نظرات مطالب
بررسی ساختارهای جدید DateOnly و TimeOnly در دات نت 6
پشتیبانی از انواع داده‌ایی DateOnly, TimeOnly در EF8 اضافه شده است (برای پروایدر SQL Server):
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Logging;


await using var context = new MyDbContext();
await context.Database.EnsureDeletedAsync();
await context.Database.EnsureCreatedAsync();

context.Users.Add(new User
{
    Name = "John Doe",
    Birthday = new(1980, 1, 20),
    ShiftStart = new (8, 0),
    ShiftLength = TimeSpan.FromHours(8)
});
await context.SaveChangesAsync();

public class MyDbContext : DbContext
{
    protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
    {
        optionsBuilder.UseSqlServer(@"...")
            .LogTo(Console.WriteLine, LogLevel.Information)
            .EnableSensitiveDataLogging();
    }
    public DbSet<User> Users { get; set; }
}

public class User
{
    public int Id { get; set; }
    public required string Name { get; set; }
    public DateOnly Birthday { get; set; }
    public TimeOnly ShiftStart { get; set; }
    public TimeSpan ShiftLength { get; set; }
}
با این DDL:
CREATE TABLE [Users] (
    [Id] int NOT NULL IDENTITY,
    [Name] nvarchar(max) NULL,
    [Birthday] date NOT NULL,
    [ShiftStart] time NOT NULL,
    [ShiftLength] time NOT NULL,
    CONSTRAINT [PK_Users] PRIMARY KEY ([Id])
);

مطالب
Minimal API's در دات نت 6 - قسمت ششم - غنی سازی اطلاعات Swagger
در ادامه‌ی بررسی نکات مرتبط با Minimal API's در دات نت 6، در این قسمت به افزودن متادیتای قابل درک توسط Open API و Swagger خواهیم پرداخت. معادل این نکات را در MVC، در سری «مستند سازی ASP.NET Core 2x API توسط OpenAPI Swagger» پیشتر مشاهده کرده‌اید.


معادل IActionResult در Minimal API's

در Minimal API's دیگر خبری از IActionResult‌ها نیست؛ اما بجای آن IResult را داریم. برای مثال فرض کنید می‌خواهیم بدنه‌ی lambda expression دو endpoint ای را که تا این مرحله توسعه دادیم، تبدیل به دو متد مجزای private کنیم:
public class AuthorModule : IModule
{
    public IEndpointRouteBuilder RegisterEndpoints(IEndpointRouteBuilder endpoints)
    {
        endpoints.MapGet("/api/authors",
            async (IMediator mediator, CancellationToken ct) => await GetAllAuthorsAsync(mediator, ct));

        endpoints.MapPost("/api/authors",
            async (IMediator mediator, AuthorDto authorDto, CancellationToken ct) =>
                await CreateAuthorAsync(authorDto, mediator, ct));

        return endpoints;
    }

    private static async Task<IResult> CreateAuthorAsync(AuthorDto authorDto, IMediator mediator, CancellationToken ct)
    {
        var command = new CreateAuthorCommand { AuthorDto = authorDto };
        var author = await mediator.Send(command, ct);
        return Results.Ok(author);
    }

    private static async Task<IResult> GetAllAuthorsAsync(IMediator mediator, CancellationToken ct)
    {
        var request = new GetAllAuthorsQuery();
        var authors = await mediator.Send(request, ct);
        return Results.Ok(authors);
    }
}
در اینجا خروجی متدها، از نوع IResult شده‌است و برای تهیه‌ی یک چنین خروجی می‌توان از کلاس استاتیک توکار جدیدی به نام Results، استفاده کرد که برای مثال بجای return OK پیشین، اینبار به همراه Results.Ok است. یکی از مزیت‌های مهم استفاده‌ی از کلاس Results، مشخص کردن صریح نوع Status Code بازگشتی از endpoint است (برای مثال Ok یا 200 در اینجا) و در کل شامل این متدها می‌شود:
Challenge, Forbid, SignIn, SignOut, Content, Text,
Json, File, Bytes, Stream, Redirect, LocalRedirect, StatusCode
NotFound, Unauthorized, BadRequest, Conflict, NoContent, Ok
UnprocessableEntity, Problem, ValidationProblem, Created
CreatedAtRoute, Accepted, AcceptedAtRoute

