
}
}
}
}
}
کلاس فوق کار پیاده سازی اینترفیس IHttpModule را جهت دخالت صریح در request handling pipeline برنامه ASP.Net جاری انجام می‌دهد. در این کلاس مدیریت متدهای استاندارد Application_BeginRequest و Application_EndRequest به صورت خودکار صورت می‌گیرد.
در متد Application_BeginRequest ، در ابتدای هر درخواست یک سشن جدید ایجاد و به مدیریت سشن وب NHibernate بایند می‌شود، همچنین یک تراکنش نیز آغاز می‌گردد. سپس در پایان درخواست، این انقیاد فسخ شده و تراکنش کامل می‌شود، همچنین کار پاکسازی اشیاء نیز صورت خواهد گرفت.

با توجه به این موارد، دیگر نیازی به ذکر using جهت dispose کردن سشن جاری در کدهای ما نخواهد بود، زیرا در پایان هر درخواست اینکار به صورت خودکار صورت می‌گیرد. همچنین نیازی به ذکر تراکنش نیز نمی‌باشد، چون مدیریت آن‌را خودکار کرده‌ایم.

جهت استفاده از این Http module تهیه شده باید چند سطر زیر را به وب کانفیگ برنامه اضافه کرد:

<httpModules>
<!--NHSessionManager-->
<add name="SessionModule" type="NHSessionManager.SessionModule"/>
</httpModules>
بدیهی است اگر نخواهید از Http module استفاده کنید باید این کدها را در فایل Global.asax برنامه قرار دهید.

اکنون مثالی از نحوه‌ی استفاده از امکانات فراهم شده فوق به صورت زیر می‌تواند باشد:
ابتدا کلاس ParkingContext را جهت مدیریت مطلوب‌تر LINQ to NHibernate تشکیل می‌دهیم.

using System.Linq;
using NHibernate;
using NHibernate.Linq;
using NHSample3.Domain;

namespace NHSample3
{
public class ParkingContext : NHibernateContext
{
public ParkingContext(ISession session)
: base(session)
{ }

public IOrderedQueryable<Car> Cars
{
get { return Session.Linq<Car>(); }
}

public IOrderedQueryable<Parking> Parkings
{
get { return Session.Linq<Parking>(); }
}
}
}
سپس در فایل Default.aspx.cs برنامه ، برای نمونه تعدادی رکورد را افزوده و نتیجه را در یک گرید ویوو نمایش خواهیم داد:

using System;
using System.Collections.Generic;
using System.Linq;
using NHibernate;
using NHSample3.Domain;
using NHSessionManager;

namespace NHSample3
{
public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
//ایجاد دیتابیس در صورت نیاز
//Config.CreateDb();

//ثبت یک سری رکورد در دیتابیس
ISession session = SingletonCore.GetCurrentSession();

Car car1 = new Car() { Name = "رنو", Color = "مشکلی" };
session.Save(car1);
Car car2 = new Car() { Name = "پژو", Color = "سفید" };
session.Save(car2);

Parking parking1 = new Parking()
{
Location = "آدرس پارکینگ مورد نظر",
Name = "پارکینگ یک",
Cars = new List<Car> { car1, car2 }
};

session.Save(parking1);

//نمایش حاصل در یک گرید ویوو
ParkingContext db = new ParkingContext(session);
var query = from x in db.Cars select new { CarName = x.Name, CarColor = x.Color };
GridView1.DataSource = query.ToList();
GridView1.DataBind();
}
}
}
مدیریت سشن فکتوری در برنامه‌های غیر وب

در برنامه‌های ویندوزی مانند WinForms ، WPF و غیره، تا زمانیکه یک فرم باز باشد، کل فرم و اشیاء مرتبط با آن به یکباره تخریب نخواهند شد، اما در یک برنامه ASP.Net جهت حفظ منابع سرور در یک محیط چند کاربره، پس از پایان نمایش یک صفحه وب، اثری از آثار اشیاء تعریف شده در کدهای آن صفحه در سرور وجود نداشته و همگی بلافاصله تخریب می‌شوند. به همین جهت بحث‌های ویژه state management در ASP.Net در اینباره مطرح است و مدیریت ویژه‌ای باید روی آن صورت گیرد که در قسمت قبل مطرح شد.
از بحث فوق، تنها استفاده از کلاس‌های Config و SingletonCore ، جهت استفاده و مدیریت بهینه‌ی سشن فکتوری در برنامه‌های ویندوزی کفایت می‌کنند.

