مطالب
امکان تعریف توابع خاص بانک‌های اطلاعاتی در EF Core
یکی از اهداف کار با ORMها، رسیدن به کدی قابل ترجمه و استفاده‌ی توسط تمام بانک‌های اطلاعاتی ممکن است و یکی از الزامات رسیدن به این هدف، صرفنظر کردن از قابلیت‌های بومی بانک‌های اطلاعاتی است که در سایر بانک‌های اطلاعاتی دیگر معادلی ندارند. برای مثال SQL Server به همراه توابع توکاری مانند datediff و datepart برای کار با زمان و تاریخ است؛ اما این توابع را به صورت مستقیم نمی‌توان در ORMها استفاده کرد. چون به محض استفاده‌ی از آن‌ها، کد تهیه شده دیگر قابلیت انتقال به سایر بانک‌های اطلاعاتی را نخواهد داشت. اما ... اگر این هدف را نداشته باشیم، چطور؟ آیا می‌توان یک تابع DateDiff سفارشی را برای EF Core تهیه نمود و از تمام قابلیت‌های بومی آن در کوئری‌های LINQ استفاده کرد؟ بله! یک چنین قابلیتی تحت عنوان DbFunctions در EF Core پشتیبانی می‌شود که روش تهیه‌ی آن‌ها را در این مطلب بررسی خواهیم کرد.


معرفی موجودیت Person

در مثال این مطلب قصد داریم، معادل توابع بومی مخصوص SQL Server را که امکان کار با DateTime را مهیا می‌کنند، در EF Core تعریف کنیم. به همین جهت نیاز به موجودیتی داریم که دارای خاصیتی از این نوع باشد:
using System;

namespace EFCoreDbFunctionsSample.Entities
{
    public class Person
    {
        public int Id { get; set; }

        public string Name { get; set; }

        public DateTime AddDate { get; set; }
    }
}


گزارشگیری بر اساس تعداد روز گذشته‌ی از ثبت نام

اکنون فرض کنید می‌خواهیم گزارشی را از تمام کاربرانی که در طی 10 روز قبل ثبت نام کرده‌اند، تهیه کنیم. اگر کوئری زیر را برای این منظور تهیه کنیم:
var usersInfo = context.People.Where(person => (DateTime.Now - person.AddDate).Days <= 10).ToList();
با استثنای زیر متوقف خواهیم شد:
'The LINQ expression 'DbSet<Person>.Where(p => (DateTime.Now - p.AddDate).Days <= 10)'
could not be translated. Either rewrite the query in a form that can be translated,
or switch to client evaluation explicitly by inserting a call to either
AsEnumerable(), AsAsyncEnumerable(), ToList(), or ToListAsync().
See https://go.microsoft.com/fwlink/?linkid=2101038 for more information.'
عنوان می‌کند که یک چنین کوئری LINQ ای قابلیت ترجمه‌ی به SQL را ندارد. اما ... نکته‌ی مهم اینجا است که خود SQL Server یک چنین توانمندی را به صورت توکار دارا است:
SELECT [p].[Id], [p].[AddDate], [p].[Name]
FROM [People] AS [p]
WHERE DATEDIFF(Day, [p].[AddDate], GETDATE()) <= 10
برای انجام کوئری مدنظر فقط کافی است از تابع DATEDIFF توکار آن با پارامتر Day، استفاده کنیم تا لیست تمام کاربران ثبت نام کرده‌ی در طی 10 روز قبل را بازگشت دهد. اکنون سؤال اینجا است که آیا می‌توان چنین تابعی را به EF Core معرفی کرد؟


روش تعریف تابع DATEDIFF سفارشی در EF Core

برای تعریف متد DateDiff مخصوص EF Core، ابتدا باید یک کلاس static را تعریف کرد و سپس تنها امضای این متد را، معادل امضای تابع توکار SQL Server تعریف کرد. این متد نیازی نیست تا پیاده سازی را داشته باشد. به همین جهت بدنه‌ی آن‌را صرفا با یک throw new InvalidOperationException مقدار دهی می‌کنیم. هدف از این متد، استفاده‌ی از آن در LINQ Expressions است و قرار نیست به صورت مستقیمی بکار گرفته شود:
namespace EFCoreDbFunctionsSample.DataLayer
{
    public enum SqlDateDiff
    {
        Year,
        Quarter,
        Month,
        DayOfYear,
        Day,
        Week,
        Hour,
        Minute,
        Second,
        MilliSecond,
        MicroSecond,
        NanoSecond
    }

    public static class SqlDbFunctionsExtensions
    {
        public static int SqlDateDiff(SqlDateDiff interval, DateTime initial, DateTime end)
            => throw new InvalidOperationException($"{nameof(SqlDateDiff)} method cannot be called from the client side.");
        public static readonly MethodInfo SqlDateDiffMethodInfo = typeof(SqlDbFunctionsExtensions)
            .GetRuntimeMethod(
                nameof(SqlDbFunctionsExtensions.SqlDateDiff),
                new[] { typeof(SqlDateDiff), typeof(DateTime), typeof(DateTime) }
            );
    }
}
در اینجا علاوه بر تعریف امضای متد DateDiff که در اینجا SqlDateDiff نام گرفته‌است، فیلد SqlDateDiffMethodInfo را نیز مشاهده می‌کنید. در حین تعریف و معرفی DbFunctions سفارشی به EF Core، متدهایی که اینکار را انجام می‌دهند، پارامترهای ورودی از نوع MethodInfo دارند. به همین جهت یک چنین تعریفی انجام شده‌است.