یک مثال: استفاده از متد Results.Problem جهت بازگشت پیام خطایی به کاربر:
try
{
    return Results.Ok(await data.GetUsers());
}
catch (Exception ex)
{

    return Results.Problem(ex.Message);
}


ساده سازی تعاریف هندلرهای endpoints در Minimal API's

تا اینجا هندلرهای یک endpoint را تبدیل به متدهایی مستقل کردیم و به صورت زیر فراخوانی شدند:
endpoints.MapGet("/api/authors",
async (IMediator mediator, CancellationToken ct) => await GetAllAuthorsAsync(mediator, ct));
این مورد را حتی به صورت زیر نیز می‌توان ساده کرد:
endpoints.MapGet("/api/authors", GetAllAuthorsAsync);
endpoints.MapPost("/api/authors", CreateAuthorAsync);
یعنی تنها ذکر نام متد پیاده سازی کننده‌ی هندلر هم در اینجا کفایت می‌کند.


غنی سازی اطلاعات Open API در Minimal API's

در اینجا چون با کنترلرها و اکشن متدها کار نمی‌کنیم، نمی‌توانیم اطلاعات تکمیلی Open API را از طریق بکارگیری attributes مخصوص آن‌ها اضافه کنیم. اولین تغییری که در Minimal API's جهت دریافت متادیتای endpoints قابل مشاهده‌است، چند سطر زیر است:
public static class ServiceCollectionExtensions
{
    public static IServiceCollection AddApplicationServices(this IServiceCollection services,
        WebApplicationBuilder builder)
    {
        builder.Services.AddEndpointsApiExplorer();
        builder.Services.AddSwaggerGen();

        // ...
متد AddEndpointsApiExplorer که جزئی از قالب استاندارد پروژه‌های Minimal API's است، کار ثبت سرویس‌های توکار خواندن متادیتای endpoints را انجام می‌دهد و این متادیتاها اینبار توسط یکسری متد الحاقی قابل تعریف هستند:
public class AuthorModule : IModule
{
    public IEndpointRouteBuilder RegisterEndpoints(IEndpointRouteBuilder endpoints)
    {
        endpoints.MapGet("/api/authors",
                async (IMediator mediator, CancellationToken ct) => await GetAllAuthorsAsync(mediator, ct))
            .WithName("GetAllAuthors")
            .WithDisplayName("Authors")
            .WithTags("Authors")
            .Produces(500);

        endpoints.MapPost("/api/authors",
                async (IMediator mediator, AuthorDto authorDto, CancellationToken ct) =>
                    await CreateAuthorAsync(authorDto, mediator, ct))
            .WithName("CreateAuthor")
            .WithDisplayName("Authors")
            .WithTags("Authors")
            .Produces(500);

        return endpoints;
    }
نمونه‌ای از این متدهای الحاقی را که جهت تعریف متادیتای مورد نیاز Open API بکار می‌روند، در مثال فوق مشاهده می‌کنید و سرویس‌های AddEndpointsApiExplorer، کار خواندن اطلاعات تکمیلی این متدها را انجام می‌دهند.
البته اگر تا اینجا برنامه را اجرا کنید، برای مثال نام‌هایی که تعریف شده‌اند، در Swagger ظاهر نمی‌شوند. برای رفع این مشکل می‌توان به صورت زیر عمل کرد:
builder.Services.AddSwaggerGen(options =>
{
   options.SwaggerDoc("v1", new OpenApiInfo { Title = builder.Environment.ApplicationName, Version = "v1" });
   options.TagActionsBy(ta => new List<string> { ta.ActionDescriptor.DisplayName! });
});
این تغییر علاوه بر تنظیم نام و نگارش رابط کاربری Swagger، سبب می‌شود تا هر دو endpoint تعریف شده، ذیل DisplayName تنظیمی به نام Author ظاهر شوند:



تغییر خروجی endpoints از مدل دومین، به یک Dto

در endpoints فوق، اطلاعات دریافتی از کاربر، یک dto است که توسط AutoMapper به مدل دومین، نگاشت می‌شود. اینکار خصوصا از دیدگاه امنیتی جهت رفع مشکلی به نام mass assignment و عدم مقدار دهی خودکار خواصی از مدل اصلی که نباید مقدار دهی شوند، بسیار مفید است. در حین بازگشت اطلاعات به کاربر نیز باید چنین رویه‌ای درنظر گرفته شود. برای مثال مدل User می‌تواند به همراه آدرس ایمیل و کلمه‌ی عبور هش شده‌ی او نیز باشد و نباید API ما این اطلاعات را بازگشت دهد. بازگشتی از آن باید بسیار کنترل شده و صرفا بر اساس نیاز مصرف کننده تنظیم شود. به همین جهت یک Dto مخصوص را نیز برای بازگشت اطلاعات از سرور اضافه می‌کنیم تا اطلاعات مشخصی را بازگشت دهد:
namespace MinimalBlog.Api.Features.Authors;

public record AuthorGetDto
{
    public int Id { get; init; }
    public string Name { get; init; } = default!;
    public string? Bio { get; init; }
    public DateTime DateOfBirth { get; init; }
}
البته از آنجائیکه خاصیت Name این Dto، معادلی را در مدل Author ندارد تا کار نگاشت آن به صورت خودکار صورت گیرد، باید این نگاشت را به صورت دستی به نحو زیر به AuthorProfile اضافه کرد تا از طریق FullName مدل Author تامین شود:
public class AuthorProfile : Profile
{
    public AuthorProfile()
    {
        CreateMap<AuthorDto, Author>().ReverseMap();
        CreateMap<Author, AuthorGetDto>()
            .ForMember(dest => dest.Name, opt => opt.MapFrom(src => src.FullName));
    }
}
پس از این تغییر، نیاز است قسمت‌های زیر نیز در برنامه تغییر کنند:
الف) دستور و هندلر ایجاد نویسنده
public class CreateAuthorCommand : IRequest<AuthorGetDto>
در امضای دستور CreateAuthor، خروجی به Dto جدید تغییر می‌کند. بنابراین باید این تغییر در هندلر آن نیز منعکس شود:
- ابتدا نوع خروجی این هندلر نیز به AuthorGetDto تنظیم می‌شود:
public class CreateAuthorCommandHandler : IRequestHandler<CreateAuthorCommand, AuthorGetDto>
- سپس نوع بازگشتی متد Handle آن تغییر می‌کند:
public async Task<AuthorGetDto> Handle(CreateAuthorCommand request, CancellationToken cancellationToken)
- در آخر بجای return toAdd قبلی، با استفاده از AutoMapper، کار نگاشت شیء مدل Authore به شیء Dto جدید را انجام می‌دهیم:
return _mapper.Map<AuthorGetDto>(toAdd);

ب) کوئری و هندلر بازگشت لیست نویسنده‌ها
public class GetAllAuthorsQuery : IRequest<List<AuthorGetDto>>
در امضای کوئری بازگشت لیست نویسنده‌ها، خروجی به لیستی از Dto جدید تغییر می‌کند که این مورد باید به هندلر آن هم اعمال شود. بنابراین در ابتدا نوع خروجی این هندلر نیز به AuthorGetDto تنظیم می‌شود و سپس نوع بازگشتی متد Handle آن تغییر می‌کند. در آخر با استفاده از AutoMapper، لیست دریافتی از نوع مدل به لیستی از نوع Dto تبدیل خواهد شد:
public class GetAllAuthorsHandler : IRequestHandler<GetAllAuthorsQuery, List<AuthorGetDto>>
{
    private readonly MinimalBlogDbContext _context;
    private readonly IMapper _mapper;