دریافت سورس برنامه قسمت هفتم

ادامه دارد ....

مطالب
آرگومان‌های نامگذاری شده (named arguments/parameters) در C#4
مطالب
پیاده سازی Full-Text Search با SQLite و EF Core - قسمت اول - ایجاد و به روز رسانی جدول مجازی FTS
SQLite به صورت توکار از full-text search پشتیبانی می‌کند؛ اما اهمیت آن چیست؟ هدف از full-text search، انجام جستجوهای بسیار سریع، در ستون‌های متنی یک جدول بانک اطلاعاتی است. بدون وجود یک چنین قابلیتی، عموما برای انجام اینکار از دستور LIKE استفاده می‌شود:
SELECT Title FROM Book WHERE Desc LIKE '%cat%';
کار این کوئری، یافتن ردیف‌هایی است که در آن واژه‌ی cat وجود دارند. مشکل این روش، عدم استفاده‌ی از ایندکس‌ها و اصطلاحا انجام یک full table scan است. با استفاده از دستور LIKE، باید تک تک ردیف‌های بانک اطلاعاتی برای یافتن واژه‌ی مدنظر، اسکن و بررسی شوند و انجام اینکار با بالا رفتن تعداد رکوردهای بانک اطلاعاتی، کندتر و کندتر خواهد شد. برای رفع این مشکل، راه حلی به نام full-text search ارائه شده‌است که کار آن ایندکس کردن تمام ستون‌های متنی مدنظر و سپس جستجوی بر روی این ایندکس از پیش آماده شده‌است.
معادل دستور LIKE در کوئری فوق، متد Contains در EF Core است:
var cats = context.Chapters.Where(item => item.Text.Contains("cat")).ToList();
بنابراین هدف از این سری، جایگزین کردن متدهای الحاقی Contains ، StartsWith و EndsWith، با روشی بسیار سریعتر است.

یک نکته: کوئری فوق توسط EF Core و به همراه پروایدر SQLite آن، به صورت زیر ترجمه می‌شود (که آن نیز یک full table scan است):
SELECT  "c"."Text" FROM "Chapters" AS "c" WHERE ('cat' = '') OR (instr("c"."Text", 'cat') > 0)
اما دقیقا دستور Like را به همراه متدهای الحاقی StartsWith و یا EndsWith می‌توان مشاهده کرد:
var cats = context.Chapters.Where(item => item.Text.StartsWith("cat")).ToList();
// SELECT "c"."Text", FROM "Chapters" AS "c" WHERE "c"."Text" IS NOT NULL AND ("c"."Text" LIKE 'cat%')
var cats = context.Chapters.Where(item => item.Text.EndsWith("cat")).ToList();
// SELECT "c"."Title" FROM "Chapters" AS "c" WHERE "c"."Text" IS NOT NULL AND ("c"."Text" LIKE '%cat')


معرفی موجودیت‌های مثال این سری

هدف اصلی ما، ایندکس کردن full-text ستون‌های متنی عنوان و متن جدول بانک اطلاعاتی متناظر با Chapter است:
using System.Collections.Generic;

namespace EFCoreSQLiteFTS.Entities
{
    public class User
    {
        public int Id { get; set; }