روش معرفی تابع DATEDIFF سفارشی به EF Core

پس از تعریف امضای متد معادل DateDiff، اکنون نوبت به معرفی آن به EF Core است:
namespace EFCoreDbFunctionsSample.DataLayer
{
    public class ApplicationDbContext : DbContext
    {
        // ...
        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            base.OnModelCreating(modelBuilder);

            modelBuilder.HasDbFunction(SqlDbFunctionsExtensions.SqlDateDiffMethodInfo)
                .HasTranslation(args =>
                {
                    var parameters = args.ToArray();
                    var param0 = ((SqlConstantExpression)parameters[0]).Value.ToString();
                    return SqlFunctionExpression.Create("DATEDIFF",
                        new[]
                        {
                            new SqlFragmentExpression(param0), // It should be written as DateDiff(day, ...) and not DateDiff(N'day', ...) .
                            parameters[1],
                            parameters[2]
                        },
                        SqlDbFunctionsExtensions.SqlDateDiffMethodInfo.ReturnType,
                        typeMapping: null);
                });
        }
    }
}
کار تعریف DbFunctions سفارشی توسط متد HasDbFunction صورت می‌گیرد. پارامتر این متد، همان MethodInfo معادل امضای تابع توکار مدنظر است.
سپس توسط متد HasTranslation، مشخص می‌کنیم که این متد به چه نحوی قرار است به یک عبارت SQL ترجمه شود. پارامتر args ای که در اینجا در اختیار ما قرار می‌گیرد، دقیقا همان پارامترهای متد public static int SqlDateDiff(SqlDateDiff interval, DateTime initial, DateTime end) هستند که در این مثال خاص، شامل سه پارامتر می‌شوند. پارامترهای دوم و سوم آن‌را به همان نحوی که دریافت می‌کنیم، به SqlFunctionExpression.Create ارسال خواهیم کرد. اما پارامتر اول را از نوع enum تعریف کرده‌ایم و همچنین قرار نیست به صورت 'N'day و رشته‌ای به سمت بانک اطلاعاتی ارسال شود، بلکه باید به همان نحو اصلی آن (یعنی day)، در کوئری نهایی درج گردد، به همین جهت ابتدا Value آن‌را استخراج کرده و سپس توسط SqlFragmentExpression عنوان می‌کنیم آن‌را باید به همین نحو درج کرد.
پارامتر اول متد SqlFunctionExpression.Create، باید دقیقا معادل نام متد توکار مدنظر باشد. پارامتر دوم آن، لیست پارامترهای این تابع است. پارامتر سوم آن، نوع خروجی این تابع است که از طریق MethodInfo معادل، قابل استخراج است.


استفاده‌ی از DbFunction سفارشی جدید در برنامه

پس از این تعاریف و معرفی‌ها، اکنون می‌توان متد سفارشی SqlDateDiff تهیه شده را به صورت مستقیمی در کوئری‌های LINQ استفاده کرد تا قابلیت ترجمه‌ی به SQL را پیدا کنند:
var sinceDays = 10;
users = context.People.Where(person =>
      SqlDbFunctionsExtensions.SqlDateDiff(SqlDateDiff.Day, person.AddDate, DateTime.Now) <= sinceDays).ToList();
/*
SELECT [p].[Id], [p].[AddDate], [p].[Name]
FROM [People] AS [p]
WHERE DATEDIFF(Day, [p].[AddDate], GETDATE()) <= @__sinceDays_0
*/


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید: EFCoreDbFunctionsSample.zip
این کدها به همراه چند تابع سفارشی دیگر نیز هستند.
مطالب
Functional Programming یا برنامه نویسی تابعی - قسمت دوم – مثال‌ها
در قسمت قبلی این مقاله، با مفاهیم تئوری برنامه نویسی تابعی آشنا شدیم. در این مطلب قصد دارم بیشتر وارد کد نویسی شویم و الگوها و ایده‌های پیاده سازی برنامه نویسی تابعی را در #C مورد بررسی قرار دهیم.


Immutable Types

هنگام ایجاد یک Type جدید باید سعی کنیم دیتای داخلی Type را تا حد ممکن Immutable کنیم. حتی اگر نیاز داریم یک شیء را برگردانیم، بهتر است که یک instance جدید را برگردانیم، نه اینکه همان شیء موجود را تغییر دهیم. نتیحه این کار نهایتا به شفافیت بیشتر و Thread-Safe بودن منجر خواهد شد.
مثال:
public class Rectangle
{
    public int Length { get; set; }
    public int Height { get; set; }

    public void Grow(int length, int height)
    {
        Length += length;
        Height += height;
    }
}

Rectangle r = new Rectangle();
r.Length = 5;
r.Height = 10;
r.Grow(10, 10);// r.Length is 15, r.Height is 20, same instance of r
در این مثال، Property های کلاس، از بیرون قابل Set شدن می‌باشند و کسی که این کلاس را فراخوانی میکند، هیچ ایده‌ای را درباره‌ی مقادیر قابل قبول آن‌ها ندارد. بعد از تغییر بهتر است وظیفه‌ی ایجاد آبجکت خروجی به عهده تابع باشد، تا از شرایط ناخواسته جلوگیری شود:
// After
public class ImmutableRectangle
{
    int Length { get; }
    int Height { get; }

    public ImmutableRectangle(int length, int height)
    {
        Length = length;
        Height = height;
    }

    public ImmutableRectangle Grow(int length, int height) =>
          new ImmutableRectangle(Length + length, Height + height);
}

ImmutableRectangle r = new ImmutableRectangle(5, 10);
r = r.Grow(10, 10);// r.Length is 15, r.Height is 20, is a new instance of r
با این تغییر در ساختار کد، کسی که یک شیء از کلاس ImmutableRectangle را ایجاد میکند، باید مقادیر را وارد کند و مقادیر Property ها به صورت فقط خواندنی از بیرون کلاس در دسترس هستند. همچنین در متد Grow، یک شیء جدید از کلاس برگردانده می‌شود که هیچ ارتباطی با کلاس فعلی ندارد.


استفاده از Expression بجای Statement

یکی از موارد با اهمیت در سبک کد نویسی تابعی را در مثال زیر ببینید:
public static void Main()
{
    Console.WriteLine(GetSalutation(DateTime.Now.Hour));
}

// imparitive, mutates state to produce a result
/*public static string GetSalutation(int hour)
{
    string salutation; // placeholder value

    if (hour < 12)
        salutation = "Good Morning";
    else
        salutation = "Good Afternoon";

    return salutation; // return mutated variable
}*/

public static string GetSalutation(int hour) => hour < 12 ? "Good Morning" : "Good Afternoon";
به خط‌های کامنت شده دقت کنید؛ می‌بینیم که یک متغیر، تعریف شده که نگه دارنده‌ای برای خروجی خواهد بود. در واقع به اصطلاح آن را mutate می‌کند؛ در صورتیکه نیازی به آن نیست. ما می‌توانیم این کد را به صورت یک عبارت (Expression) در آوریم که خوانایی بیشتری دارد و کوتاه‌تر است.