    public GetAllAuthorsHandler(MinimalBlogDbContext context, IMapper mapper)
    {
        _context = context ?? throw new ArgumentNullException(nameof(context));
        _mapper = mapper ?? throw new ArgumentNullException(nameof(mapper));
    }

    public async Task<List<AuthorGetDto>> Handle(GetAllAuthorsQuery request, CancellationToken cancellationToken)
    {
        var authors = await _context.Authors.ToListAsync(cancellationToken);
        return _mapper.Map<List<AuthorGetDto>>(authors);
    }
}
بعد از این تغییرات می‌توان با استفاده از متد الحاقی Produces، متادیتای نوع خروجی دقیق endpoints را هم مشخص کرد:
endpoints.MapGet("/api/authors",
                async (IMediator mediator, CancellationToken ct) => await GetAllAuthorsAsync(mediator, ct))
            .WithName("GetAllAuthors")
            .WithDisplayName("Authors")
            .WithTags("Authors")
            .Produces<List<AuthorGetDto>>()
            .Produces(500);

endpoints.MapPost("/api/authors",
                async (IMediator mediator, AuthorDto authorDto, CancellationToken ct) =>
                    await CreateAuthorAsync(authorDto, mediator, ct))
            .WithName("CreateAuthor")
            .WithDisplayName("Authors")
            .WithTags("Authors")
            .Produces<AuthorGetDto>()
            .Produces(500);
که اطلاعات آن در قسمت schema ظاهر خواهد شد:



پوشه بندی Features


تا اینجا تمام فایل‌های متعلق به ویژگی Authors را در همان پوشه اصلی آن قرار داده‌ایم. در ادامه می‌توان به ازای هر ویژگی خاص، 4 پوشه‌ی Commands مخصوص Commands الگوی CQRS، پوشه‌ی Models مخصوص تعریف DTO's، پوشه‌ی Profiles مخصوص افزودن پروفایل‌های AutoMapper و پوشه‌ی Queries مخصوص تعریف کوئری‌های الگوی CQRS را به نحوی که در تصویر فوق مشاهده می‌کنید، به پروژه‌ی API اضافه کنیم.


پیاده سازی ویژگی Blogs

این پیاده سازی چون به همراه نکات جدیدی نیست و به همراه تعریف ماژول اصلی ویژگی، endpoints و الگوی CQRS ای است که تاکنون بحث شد، کدهای آن، به همراه کدهای پروژه‌ی اصلی این پروژه که از قسمت اول قابل دریافت است، ارائه شده‌است.
مطالب
PowerShell 7.x - قسمت پنجم - اسکریپت بلاک و توابع
همانطور که در قسمت قبل اشاره شد، توابع نیز یکی از ویژگی‌های اصلی PowerShell هستند. قبل از بررسی بیشتر توابع بهتر است ابتدا با مفهوم script block آشنا شویم. script blocks به مجموعه‌ایی از دستورات گفته میشود که داخل یک بلاک قرار میگیرند. در واقع هر چیزی داخل {} یک script block محسوب میشود (البته به جز hash tables). به عنوان مثال در کد زیر از یک script block مخصوص، با نام فیلتر استفاده شده است که یک ورودی برای پارامتر FilterScript مربوط به دستور Where-Object میباشد. چیزی که این script block را متمایز میکند، خروجی آن است. به این معنا که خروجی آن باید یک مقدار بولین باشد: 
Get-Process | Where-Object { $_.Name -eq 'Dropbox' }
script blocks را به صورت مستقیم درون command line هم میتوانیم استفاده کنیم. به محض تایپ کردن } و زدن کلید enter، امکان نوشتن اسکریپت‌های چندخطی را درون ترمینال خواهیم داشت. در نهایت با بستن script block و زدن کلید enter، از بلاک خارج خواهیم شد: 
PS /Users/sirwanafifi/Desktop> $block = {
>> $newVar = 10
>> Write-Host $newVar
>> }
با اینکار یک بلاک از کد را داخل متغیری با اسم block ذخیره کرده‌ایم. برای فراخوانی این قطعه کد میتوانیم از یک عملگر مخصوص با نام invocation operator یا call operator استفاده کنیم: 
PS /Users/sirwanafifi/Desktop> & $block
یا حتی میتوانیم از Invoke-Command نیز برای اجرای بلاک استفاده کنیم. همچنین از عملگر & برای فراخوانی یک expression رشته‌ایی نیز میتوان استفاده کرد: 
PS /Users/sirwanafifi/Desktop> & "Get-Process"
البته این نکته را در نظر داشته باشید که & قادر به پارز کردن (parse) یک expression نیست. به عنوان مثال اجرای کد زیر با خطا مواجه خواهد شد (برای حل این مشکل میتوانید بجای آن از Invoke-Expression استفاده کنید که امکان پارز کردن پارامترها را نیز دارد):
PS /Users/sirwanafifi/Desktop> & "1 + 1"
or
PS /Users/sirwanafifi/Desktop> & "Get-Process -Name Slack"