        public string Name { get; set; }

        public ICollection<Chapter> Chapters { get; set; }
    }

    public class Chapter
    {
        public int Id { get; set; }

        public string Title { get; set; }

        public string Text { get; set; }

        public User User { get; set; }
        public int UserId { get; set; }
    }
}


ایجاد جدول مجازی Full-text search

زمانیکه عملیات Migration را در EF Core فعال و اجرا می‌کنیم، دو جدول متناظر با Chapter و User ایجاد می‌شوند. اما برای کار با full-text search، نیاز به ایجاد جداول دیگری است، تا کار نگهداری ایندکس‌های تشکیل شده‌ی از ستون‌های متنی مدنظر ما را انجام دهند. به این نوع جداول در SQLite، جدول مجازی و یا virtual table گفته می‌شود. یک virtual table در اصل تفاوتی با یک جدول معمولی ندارد. تفاوت در اینجا است که منطق دسترسی به این جدول مجازی از موتور FTS5 مربوط به SQLite باید عبور کند. تاکنون نگارش‌های مختلفی از موتور full-text search آن منتشر شده‌اند؛ مانند FTS3 ، FTS4 و غیره که آخرین نگارش آن، FTS5 می‌باشد و به همراه توزیعی که مایکروسافت ارائه می‌دهد، وجود دارد و نیازی به تنظیمات خاصی ندارد.
در اینجا روش ایجاد یک جدول مجازی جدید Chapters_FTS را مشاهده می‌کنید:
CREATE VIRTUAL TABLE "Chapters_FTS"
USING fts5("Text", "Title", content="Chapters", content_rowid="Id")
جدول مجازی، با اجرای دستور CREATE VIRTUAL TABLE  ایجاد می‌شود و USING fts5 آن به معنای استفاده‌ی از موتور full-text search نگارش پنجم آن است. سپس لیست ستون‌هایی را که می‌خواهیم ایندکس کنیم، ذکر می‌شوند؛ مانند Text و Title در اینجا. همانطور که مشاهده می‌کنید، فقط نام این ستون‌ها قابل تعریف هستند و هیچ نوع اطلاعات اضافه‌تری را نمی‌توان ذکر کرد.
ذکر پارامتر "content="Chapters اختیاری بوده و به این معنا است که نیازی نیست تا اصل داده‌های مرتبط با ستون‌های ذکر شده نیز ذخیره شوند و آن‌ها را می‌توان از جدول Chapters، بازیابی کرد. در این حالت برای برقراری ارتباط بین این جدول مجازی و جدول chapters، پارامتر "content_rowid="Id مقدار دهی شده‌است. content_rowid به primary key جدول content اشاره می‌کند. ذکر هر دوی این پارامترها اختیاری بوده و در صورت تنظیم، حجم نهایی بانک اطلاعاتی را کاهش می‌دهند. چون در این حالت دیگری نیازی به ذخیره سازی جداگانه‌ی اصل اطلاعات متناظر با ایندکس‌های FTS نیست.

اکنون که با دستور ایجاد جدول مجازی FTS آشنا شدیم، روش ایجاد آن در برنامه‌های مبتنی بر EF Core نیز دقیقا به همین صورت است:
private static void createFtsTables(ApplicationDbContext context)
{
    // For SQLite FTS
    // Note: This can be added to the `protected override void Up(MigrationBuilder migrationBuilder)` method too.
    context.Database.ExecuteSqlRaw(@"CREATE VIRTUAL TABLE IF NOT EXISTS ""Chapters_FTS""
    USING fts5(""Text"", ""Title"", content=""Chapters"", content_rowid=""Id"");");
}
فقط کافی است در ابتدای اجرای برنامه با استفاده از متد ExecuteSqlRaw، عبارت SQL متناظر با ایجاد جدول مجازی را اجرا کنیم. این یک روش ایجاد این نوع جداول است؛ روش دیگر آن، قرار دادن همین قطعه کد در متد "protected override void Up(MigrationBuilder migrationBuilder)" مربوط به کلاس‌های ایجاد شده‌ی توسط عملیات Migration است.


به روز رسانی اطلاعات جدول مجازی FTS، توسط تریگرها

پس از اجرای دستورCREATE VIRTUAL TABLE  فوق، SQLite پنج جدول را به صورت خودکار ایجاد می‌کند که در تصویر زیر قابل مشاهده هستند:


البته ما مستقیما با این جداول کار نخواهیم کرد و این جداول برای نگهداری اطلاعات ایندکس‌های full-text موتور FTS5، توسط خود SQLite نگهداری و مدیریت می‌شوند.