استفاده از High-Order Function ها برای ایجاد کارایی بیشتر

در قسمت قبلی درباره توابع HOF صحبت کردیم. به طور خلاصه توابعی که یک تابع را به عنوان ورودی میگیرند و یک تابع را به عنوان خروجی برمی‌گردانند. به مثال زیر توجه کنید:
public static int Count<TSource>(this IEnumerable<TSource> source, Func<TSource, bool> predicate)
{
    int count = 0;

    foreach (TSource element in source)
    {
        checked
        {
            if (predicate(element))
            {
                count++;
            }
        }
    }

    return count;
}
این قطعه کد، مربوط به متد Count کتابخانه‌ی Linq می‌باشد. در واقع این متد تعدادی از چیز‌ها را تحت شرایط خاصی می‌شمارد. ما دو راهکار داریم، برای هر شرایط خاص، پیاده سازی نحوه‌ی شمردن را انجام دهیم و یا یک تابع بنویسیم که شرط شمردن را به عنوان ورودی دریافت کند و تعدادی را برگرداند.


ترکیب توابع

ترکیب توابع به عمل پیوند دادن چند تابع ساده، برای ایجاد توابعی پیچیده گفته می‌شود. دقیقا مانند عملی که در ریاضیات انجام می‌شود. خروجی هر تابع به عنوان ورودی تابع بعدی مورد استفاده قرار میگیرد و در آخر ما خروجی آخرین فراخوانی را به عنوان نتیجه دریافت میکنیم. ما میتوانیم در #C به روش برنامه نویسی تابعی، توابع را با یکدیگر ترکیب کنیم. به مثال زیر توجه کنید:
public static class Extensions
{
    public static Func<T, TReturn2> Compose<T, TReturn1, TReturn2>(this Func<TReturn1, TReturn2> func1, Func<T, TReturn1> func2)
    {
        return x => func1(func2(x));
    }
}

public class Program
{
    public static void Main(string[] args)
    {
        Func<int, int> square = (x) => x * x;
        Func<int, int> negate = x => x * -1;
        Func<int, string> toString = s => s.ToString();
        Func<int, string> squareNegateThenToString = toString.Compose(negate).Compose(square);
        Console.WriteLine(squareNegateThenToString(2));
    }
}
در مثال بالا ما سه تابع جدا داریم که میخواهیم نتیجه‌ی آن‌ها را به صورت پشت سر هم داشته باشیم. ما میتوانستیم هر کدام از این توابع را به صورت تو در تو بنویسیم؛ ولی خوانایی آن به شدت کاهش خواهد یافت. بنابراین ما از یک Extension Method استفاده کردیم.


Chaining / Pipe-Lining و اکستنشن‌ها

یکی از روش‌های مهم در سبک برنامه نویسی تابعی، فراخوانی متد‌ها به صورت زنجیره‌ای و پاس دادن خروجی یک متد به متد بعدی، به عنوان ورودی است. به عنوان مثال کلاس String Builder یک مثال خوب از این نوع پیاده سازی است. کلاس StringBuilder از پترن Fluent Builder استفاده می‌کند. ما می‌توانیم با اکستنشن متد هم به همین نتیجه برسیم. نکته مهم در مورد کلاس StringBuilder این است که این کلاس، شیء string را mutate نمیکند؛ به این معنا که هر متد، تغییری در object ورودی نمی‌دهد و یک خروجی جدید را بر می‌گرداند.
string str = new StringBuilder()
  .Append("Hello ")
  .Append("World ")
  .ToString()
  .TrimEnd()
  .ToUpper();
در این مثال  ما کلاس StringBuilder را توسط یک اکستنشن متد توسعه داده‌ایم:
public static class Extensions
{
    public static StringBuilder AppendWhen(this StringBuilder sb, string value, bool predicate) => predicate ? sb.Append(value) : sb;
}

public class Program
{
    public static void Main(string[] args)
    {
        // Extends the StringBuilder class to accept a predicate
        string htmlButton = new StringBuilder().Append("<button").AppendWhen(" disabled", false).Append(">Click me</button>").ToString();
    }
}


نوع‌های اضافی درست نکنید ، به جای آن از کلمه‌ی کلیدی yield استفاده کنید!

گاهی ما نیاز داریم لیستی از آیتم‌ها را به عنوان خروجی یک متد برگردانیم. اولین انتخاب معمولا ایجاد یک شیء از جنس List یا به طور کلی‌تر Collection و سپس استفاده از آن به عنوان نوع خروجی است:
public static void Main()
{
    int[] a = { 1, 2, 3, 4, 5 };

    foreach (int n in GreaterThan(a, 3))
    {
        Console.WriteLine(n);
    }
}


/*public static IEnumerable<int> GreaterThan(int[] arr, int gt)
{
    List<int> temp = new List<int>();
    foreach (int n in arr)
    {
        if (n > gt) temp.Add(n);
    }
    return temp;
}*/

public static IEnumerable<int> GreaterThan(int[] arr, int gt)
{
    foreach (int n in arr)
    {
        if (n > gt) yield return n;
    }
}
همانطور که مشاهده میکنید در مثال اول، ما از یک لیست موقت استفاده کرد‌ه‌ایم تا آیتم‌ها را نگه دارد. اما میتوانیم از این مورد با استفاده از کلمه کلیدی yield اجتناب کنیم. این الگوی iterate بر روی آبجکت‌ها در برنامه نویسی تابعی، خیلی به چشم میخورد.