توابع
در قسمت قبل با نحوه ایجاد توابع آشنا شدیم. به این نوع توابع، basic functions گفته میشود و ساده‌ترین نوع توابع در PowerShell هستند. همچنین خیلی محدود نیز میباشند؛ یکسری ورودی/خروجی دارند. برای کنترل بیشتر روی نحوه فراخوانی توابع (به عنوان مثال دریافت ورودی از pipeline و…) باید از advanced functions یا توابع پیشرفته استفاده کنیم. در واقع به محض استفاده از اتریبیوتی با نام [()CmdletBinding] تابع ما تبدیل به یک advanced function خواهد شد. منظور از دریافت ورودی از pipeline این است که بتوانیم خروجی دستورات را به تابع‌مان pipe کنیم اینکار در basic function امکانپذیر نیست: 
Function Add-Something {
    Write-Host "$_ World"
}

"Hello" | Add-Something
اما با کمک advanced functions میتوانیم چنین قابلیتی را داشته باشیم: 
Function Add-Something {
    [CmdletBinding()]
    Param(
        [Parameter(ValueFromPipeline = $true)]
        [string]$Name
    )

    Write-Host "$Name World"
}

"Hello" | Add-Something
یکی دیگر از ویژگی‌های advanced functions امکان استفاده فلگ Verbose حین فراخوانی دستورات میباشد. به عنوان مثال قطعه کد زیر را در نظر بگیرید: 
$API_KEY = "...."

Function Read-WeatherData {
    [CmdletBinding()]
    Param(
        [Parameter(ValueFromPipeline = $true)]
        [string]$CityName
    )