اما ... نکته‌ی مهم اینجا است که جدول مجازی Chapters_FTS، هرچند به جدول اصلی Chapters توسط پارامتر content آن متصل شده‌است، اما تغییرات آن‌را ردیابی نمی‌کند. یعنی هر نوع insert/update/delete ای که در جدول اصلی Chapters رخ می‌دهد، سبب ایندکس شدن اطلاعات جدید آن در جدول مجازی Chapters_FTS نمی‌شود و برای اینکار باید اطلاعات را مستقیما در جدول Chapters_FTS درج کرد.
روش پیشنهاد شده‌ی در مستندات رسمی آن، استفاده از تریگرهای پس از درج اطلاعات، پس از حذف اطلاعات و پس از به روز رسانی اطلاعات به صورت زیر است:
-- Create a table. And an external content fts5 table to index it.
CREATE TABLE tbl(a INTEGER PRIMARY KEY, b, c);
CREATE VIRTUAL TABLE fts_idx USING fts5(b, c, content='tbl', content_rowid='a');

-- Triggers to keep the FTS index up to date.
CREATE TRIGGER tbl_ai AFTER INSERT ON tbl BEGIN
  INSERT INTO fts_idx(rowid, b, c) VALUES (new.a, new.b, new.c);
END;
CREATE TRIGGER tbl_ad AFTER DELETE ON tbl BEGIN
  INSERT INTO fts_idx(fts_idx, rowid, b, c) VALUES('delete', old.a, old.b, old.c);
END;
CREATE TRIGGER tbl_au AFTER UPDATE ON tbl BEGIN
  INSERT INTO fts_idx(fts_idx, rowid, b, c) VALUES('delete', old.a, old.b, old.c);
  INSERT INTO fts_idx(rowid, b, c) VALUES (new.a, new.b, new.c);
END;
در اینجا ابتدا روش ایجاد یک جدول جدید و سپس ایجاد یک جدول مجازی FTS را از روی آن مشاهده می‌کنید.
در ادامه سه تریگر بر روی جدول اصلی که ما به صورت متداولی با آن در برنامه‌های خود کار می‌کنیم، تعریف شده‌اند. این تریگرها کار insert اطلاعات را در جدول مجازی ایجاد شده، به صورت خودکار انجام می‌دهند.
همانطور که مشاهده می‌کنید، یک rowid نیز در اینجا قابل تعریف است؛ rowid، ستون مخفی یک جدول مجازی FTS است و هرچند در حین ایجاد، آن‌را ذکر نمی‌کنیم، اما جزئی از ساختار آن بوده و قابل کوئری گرفتن است.

نکته‌ی مهم: به فرمت دستورات به روز رسانی جدول مجازی FTS دقت کنید. حتی در حالت تریگرهای update و یا delete نیز در اینجا دستور insert، مشاهده می‌شوند. این فرمت دقیقا باید به همین نحو رعایت شود؛ در غیراینصورت اگر از دستورات delete و یا update معمولی بر روی این جدول مجازی استفاده کنید، دفعه‌ی بعدی که برنامه را اجرا می‌کنید، خطای «این بانک اطلاعاتی تخریب شده‌است» را مشاهده کرده (database disk image is malformed) و دیگر نمی‌توانید با فایل بانک اطلاعاتی خود کار کنید.


به روز رسانی اطلاعات جدول مجازی FTS توسط EF Core

روش تعریف تریگرهای یاد شده، مستقل از EF Core بوده و راسا توسط خود بانک اطلاعاتی مدیریت می‌شود. بنابراین فقط کافی است دستور CREATE TRIGGER را به همان نحوی که عنوان شد، توسط متد ExecuteSqlRaw اجرا کنیم تا جزئی از ساختار بانک اطلاعاتی شوند؛ اما ... این روش برای برنامه‌هایی با متن‌های پیچیده کارآیی ندارد. برای مثال فرض کنید اطلاعات اصلی شما با فرمت HTML است. ایندکس ایجاد شده، تگ‌های HTML را حذف نمی‌کند و آن‌ها را نیز ایندکس می‌کند که نه تنها سبب بالا رفتن حجم بانک اطلاعاتی می‌شود، بلکه زمانیکه ما قصد جستجویی را بر روی اطلاعات HTML ای داریم، اساسا کاری به تگ‌های آن نداشته و هدف اصلی ما، متن‌های درج شده‌ی در آن است. نمونه‌ی دیگر آن داشتن اطلاعاتی با «اعراب» است و یا شاید نیاز به یک‌دست سازی ی و ک فارسی وجود داشته باشد. به این نوع عملیات، «نرمال سازی متن» گفته می‌شود و با روش تریگرهای فوق قابل تعریف و مدیریت نیست. به همین جهت می‌توان از روش پیشنهادی زیر استفاده کرد:

الف) یافتن لیست اطلاعات تغییر یافته‌ی حاصل از اعمال insert/update/delete
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.ChangeTracking;

namespace EFCoreSQLiteFTS.DataLayer
{
    public static class EFChangeTrackerExtensions
    {
        public static List<(EntityState State, TEntity NewEntity, TEntity OldEntity)>
                    GetChangedEntities<TEntity>(this DbContext dbContext) where TEntity : class, new()
        {
            if (!dbContext.ChangeTracker.AutoDetectChangesEnabled)
            {
                // ChangeTracker.Entries() only calls `Try`DetectChanges() behind the scene.
                dbContext.ChangeTracker.DetectChanges();
            }

            return dbContext.ChangeTracker.Entries<TEntity>()
                    .Where(IsEntityChanged)
                    .Select(entityEntry => (entityEntry.State,
                                            entityEntry.Entity,
                                            createWithValues<TEntity>(entityEntry.OriginalValues)))
                    .ToList();
        }

        private static bool IsEntityChanged(EntityEntry entry)
        {
            return entry.State == EntityState.Added
                    || entry.State == EntityState.Modified
                    || entry.State == EntityState.Deleted
                    || entry.References.Any(r => r.TargetEntry?.Metadata.IsOwned() == true && IsEntityChanged(r.TargetEntry));
        }

        private static T createWithValues<T>(PropertyValues values) where T : new()
        {
            var entity = new T();
            foreach (var prop in values.Properties)
            {
                var value = values[prop.Name];
                if (value is PropertyValues)
                {
                    throw new NotSupportedException("nested complex object");
                }
                else
                {
                    prop.PropertyInfo.SetValue(entity, value);
                }
            }
            return entity;
        }
    }
}
هدف از متد GetChangedEntities فوق این است که با استفاده از سیستم tracking، نوع عملیات انجام شده و همچنین اصل موجودیت‌ها را پیش و پس از تغییر، بتوان لیست کرد و سپس بر اساس آن‌ها، جدول مجازی FTS را به روز رسانی نمود.
علت نیاز به نمونه‌ی اصل و سپس تغییر کرده‌ی موجودیت‌ها، به نحوه‌ی تعریف تریگرهای مخصوص به به روز رسانی FTS بر می‌گردد. اگر دقت کرده باشید در این تریگرها، new.a و همچنین old.a را داریم که برای شبیه سازی آن‌ها دقیقا باید به اطلاعات یک رکورد، در پیش و پس از به روز رسانی آن، دسترسی یافت.

ب) تعریف تریگرهای SQL توسط سیستم tracking؛ به همراه عملیات نرمال سازی اطلاعات
using System.Collections.Generic;
using System.Data;
using System.Text.RegularExpressions;
using EFCoreSQLiteFTS.Entities;
using Microsoft.EntityFrameworkCore;

namespace EFCoreSQLiteFTS.DataLayer
{
    public static class FtsNormalizer
    {
        private static readonly Regex _htmlRegex = new Regex("<[^>]*>", RegexOptions.Compiled);

        public static string NormalizeText(this string text)
        {
            if (string.IsNullOrWhiteSpace(text))
            {
                return string.Empty;
            }

            // Remove html tags
            text = _htmlRegex.Replace(text, string.Empty);

            // TODO: add other normalizers here, such as `remove diacritics`, `fix Persian Ye-Ke` and so on ...