برنامه نویسی declarative به جای imperative با استفاده از Linq

در قسمت قبلی به طور کلی درباره برنامه نویسی Imperative صحبت کردیم. در مثال زیر یک نمونه از تبدیل یک متد که با استایل Imperative نوشته شده به declarative را می‌بینید. شما میتوانید ببینید که چقدر کوتاه‌تر و خواناتر شده:
List<int> collection = new List<int> { 1, 2, 3, 4, 5 };

// Imparative style of programming is verbose
List<int> results = new List<int>();

foreach(var num in collection)
{
  if (num % 2 != 0) results.Add(num);
}

// Declarative is terse and beautiful
var results = collection.Where(num => num % 2 != 0);


Immutable Collection

در مورد اهمیت immutable قبلا صحبت کردیم؛ Immutable Collection ها، کالکشن‌هایی هستند که به جز زمانیکه ایجاد می‌شنود، اعضای آن‌ها نمی‌توانند تغییر کنند. زمانیکه یک آیتم به آن اضافه یا کم شود، یک لیست جدید، برگردانده خواهد شد. شما می‌توانید انواع این کالکشن‌ها را در این لینک ببینید.
به نظر میرسد که ایجاد یک کالکشن جدید میتواند سربار اضافی بر روی استفاده از حافظه داشته باشد، اما همیشه الزاما به این صورت نیست. به طور مثال اگر شما f(x)=y را داشته باشید، مقادیر x و y به احتمال زیاد یکسان هستند. در این صورت متغیر x و y، حافظه را به صورت مشترک استفاده می‌کنند. به این دلیل که هیچ کدام از آن‌ها Mutable نیستند. اگر به دنبال جزییات بیشتری هستید این مقاله به صورت خیلی جزیی‌تر در مورد نحوه پیاده سازی این نوع کالکشن‌ها صحبت میکند. اریک لپرت یک سری مقاله در مورد Immutable ها در #C دارد که میتوانید آن هار در اینجا پیدا کنید.

 

Thread-Safe Collections

اگر ما در حال نوشتن یک برنامه‌ی Concurrent / async باشیم، یکی از مشکلاتی که ممکن است گریبانگیر ما شود، race condition است. این حالت زمانی اتفاق می‌افتد که دو ترد به صورت همزمان تلاش میکنند از یک resource استفاده کنند و یا آن را تغییر دهند. برای حل این مشکل میتوانیم آبجکت‌هایی را که با آن‌ها سر و کار داریم، به صورت immutable تعریف کنیم. از دات نت فریمورک نسخه 4 به بعد  Concurrent Collection‌ها معرفی شدند. برخی از نوع‌های کاربردی آن‌ها را در لیست پایین می‌بینیم:
Collection
توضیحات
 ConcurrentDictionary 
  پیاده سازی thread safe از دیکشنری key-value 
 ConcurrentQueue 
  پیاده سازی thread safe از صف (اولین ورودی ، اولین خروجی) 
 ConcurrentStack 
  پیاده سازی thread safe از پشته (آخرین ورودی ، اولین خروجی) 
 ConcurrentBag 
  پیاده سازی thread safe از لیست نامرتب 

این کلاس‌ها در واقع همه مشکلات ما را حل نخواهند کرد؛ اما بهتر است که در ذهن خود داشته باشیم که بتوانیم به موقع و در جای درست از آن‌ها استفاده کنیم.

در این قسمت از مقاله سعی شد با روش‌های خیلی ساده، با مفاهیم اولیه برنامه نویسی تابعی درگیر شویم. در ادامه مثال‌های بیشتری از الگوهایی که میتوانند به ما کمک کنند، خواهیم داشت.   
مطالب
آشنایی با Refactoring - قسمت 11

قسمت یازدهم آشنایی با Refactoring به توصیه‌هایی جهت بالا بردن خوانایی تعاریف مرتبط با اعمال شرطی می‌پردازد.

الف) شرط‌های ترکیبی را کپسوله کنید

عموما حین تعریف شرط‌های ترکیبی، هدف اصلی از تعریف آن‌ها پشت انبوهی از && و || گم می‌شود و برای بیان مقصود، نیاز به نوشتن کامنت خواهند داشت. مانند:

using System;

namespace Refactoring.Day11.EncapsulateConditional.Before
{
public class Element
{
private string[] Data { get; set; }
private string Name { get; set; }
private int CreatedYear { get; set; }

public string FindElement()
{
if (Data.Length > 1 && Name == "E1" && CreatedYear > DateTime.Now.Year - 1)
return "Element1";

if (Data.Length > 2 && Name == "RCA" && CreatedYear > DateTime.Now.Year - 2)
return "Element2";

return string.Empty;
}
}
}

برای بالا بردن خوانایی این نوع کدها که برنامه نویس در همین لحظه‌ی تعریف آن‌ها دقیقا می‌داند که چه چیزی مقصود اوست، بهتر است هر یک از شرط‌ها را تبدیل به یک خاصیت با معنا کرده و جایگزین کنیم. برای مثال مانند:

using System;

namespace Refactoring.Day11.EncapsulateConditional.After
{
public class Element
{
private string[] Data { get; set; }
private string Name { get; set; }
private int CreatedYear { get; set; }

public string FindElement()
{
if (hasOneYearOldElement)
return "Element1";

if (hasTwoYearsOldElement)
return "Element2";

return string.Empty;
}

private bool hasTwoYearsOldElement
{
get { return Data.Length > 2 && Name == "RCA" && CreatedYear > DateTime.Now.Year - 2; }
}

private bool hasOneYearOldElement
{
get { return Data.Length > 1 && Name == "E1" && CreatedYear > DateTime.Now.Year - 1; }
}
}
}


همانطور که ملاحظه می‌کنید پس از این جایگزینی، خوانایی متد FindElement بهبود یافته است و برنامه نویس اگر 6 ماه بعد به این کدها مراجعه کند نخواهد گفت: «من این کدها رو نوشتم؟!»؛ چه برسد به سایرینی که احتمالا قرار است با این کدها کار کرده و یا آن‌ها را نگهداری کنند.