    $Url = "https://api.openweathermap.org/data/2.5/forecast?q=$CityName&cnt=40&appid=$API_KEY&units=metric"
    Try {
        Write-Verbose "Reading weather data for $CityName"
        $Response = Invoke-RestMethod -Uri $Url
        $Response.list | ForEach-Object {
            Write-Verbose "Processing $($_.dt_txt)"
            [PSCustomObject]@{
                City               = $Response.city.name
                DateTime           = [DateTime]::Parse($_.dt_txt)
                Temperature        = $_.main.temp
                Humidity           = $_.main.humidity
                Pressure           = $_.main.pressure
                WindSpeed          = $_.wind.speed
                WindDirection      = $_.wind.deg
                Cloudiness         = $_.clouds.all
                Weather            = $_.weather.main
                WeatherDescription = $_.weather.description
            }
        } | Where-Object { $_.DateTime.Date -eq (Get-Date).Date }
        Write-Verbose "Done processing $CityName"
    }
    Catch {
        Write-Error $_.Exception.Message
    }
}
کاری که تابع فوق انجام میدهد، دریافت دیتای پیش‌بینی وضعیت آب‌وهوای یک شهر است. در حالت عادی فراخوانی تابع فوق پیام‌های Verbose را نمایش نمیدهد. از آنجائیکه تابع فوق یک advanced function است، میتوانیم فلگ Verbose را نیز وارد کنیم. با اینکار به صورت صریح گفته‌ایم که پیام‌های از نوع Verbose را نیز نمایش دهد: 
Read-WeatherData -CityName "London" -Verbose
هر چند این مقدار را همانطور که در قسمت‌های قبلی عنوان شد میتوانیم تغییر دهیم که دیگر مجبور نباشیم با فراخوانی هر تابع، این فلگ را نیز ارسال کنیم. بیشتر دستورات native نیز قابلیت نمایش پیام‌های Verbose را با ارسال همین فلگ در اختیارمان قرار میدهند. بنابراین بهتر است برای امکان مشاهده جزئیات بیشتر حین فراخوانی توابع‌مان از Write-Verbose استفاده کنیم. در ادامه اجزای دیگر توابع را بررسی خواهیم کرد (بیشتر این اجزا درون یک script block نیز قابل استفاده هستند)

کنترل کامل بر روی ورودی‌های توابع
بر روی ورودی‌های یک تابع میتوانیم کنترل نسبتاً کاملی داشتیم باشیم. PowerShell یک مجموعه وسیع از قابلیت‌ها را برای هندل کردن پارامترها و همچنین اعتبارسنجی ورودی‌ها ارائه میدهد. به عنوان مثال میتوانیم یک پارامتر را mandatory کنیم یا اینکه امکان positional binding و غیره را تعیین کنیم. اتریبیوت Parameter در واقع یک وهله از System.Management.Automation.ParameterAttribute میباشد. میتوانید با نوشتن دستور زیر لیستی از خواصی را که میتوانید همراه با این اتریبیوت تعیین کنید، مشاهده کنید: 
PS /> [Parameter]::new()