            return text;
        }
    }

    public static class UpdateFtsTriggers
    {
        public static void UpdateChapterFTS(
            this DbContext context,
            List<(EntityState State, Chapter NewEntity, Chapter OldEntity)> changedChapters)
        {
            var database = context.Database;

            try
            {
                database.BeginTransaction(IsolationLevel.ReadCommitted);

                foreach (var (State, NewEntity, OldEntity) in changedChapters)
                {
                    var chapterNew = NewEntity;
                    var chapterOld = OldEntity;

                    var normalizedNewText = chapterNew.Text.NormalizeText();
                    var normalizedOldText = chapterOld.Text.NormalizeText();
                    var normalizedNewTitle = chapterNew.Title.NormalizeText();
                    var normalizedOldTitle = chapterOld.Title.NormalizeText();
                    switch (State)
                    {
                        case EntityState.Added:
                            if (shouldSkipAddedChapter(chapterNew))
                            {
                                continue;
                            }
                            database.ExecuteSqlRaw("INSERT INTO Chapters_FTS(rowid, Text, Title) values({0}, {1}, {2});",
                                    chapterNew.Id, normalizedNewText, normalizedNewTitle);
                            break;
                        case EntityState.Modified:
                            if (shouldSkipModifiedChapter(chapterNew, chapterOld))
                            {
                                continue;
                            }
                            // This format is important! Otherwise we will get `SQLite Error 11: 'database disk image is malformed'.` error!
                            database.ExecuteSqlRaw(@"INSERT INTO Chapters_FTS(Chapters_FTS, rowid, Text, Title)
                                                        VALUES('delete', {0}, {1}, {2}); ",
                                                        chapterOld.Id, normalizedOldText, normalizedOldTitle);
                            database.ExecuteSqlRaw("INSERT INTO Chapters_FTS(rowid, Text, Title) values({0}, {1}, {2});",
                                    chapterNew.Id, normalizedNewText, normalizedNewTitle);
                            break;
                        case EntityState.Deleted:
                            // This format is important! Otherwise we will get `SQLite Error 11: 'database disk image is malformed'.` error!
                            database.ExecuteSqlRaw(@"INSERT INTO Chapters_FTS(Chapters_FTS, rowid, Text, Title)
                                                        VALUES('delete', {0}, {1}, {2}); ",
                                    chapterOld.Id, normalizedOldText, normalizedOldTitle);
                            break;
                    }
                }
            }
            finally
            {
                database.CommitTransaction();
            }
        }

        private static bool shouldSkipAddedChapter(Chapter chapterNew)
        {
            // TODO: add your logic to avoid indexing this item
            return false;
        }

        private static bool shouldSkipModifiedChapter(Chapter chapterNew, Chapter chapterOld)
        {
            // TODO: add your logic to avoid indexing this item
            return chapterNew.Text == chapterOld.Text && chapterNew.Title == chapterOld.Title;
        }
    }
}
در اینجا نحوه‌ی تعریف متد UpdateChapterFTS را مشاهده می‌کند که اطلاعات خودش را از متد GetChangedEntities دریافت کرده و سپس یکی یکی آن‌ها را در جدول مجازی FTS، با فرمت مخصوصی که عنوان شد (دقیقا متناظر با فرمت تریگرهای مستندات رسمی FTS)، درج می‌کند.
همچنین در اینجا متد NormalizeText را نیز مشاهده می‌کند که بر روی ستون‌های متنی اعمال شده‌است. کار آن پاکسازی تگ‌های یک متن HTML ای است و نگهداری اطلاعات صرفا متنی آن. در اینجا اگر نیاز بود می‌توان منطق‌های پاکسازی اطلاعات دیگری را نیز اعمال کرد.
اکنون که این اطلاعات به صورت پاکسازی شده در جدول مجازی درج می‌شوند، زمانیکه بر روی آن‌ها جستجویی صورت می‌گیرد، دیگر شامل جستجوی بر روی تگ‌های HTML ای نیست و دقت بسیار بیشتری دارد.

ج) اتصال به سیستم
پس از تعریف متدهای الحاقی GetChangedEntities و UpdateChapterFTS، اکنون روش اتصال آن‌ها به DbContext برنامه، با بازنویسی متد SaveChanges آن است:
namespace EFCoreSQLiteFTS.DataLayer
{
    public class ApplicationDbContext : DbContext
    {
        public ApplicationDbContext(DbContextOptions options)
            : base(options)
        {
        }

        public DbSet<Chapter> Chapters { get; set; }
        public DbSet<User> Users { get; set; }

        public override int SaveChanges()
        {
            var changedChapters = this.GetChangedEntities<Chapter>();

            this.ChangeTracker.AutoDetectChangesEnabled = false; // for performance reasons, to avoid calling DetectChanges() again.
            var result = base.SaveChanges();
            this.ChangeTracker.AutoDetectChangesEnabled = true;

            this.UpdateChapterFTS(changedChapters);
            return result;
        }
    }
}
از این پس تمام عملیات insert/update/delete برنامه تحت کنترل قرار گرفته و به صورت خودکار سبب به روز رسانی جدول مجازی FTS نیز می‌شوند.