ب) از تعریف خواص Boolean با نام‌های منفی پرهیز کنید

یکی از مواردی که عموما علت اصلی بروز بسیاری از خطاها در برنامه است، استفاده از نام‌های منفی جهت تعریف خواص است. برای مثال در کلاس مشتری زیر ابتدا باید فکر کنیم که مشتری‌های علامتگذاری شده کدام‌ها هستند که حالا علامتگذاری نشده‌ها به این ترتیب تعریف شده‌اند.

namespace Refactoring.Day11.RemoveDoubleNegative.Before
{
public class Customer
{
public decimal Balance { get; set; }

public bool IsNotFlagged
{
get { return Balance > 30m; }
}
}
}

همچنین از تعریف این نوع خواص در فایل‌های کانفیگ برنامه‌ها نیز جدا پرهیز کنید؛ چون عموما کاربران برنامه‌ها با این نوع نامگذاری‌های منفی، مشکل مفهومی دارند.
Refactoring قطعه کد فوق بسیار ساده است و تنها با معکوس کردن شرط و نحوه‌ی نامگذاری خاصیت IsNotFlagged پایان می‌یابد:

namespace Refactoring.Day11.RemoveDoubleNegative.After
{
public class Customer
{
public decimal Balance { get; set; }

public bool IsFlagged
{
get { return Balance <= 30m; }
}
}
}

نظرات مطالب
C# 7 - Binary literals and digit separators
یک نکته‌ی تکمیلی: بهبود جزئی جداکننده‌های ارقام در C# 7.2

در C# 7.2، جهت بهبود خوانایی، جداکننده‌ی ارقام را درست پس از پیشوندهای 0b و 0x نیز می‌توان قرار داد:
class Class‍CS72
{
   const int intLiteral = 100_000;
   const int binaryLiteral = 0b_0101_0101;
   const int hexLiteral = 0x_FF_FF;
}
نظرات مطالب
مقدار دهی اولیه‌ی بانک اطلاعاتی توسط Entity framework Core
برای اعمال OwnsOne  وقتی کلاسهای زیر را داشته باشیم چگونه باید عمل کرد؟
namespace Loans.Models
{
    public class Product
    {
        public Product()
        {
            Rating = new Rating();
        }

        public Rating Rating { get; set; }

        public int Id { get; set; }

        public string Name { get; set; }

        public double Price { get; set; }

        public double OfferPrice { get; set; }

        public Group Group { get; set; }

        public int GroupId { get; set; }

        public List<Image> Images { get; set; }
    }

    public class Rating
    {
        public Rating()
        {
        }

        public Rating(double totalRating, int totalRaters, double averageRating)
        {
            TotalRating = totalRating;
            TotalRaters = totalRaters;
            AverageRating = averageRating;
        }


        public double TotalRating { get; set; } = 0.0;

        public int TotalRaters { get; set; } = 0;

        public double AverageRating { get; set; } = 0.0;
    }

    public class Group
    {
        public int Id { get; set; }

        public string Name { get; set; }

        public Group ParentGroup { get; set; }

        public int? ParentGroupId { get; set; }

        public List<Group> ChildrenGroups { get; set; }

        public List<Product> Products { get; set; }

        public Image Image { get; set; }
    }

    public class Image
    {
        public Guid Id { get; set; }

        public string Name { get; set; }

        public Group Group { get; set; }

        public int? GroupId { get; set; }

        public Product Product { get; set; }

        public int? ProductId { get; set; }
    }
}
حالا اگر برای ownsOne  طبق زیر عمل کنم:
modelBuilder.Entity<Product>().OwnsOne(p => p.Rating)
در هنگام حذف Product  آن را حذف نمیکند و ارور زیر را میدهد:
 "The entity of type 'Product' is sharing the table 'Products' with entities of type 'Rating ',
 but there is no entity of this type with the same key value ."
البته از EFCore2.2 استفاده میکنم. 
نظرات مطالب
C# 7 - Pattern matching and switch expressions
C# 7.1 - Pattern-Matching with Generics

C# 7.1 پشتیبانی بهتری از pattern-matching را جهت کار با Generics ارائه داده‌است.
public class Car {}
public class SportsCar : Car
{
   public string Color { get; set; }
}
در اینجا یک کلاس پایه خودرو و سپس یک کلاس مشتق شده‌ی خودرو‌های ورزشی را داریم. اکنون در جائی از برنامه می‌خواهیم متد راندن این خودروها را تعریف کنیم:
public static void Run<T>(T car) where T : Car
{
   if (car is SportsCar sportsCar)
   {
   }

   switch (car)
   {
      case SportsCar sCar:
      break;
   }
}
در اینجا نوع خودرو به صورت جنریک تعریف شده‌است و سپس با استفاده از قابلیت‌های pattern-matching سعی در انطباق با آن‌ها را داریم. کامپایل این قطعه کد در C# 7.0 با خطای کامپایلر ذیل متوقف می‌شود:
 An expression of type "T" cannot be handled by a pattern of type "SportsCar"

اگر این قطعه کد را بخواهیم با C# 7.0 کامپایل کنیم نیاز است ابتدا شیء دریافتی به object تبدیل شود و سپس کار pattern-matching با موفقیت صورت خواهد گرفت:
public static void Run<T>(T car) where T : Car
{
   if ((object)car is SportsCar sportsCar)
   {
   }

   switch ((object)car)
   {
      case SportsCar sCar:
      break;
   }
}
این محدودیت در C# 7.1 برطرف شده‌است و دیگر نیازی به این cast اضافه نیست و می‌توان (object) را از قطعه کد فوق حذف کرد.
مطالب
پیشنهاد یک دیکشنری کم دردسرتر!
نگارش ابتدایی «iTextSharp.LGPLv2.Core » بر اساس کدهای اولیه‌ی iTextSharp بود که مستقیما از جاوا به سی‌شارپ ترجمه شده بود. این کدها پر بودند از ساختارهای داده‌ای مانند Hashtable و ArrayList که مرتبط هستند با روزهای آغازین ارائه‌ی دات نت 1؛ پیش از ارائه‌ی Generics. برای مثال نوع Hashtable، همانند ساختار داده‌ی Dictionary عمل می‌کند، اما جنریک نیست؛ یعنی شبیه به <Dictionary<object, object عمل می‌کند و برای کار با آن، باید مدام از تبدیل نوع‌های داده‌ها (یا همان boxing) از نوع object‌، به نوع داده‌ی مدنظر، استفاده کرد که این تبدیل نوع‌ها، همیشه به همراه کاهش کارآیی هم هستند. به علاوه در حین کار با Hashtable، اگر کلیدی در مجموعه‌ی آن وجود نداشته باشد، فقط نال را بازگشت می‌دهد، اما Dictionary، یک استثنای یافت نشدن کلید را صادر می‌کند. بنابراین فرض کنید که با هزاران سطر کد استفاده کننده‌ی از Hashtable طرف هستید که اگر آن‌ها را تبدیل به Dictionary‌های جنریک متناسبی کنید تا کارآیی برنامه بهبود یابد، تمام موارد استفاده‌ی از آن‌ها‌را نیز باید به همراه TryGetValue‌ها کنید تا از شر استثنای یافت نشدن کلید درخواستی، در امان باشید. در این مطلب روش مواجه شدن با یک چنین حالتی را با حداقل تغییر در کدها بررسی خواهیم کرد.