ExperimentName                  :
ExperimentAction                : None
Position                        : -2147483648
ParameterSetName                : __AllParameterSets
Mandatory                       : False
ValueFromPipeline               : False
ValueFromPipelineByPropertyName : False
ValueFromRemainingArguments     : False
HelpMessage                     :
HelpMessageBaseName             :
HelpMessageResourceId           :
DontShow                        : False
TypeId                          : System.Management.Automation.ParameterAttribute
در ادامه یک مثال از نحوه هندل کردن ورودی‌های یک تابع را بررسی خواهیم کرد. تابع زیر یک لیست از URLها را از کاربر دریافت کرده و یک health check توسط دستور Test-Connection انجام میدهد. در کد زیر پارامتر Websites را با تعدادی اتریبیوت مزین کرده‌ایم. توسط اتریبیوت Parameter تعیین کرده‌ایم که ورودی الزامی است و همچنین مقدار آن میتواند از pipeline نیز دریافت شود. در ادامه توسط ValidatePattern یک عبارت باقاعده را برای بررسی صحیح بودن URL دریافتی نوشته‌ایم. از آنجائیکه ورودی از نوع آرایه‌ایی از string تعریف شده است، این تست برای هر آیتم از آرایه بررسی خواهد شد. برای پارامتر دوم یعنی Count نیز رنج مقداری را که کاربر وارد میکند، حداقل ۳ و حداکثر ۳ انتخاب کرده‌ایم: 
Function Ping-Website {
    [CmdletBinding()]
    Param(
        [Parameter(Mandatory = $true, ValueFromPipeline = $true)]
        [ValidatePattern('^www\..*')]
        [string[]]$Websites,
        [ValidateRange(1, 3)]
        [int]$Count = 3
    )
    $Results = @()
    $Websites | ForEach-Object {
        $Website = $_
        $Result = Test-Connection -ComputerName $Website -Count $Count -Quiet
        $ResultText = $Result ? 'Success' : 'Failed'
        $Results += @{
            Website = $Website
            Result  = $ResultText
        }
        Write-Verbose "The result of pinging $Website is $ResultText"
    }
    $Results | ForEach-Object { 
        $_ | Select-Object @{ Name = "Website"; Expression = { $_.Website }; }, @{ Name = "Result"; Expression = { $_.Result }; }, @{ Name = "Number Of Attempts"; Expression = { $Count }; } 
    }
}
یکی دیگر از اعتبارسنجی‌هایی که میتوانیم برای پارامترهای یک تابع انتخاب کنیم، ValidateScript است. توسط این اتریبیوت میتوانیم یک منطق سفارشی برای اعتبارسنجی مقادیر پارامترها بنویسیم. به عنوان مثال تابع فوق را به گونه‌ایی تغییر خواهیم داد که لیست وب‌سایت‌ها را از طریق یک فایل JSON دریافت کند. میخواهیم قبل از دریافت فایل مطمئن شویم که فایل، به صورت فیزیکی روی دیسک وجود دارد، در غیراینصورت باید یک خطا را به کاربر نمایش دهیم: 
Function Ping-Website {
    [CmdletBinding()]
    Param(
        [Parameter(Mandatory = $true, ValueFromPipeline = $true)]
        [ValidateScript({
                If (-Not ($_ | Test-Path) ) {
                    Throw "File or folder does not exist" 
                }
                If (-Not ($_ | Test-Path -PathType Leaf) ) {
                    Throw "The Path argument must be a file. Folder paths are not allowed."
                }
                If ($_ -NotMatch "(\.json)$") {
                    throw "The file specified in the path argument must be either of type json"
                }
                Return $true
            })]
        [Alias("src", "source", "file")]
        [System.IO.FileInfo]$Path,
        [int]$Count = 1
    )
    $Results = [System.Collections.ArrayList]@()
    $Urls = Get-Content -Path $Path | ConvertFrom-Json
    $Urls | ForEach-Object -Parallel {
        $Website = $_.url
        $Result = Test-Connection -ComputerName $Website -Count $using:Count -Quiet
        $ResultText = $Result ? 'Success' : 'Failed'
        $Item = @{
            Website = $Website
            Result  = $ResultText
        }
        $null = ($using:Results).Add($Item)
    }
    
    $Results | ForEach-Object -Parallel { 
        $_ | Select-Object @{ Name = "Website"; Expression = { $_.Website }; }, @{ Name = "Result"; Expression = { $_.Result }; }, @{ Name = "Number Of Attempts"; Expression = { $using:Count }; } 
    }
}
تابع Ping-Website را جهت بررسی فیچر جدیدی که همراه با دستور ForEach-Object استفاده میشود، تغییر داده‌ایم تا به صورت Parallel عمل کند؛ این قابلیت از نسخه ۷ به بعد به PowerShell اضافه شده است. از آنجائیکه این قابلیت باعث میشود script block مربوط به ForEach-Object درون یک context دیگر با نام runspace اجرا شود. در نتیجه برای دسترسی به متغیرهای بیرون از script block نیاز خواهیم داشت از یک متغیر خودکار تحت‌عنوان using قبل از نام متغیر و بعد از علامت $ استفاده کنیم. همچنین آرایه مثال قبل را نیز به ArrayList تغییر داده‌ایم. زیرا در حالت قبلی امکان تغییر سایز یک آرایه با سایز ثابت را نخواهیم داشت. نکته دیگری که در مورد کد فوق میتوان به آن توجه کرد، نال کردن خروجی متد Add مربوط به آرایه‌ی Results است. همانطور که در قسمت قبل توضیح دادیم، از این تکنیک برای suppress کردن خروجی استفاده میکنیم و چون در اینجا خروجی متد Add یک عدد میباشد، با تکنیک فوق، خروجی را دیگر درون کنسول مشاهده نخواهیم کرد. توسط اتریبیوت Alias نیز نام‌های دیگری را که میتوان برای پارامتر Path حین فراخوانی تابع استفاده کرد، تعیین کرده‌ایم. لیست کامل اتریبیوت‌هایی را که میتوان برای پارامترهای یک تابع تعیین کرد، میتوانید در مستندات PowerShell ببینید. 
نکته: اگر تابع فوق را همراه با فلگ Verbose فراخوانی کنیم، لاگ‌های موردنظر را درون کنسول مشاهده نخواهیم کرد؛ زیرا همانطور که اشاره شد script block درون یک context جدا اجرا میشود و باید متغیرهای خودکار مربوط به Output را مجدداً مقداردهی کنیم:
Function Ping-Website {
    [CmdletBinding()]
    Param(
        # As before
    )
    # As before
    $Urls | ForEach-Object -Parallel {
        $DebugPreference = $using:DebugPreference 
        $VerbosePreference = $using:VerbosePreference 
        $InformationPreference = $using:InformationPreference 
        