در قسمت بعدی، روش کوئری گرفتن از این جدول مجازی FTS را بررسی می‌کنیم.
نظرات مطالب
C# 12.0 - Primary Constructors
یک نکته‌ی تکمیلی: روش اعتبارسنجی پارامترهای سازنده‌ی اولیه

اگر برای نمونه پیشتر کار اعتبارسنجی و یا بررسی نال نبودن پارامترهای دریافتی از متد سازنده را در همانجا انجام می‌دادید، روش انجام آن در حالت استفاده‌ی از پارامترهای سازنده‌ی اولیه، به صورت زیر است:
class Employee(string firstName, string lastName)
{
    private readonly string _firstName = firstName.Length >= 5 ? 
                                        firstName : 
                                        throw new ArgumentException("There must be atleast 5 characters");

    private readonly string _lastName = lastName;

    public string FullName()
    {
        return $"Full name  = {_firstName} {_lastName}";
    }
}
نظرات مطالب
ASP.NET MVC #18
- نیازی نیست تمام متدهای RoleProvider دات نت پیاده سازی شوند. برای یک برنامه پیاده سازی دو متد IsUserInRole، GetRolesForUser کافی است. 
- سپس دو کلاس Role و User را باید تعریف کنید. این دو رابطه many-to-many با هم دارند؛ یعنی هر کدام با یک ICollection به دیگری ارتباط پیدا می‌کنند. سپس این دو کلاس را در کلاس Context برنامه مطابق معمول توسط DbSetها در معرض دید EF قرار می‌دهید. مابقی آن کارکردن معمولی با این دو جدول اضافه شده به برنامه است:
    public class EfRolesService : IRolesService
    {
        readonly IUnitOfWork _uow;
        readonly IDbSet<Role> _roles;
        public EfRolesService(IUnitOfWork uow)
        {
            _uow = uow;
            _roles = _uow.Set<Role>();
        }

        public IList<Role> FindUserRoles(int userId)
        {
            var query = from role in _roles
                        from user in role.Users
                        where user.Id == userId
                        select role;

            return query.OrderBy(x => x.Name).ToList();
        }

        public string[] GetRolesForUser(int userId)
        {
            var roles = FindUserRoles(userId);
            if (roles == null || !roles.Any())
            {
                return new string[] { };
            }

            return roles.Select(x => x.Name).ToArray();
        }

        public bool IsUserInRole(int userId, string roleName)
        {
            var query = from role in _roles
                        where role.Name == roleName
                        from user in role.Users
                        where user.Id == userId
                        select role;
            var userRole = query.FirstOrDefault();
            return userRole != null;
        }
    }
و در این حالت CustomRoleProvider به صورت زیر خواهد بود. در این روش فرض شده حین لاگین، user.Id در FormsAuthentication.SetAuthCookie تنظیم می‌شود؛ یعنی userName در این RoleProvider به id آن تنظیم شده:
    public class CustomRoleProvider : RoleProvider
    {
        public override bool IsUserInRole(string username, string roleName)
        {
            // Since the role provider, in this case the CustomRoleProvider is instantiated by 
            // the ASP.NET framework the best solution is to use the service locator pattern. 
            // The service locator pattern is normally considered to be an anti-pattern but 
            // sometimes you have to be pragmatic and accept the limitation on the framework 
            // that is being used (in this case the ASP.NET framework).

            var rolesService = ObjectFactory.GetInstance<IRolesService>();
            return rolesService.IsUserInRole(username.ToInt(), roleName);
        }

        public override string[] GetRolesForUser(string username)
        {
            var rolesService = ObjectFactory.GetInstance<IRolesService>();
            return rolesService.GetRolesForUser(username.ToInt());
        }
// مابقی نیازی نیست پیاده سازی شوند