ممنوع کردن استفاده‌ی از ساختارهای داده‌ی غیرجنریک

قدم اول مواجه شدن با یک چنین کدهای قدیمی، ممنوع کردن استفاده‌ی از ساختارهای داده‌ی غیرجنریک و الزام به تبدیل آن‌ها به نوع‌های جدید است. برای این منظور می‌توان از Microsoft.CodeAnalysis.BannedApiAnalyzers استفاده کرد که توضیحات بیشتر آن‌را در مطلب «غنی سازی کامپایلر C# 9.0 با افزونه‌ها» پیشتر بررسی کرده‌ایم. به صورت خلاصه، ابتدا بسته‌ی نیوگت آن‌را به صورت یک آنالایزر جدید به فایل csproj. برنامه معرفی می‌کنیم:
<Project Sdk="Microsoft.NET.Sdk">
    <ItemGroup>
        <PackageReference Include="Microsoft.CodeAnalysis.BannedApiAnalyzers" Version="3.3.3">
            <PrivateAssets>all</PrivateAssets>
            <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
        </PackageReference>
    </ItemGroup>
    <ItemGroup>
        <AdditionalFiles Include="$(MSBuildThisFileDirectory)BannedSymbols.txt" Link="Properties/BannedSymbols.txt"/>
    </ItemGroup>
</Project>
همچنین در اینجا نیاز است یک فایل متنی BannedSymbols.txt را نیز به آن معرفی کرد؛ برای مثال با این محتوا:
# https://github.com/dotnet/roslyn-analyzers/blob/main/src/Microsoft.CodeAnalysis.BannedApiAnalyzers/BannedApiAnalyzers.Help.md
T:System.Collections.ICollection;Don't use a non-generic data structure.
T:System.Collections.Hashtable;Don't use a non-generic data structure.
T:System.Collections.ArrayList;Don't use a non-generic data structure.
T:System.Collections.SortedList;Don't use a non-generic data structure.
T:System.Collections.Stack;Don't use a non-generic data structure.
T:System.Collections.Queue;Don't use a non-generic data structure.
این تنظیمات سبب خواهند شد تا اگر در کدهای ما، ساختارهای داده‌ی غیرجنریکی در حال استفاده بودند، با یک اخطار ظاهر شوند و جهت سخت‌گیری بیشتر، روش تبدیل اخطارها به خطاها را نیز در مطلب «غنی سازی کامپایلر C# 9.0 با افزونه‌ها» بررسی کرده‌ایم تا مجبور به اصلاح آن‌ها شویم.


پیشنهاد یک دیکشنری کم دردسرتر!

برای نمونه پس از تنظیمات فوق، مجبور به تغییر تمام hash tableها به دیکشنری‌های جدید جنریک خواهیم شد؛ اما ... اگر اینکار را انجام دهیم، برنامه‌ای که تا پیش از این بدون مشکل کار می‌کرد، اکنون با استثناهای متعدد یافت نشدن کلیدها، خاتمه پیدا می‌کند! چون دیگر دیکشنری‌های جدید، همانند hash tableهای قدیمی، در صورت عدم وجود کلیدی، نال را بازگشت نمی‌دهند.
برای رفع این مشکل و اصلاح انبوهی از کدها با حداقل تغییرات و عدم تکرار TryGetValueها در همه‌جا، می‌توان دسترسی به ایندکس‌های یک دیکشنری استاندارد دات نت را به صورت زیر با ارث‌بری از آن، بازنویسی کرد:
/// <summary>
///     This custom IDictionary doesn't throw a KeyNotFoundException while accessing its value by a given key
/// </summary>
public interface INullValueDictionary<TKey, TValue> : IDictionary<TKey, TValue>
{
    new TValue this[TKey key] { get; set; }
}

/// <summary>
///     This custom IDictionary doesn't throw a KeyNotFoundException while accessing its value by a given key
/// </summary>
public class NullValueDictionary<TKey, TValue> : Dictionary<TKey, TValue>, INullValueDictionary<TKey, TValue>
{
    public new TValue this[TKey key]
    {
        get => TryGetValue(key, out var val) ? val : default;
        set => base[key] = value;
    }
}
همانطور که مشاهده می‌کنید، اگر بجای Dictionary، از NullValueDictionary پیشنهادی استفاده کنیم، دیگر نیازی نیست تا هزاران TryGetValue را در سراسر کدهای برنامه، تکرار و پراکنده کنیم و با حداقل تغییرات می‌توان معادل بهتری را بجای Hashtable قدیمی داشت.
نظرات مطالب
پشتیبانی توکار از انجام کارهای پس‌زمینه در ASP.NET Core 2x
ارتقاء به NET Core 3.0.: پشتیبانی از ایجاد سرویس‌های پس‌زمینه

یکی از تغییرات مهم قالب ایجاد پروژه‌های ASP.NET Core 3.0، تغییر فایل program.cs آن است که در آن از یک Generic Host بجای روش قبلی Web Host، استفاده شده‌است. علت آن فراهم آوردن امکان استفاده‌ی از قابلیت‌هایی مانند تزریق وابستگی‌ها، logging، تنظیمات برنامه و غیره، در برنامه‌های غیر وب نیز می‌باشد. یکی از این انواع برنامه‌ها، سرویس‌های پس‌زمینه‌ی غیر HTTP هستند. به این ترتیب می‌توان برنامه‌ای شبیه به یک برنامه‌ی وب ASP.NET Core را ایجاد کرد که تنها کارش اجرای سرویس‌های غیر وبی است؛ اما به تمام امکانات و زیر ساخت‌های ASP.NET Core دسترسی دارد.
برای ایجاد این نوع برنامه‌ها در NET Core 3x. می‌توانید دستور زیر را در پوشه‌ی خالی که ایجاد کرده‌اید، اجرا کنید:
dotnet new worker
ساختار برنامه‌ای که توسط این دستور تولید می‌شود به صورت زیر است که بسیار شبیه به ساختار یک برنامه‌ی ASP.NET Core است:
appsettings.Development.json
appsettings.json
MyWorkerServiceApp.csproj
Program.cs
Worker.cs

- فایل csproj آن دارای این محتوا است:
<Project Sdk="Microsoft.NET.Sdk.Worker">
  <PropertyGroup>
    <TargetFramework>netcoreapp3.0</TargetFramework>
    <UserSecretsId>dotnet-MyWorkerServiceApp-B76DB08E-FFBB-4AD1-89B5-93BF483D1BD0</UserSecretsId>
  </PropertyGroup>
  <ItemGroup>
    <PackageReference Include="Microsoft.Extensions.Hosting" Version="3.0.0-preview8.19405.4" />
  </ItemGroup>
</Project>
در آن ویژگی Sdk به Microsoft.NET.Sdk.Worker اشاره می‌کند و همچنین از بسته‌ی Microsoft.Extensions.Hosting استفاده شده‌است.

- محتوای فایل Program.cs آن بسیار آشنا است و دقیقا کپی همان فایلی است که در برنامه‌های ASP.NET Core 3x حضور دارد:
namespace MyWorkerServiceApp
{
    public class Program
    {
        public static void Main(string[] args)
        {
            CreateHostBuilder(args).Build().Run();
        }

        public static IHostBuilder CreateHostBuilder(string[] args) =>
            Host.CreateDefaultBuilder(args)
                .ConfigureServices((hostContext, services) =>
                {
                    services.AddHostedService<Worker>();
                });
    }
}
در اینجا یک Generic host را بجای Web host قالب‌های پیشین فایل Program.cs ملاحظه می‌کنید که هدف اصلی آن، عمومی کردن این قالب، برای استفاده‌ی از آن در برنامه‌های غیر وبی نیز می‌باشد.
در متد ConfigureServices، انواع اقسام سرویس‌ها را منجمله یک HostedService که در مطلب جاری به آن پرداخته شده، می‌توان افزود. سرویس Worker ای که در اینجا به آن ارجاعی وجود دارد، به صورت زیر تعریف شده‌است:
    public class Worker : BackgroundService
    {
        private readonly ILogger<Worker> _logger;

        public Worker(ILogger<Worker> logger)
        {
            _logger = logger;
        }

        protected override async Task ExecuteAsync(CancellationToken stoppingToken)
        {
            while (!stoppingToken.IsCancellationRequested)
            {
                _logger.LogInformation("Worker running at: {time}", DateTimeOffset.Now);
                await Task.Delay(1000, stoppingToken);
            }
        }
    }
با ساختار این کلاس نیز آشنا هستید و موضوع اصلی مطلب جاری است.


یک نکته‌ی تکمیلی: روش تبدیل کردن یک BackgroundService به یک Windows Service

اگر برنامه‌ی NET Core. شما در ویندوز اجرا می‌شود، می‌توانید این برنامه‌ی BackgroundService را به یک سرویس ویندوز NT نیز تبدیل کنید. برای اینکار ابتدا بسته‌ی نیوگت Microsoft.Extensions.Hosting.WindowsServices را به پروژه اضافه کنید. سپس جائیکه CreateHostBuilder صورت می‌گیرد، متد UseWindowsService را فراخوانی کنید:
public static IHostBuilder CreateHostBuilder(string[] args) => 
            Host.CreateDefaultBuilder(args) 
                .UseWindowsService() 
                .ConfigureServices((hostContext, services) => 
                { 
                   //services.AddHttpClient(); 
                   services.AddHostedService<Worker>(); 
                });
تا اینجا هنوز هم برنامه، شبیه به یک برنامه‌ی کنسول دات نت Core قابل اجرا و دیباگ است. اما اگر خواستید آن‌را به صورت یک سرویس ویندوز نیز نصب کنید، تنها کافی است از دستور زیر استفاده کنید:
 cs create WorkerServiceDemo binPath=C:\Path\To\WorkerServiceDemo.exe

البته برای لینوکس نیز می‌توان از UseSystemd استفاده کرد که نیاز به نصب بسته‌ی Microsoft.Extensions.Hosting.Systemd را دارد:
public static IHostBuilder CreateHostBuilder(string[] args) =>
    Host.CreateDefaultBuilder(args)
        .UseSystemd()
        .ConfigureServices((hostContext, services) =>
        {
            services.AddHostedService<Worker>();
        });
مطالب
تغییرات اعمال شده در C++11 قسمت اول (enum)
نوع شمارشی enum
نوع شمارشی، یک نوع صحیح است و شامل لیستی از ثوابت می‌باشد که توسط برنامه نویس مشخص می‌گردد . انواع شمارشی برای تولید کد  خودمستند  به کار می‌روند یعنی کدی که به راحتی قابل درک باشد و نیاز به توضیحات اضافه نداشته باشد. زیرا به راحتی توسط نام ، نوع کاربرد و محدوده مقادیرشان قابل درک می‌باشند . مقادیر نوع شمارشی منحصربه فرد می‌باشند (unique) و شامل مقادیر تکراری نمی‌باشند در غیر این صورت  کامپایلر خطای مربوطه را هشدار میدهد . نحوه تعریف نوع شمارشی :
enum typename{enumerator-list}
enum کلمه کلیدی ست ، typename  نام نوع جدید است که برنامه نویس مشخص میکند و enumerator-list مجموعه مقادیری ست که این نوع جدید می‌تواند داشته باشد بعنوان مثال :
enum Day{SAT,SUN,MON,TUE,WED,THU,FRI}
اکنون Day  یک نوع جدید است و متغیرهایی که از این نوع تعریف می‌شوند میتوانند یکی از مقادیر مجموعه فوق را دارا باشند .
Day  day1,day2; 
day1 = SAT; 
day2 = SUN;
مقادیرSAT و SUN و MON  هر چند که به همین شکل بکار میروند ولی در رایانه به شکل اعداد صحیح  0 , 1 , 2 , ... ذخیره می‌شوند . به همین دلیل است که به هر یک از مقادیر SAT و SUN و ...  یک شـمارشـگر می‌گویند . وقتی فهرست شمارشگرهای یک نوع تعریف شد به طور خودکار مقادیر 0 و 1 و ... به ترتیب به آنها اختصاص داده میشود . می‌توان مقادیر صحیح دلخواهی به شمارشگرها نسبت داد به طور مثال :
enum Day{SAT=1,SUN=2,MON=4,TUE=8,WED=16,THU=32,FRI=64}
اگر چند شمارشگر مقدار دهی شده باشند آنگاه شمارشگرهایی که مقدار دهی نشده اند ، مقادیر متوالی بعدی را خواهند گرفت .
enum Day{SAT=1,SUN,MON,TUE,WED,THU,FRI}
دستور بالا مقادیر 1 تا 7 را بترتیب به شمارشگرها اختصاص میدهد .
میتوان به شمارشگرها مقادیر یکسانی نسبت داد
enum Answer{NO=0,FALSE=0,YES=1,TRUE=1,OK=1}
ولی نمی‌توان نامهای یکسانی را در نظر گرفت  ! تعریف زیر بدلیل استفاده مجدد از شمارشگر YES با خطای کامپایلر مواجه می‌شویم .
enum Answer{NO=0,FALSE=0,YES=1,YES=2,OK=1}
چند دلیل استفاده از نوع شمارشی عبارت است از :
1- enum سبب میشود که شما مقادیر مجاز و قابل انتظار را به متغیرهایتان نسبت دهید .
2- enum  اجازه میدهد با استفاده از نام به مقدار دستیابی پیدا کنید پس کدهایتان خواناتر میشود .
3- با استفاده از enum  تایپ کدهایتان سریع میشود زیرا IntelliSense در مورد انتخاب گزینه مناسب شما را یاری میدهد .

چند تعریف از enum :
enum Color{RED,GREEN,BLUE,BLACK,ORANGE} 
enum Time{SECOND,MINUTE,HOUR} 
enum Date{DAY,MONTH,YEAR} 
enum Language{C,DELPHI,JAVA,PERL} 
enum Gender{MALE,FEMALE}
تا اینجا خلاصه ای از enum و مفهوم آن داشتیم

اما تغییراتی که در  c++11 اعمال شده : Type-Safe Enumerations 

فرض کنید دو enum  تعریف کرده اید و به شکل زیر می‌باشد
enum Suit {Clubs, Diamonds, Hearts, Spades};
enum Jewels {Diamonds, Emeralds, Opals, Rubies, Sapphires};
اگر این دستورات را کامپایل کنید با خطا مواجه می‌شوید چون در هر دو enum  شمارشگر Diamonds تعریف شده است . کامپایلر اجازه تعریف جدیدی از یک شمارشگر در enum  دیگری نمیدهد هر چند برخی اوقات مانند مثال بالا نیازمند تعریف یک شمارشگر در چند enum  بر حسب نیاز میباشیم .
برای تعریف جدیدی که در  c++11 داده شده کلمه کلیدی  class  بعد از کلمه enum  مورد استفاده قرار میگیرد . به طور مثال تعریف دو enum  پیشین که با خطا مواجه میشد بصورت زیر تعریف میشود و از کامپایلر خطایی دریافت نمیکنیم .
enum class Suit {Clubs, Diamonds, Hearts, Spades};
enum class Jewels {Diamonds, Emeralds, Opals, Rubies, Sapphires};
همچنین استفاده از enum در گذشته و تبدیل آن به شکل زیر بود :
enum Suit {Clubs, Diamonds, Hearts, Spades};
Suit var1 = Clubs;
int var2= Clubs;
یک متغیر از نوع Suit بنام var1  تعریف میکنیم و شمارشگر Clubs را به آن نسبت میدهیم ، خط بعد متغیری از نوع int تعریف نمودیم و مقدار شمارشگر Clubs که 0 می‌باشد را به آن نسبت دادیم . اما اگر تعریف enum  را با قوائد C++11  در نظر بگیریم این نسبت دادنها باعث خطای کامپایلر میشود و برای نسبت دادن صحیح باید به شکل زیر عمل نمود .
enum class Jewels {Diamonds, Emeralds, Opals, Rubies, Sapphires};
Jewels typeJewel = Jewels::Emeralds;
int suitValue = static_cast<int>(typeJewel);
همانطور که مشاهده میکنید ، Type-Safe یودن enum  را نسبت به تعریف گذشته آن مشخص می‌باشد .
یک مثال کلی و جامع‌تر :
// Demonstrating type-safe and non-type-safe enumerations
#include <iostream>
using std::cout;
using std::endl;
// You can define enumerations at global scope
//enum Jewels {Diamonds, Emeralds, Rubies}; // Uncomment this for an error
enum Suit : long {Clubs, Diamonds, Hearts, Spades};
int main()
{
// Using the old enumeration type...
Suit suit = Clubs; // You can use enumerator names directly
Suit another = Suit::Diamonds; // or you can qualify them
// Automatic conversion from enumeration type to integer
cout << "suit value: " << suit << endl;
cout << "Add 10 to another: " << another + 10 << endl;
// Using type-safe enumerations...
enum class Color : char {Red, Orange, Yellow, Green, Blue, Indigo, Violet};
Color skyColor(Color::Blue); // You must qualify enumerator names
// Color grassColor(Green); // Uncomment for an error
// No auto conversion to numeric type
cout << endl
<< "Sky color value: "<< static_cast<long>(skyColor) << endl;
//cout << skyColor + 10L << endl; // Uncomment for an error
cout << "Incremented sky color: "
<< static_cast<long>(skyColor) + 10L // OK with explicit cast
<< endl;
return 0;
}
اشتراک‌ها
BenchmarkDotNet کتابخانه‌ای برای اندازه‌گیری کارآیی کدها
public class Framework_StringConcatVsStringBuilder
{
   [Params(1, 2, 3, 4, 5, 10, 15, 20)]
   public int Loops;

   [Benchmark]
   public string StringConcat()
   {
      string result = string.Empty;
      for (int i = 0; i < Loops; ++i)
           result = string.Concat(result, i.ToString());
      return result;
   }
}
BenchmarkDotNet کتابخانه‌ای برای اندازه‌گیری کارآیی کدها