        # As before
    }
    
    # As before
}

قابلیت تعریف بلاک‌ها/توابع، به صورت تودرتو  
درون توابع و script block امکان نوشتن بلاک‌های تودرتو را نیز داریم:
$scriptBlock = {
    $logOutput = {
        param($message)
        Write-Host $message
    }

    [int]$someVariable = 10
    $doSomeWork = {
        & $logOutput -message "Some variable value: $someVariable"
    }
    $someVariable = 20

    & $doSomeWork
}
خروجی بلاک فوق  Some variable value: 20 خواهد بود؛ زیرا قبل از فراخوانی doSomeWork مقدار متغیر عددی someVariable را به ۲۰ تغییر داده‌ایم. برای script blocks این امکان را داریم که دقیقاً در همان جایی که بلاک را تعریف میکنیم، یک snapshot تهیه کنیم. در اینحالت خروجی، مقدار Some variable value: 10 خواهد شد: 
$scriptBlock = {
    $logOutput = {
        param($message)
        Write-Host $message
    }

    [int]$someVariable = 10
    $doSomeWork = {
        & $logOutput -message "Some variable value: $someVariable"
    }.GetNewClosure()
    $someVariable = 20

    & $doSomeWork
}
یکسری بلاک‌های ویژه نیز درون توابع و script blockها میتوانیم بنویسیم که اصطلاحاً به name blocks معروف هستند:
begin
process
end
dynamicparam
درون یک تابع اگر هیچکدام از بلاک‌های فوق استفاده نشود، به صورت پیش‌فرض بدنه تابع، درون بلاک end قرار خواهد گرفت. بلاک begin قبل از شروع pipeline اجرا میشود. process به ازای هر آیتم pipe شده اجرا خواهد شد. end نیز در پایان اجرا میشود. به عنوان مثال تابع زیر را در نظر بگیرید:
function Show-Pipeline {
    begin { 
        Write-Host "Pipeline start" 
    }
    process { 
        Write-Host  "Pipeline process $_" 
    }
    end { 
        Write-Host  "Pipeline end $_" 
    }
}
در ادامه یکسری آیتم را به ورودی این تابع pipe خواهیم کرد:
PS /> 1..2 | Show-Pipeline                                   
Pipeline start 
Pipeline process 1
Pipeline process 2
Pipeline end 2
همانطور که مشاهده میکنید، به ازای هر آیتم pipe شده، یکبار بلاک process اجرا شده است. همچنین برای دسترسی به مقدار آیتم pipe شده نیز از متغیر خودکار _$ استفاده کرده‌ایم (PSItem$ نیز به همین متغیر اشاره دارد).

با توجه به توضیحات named blockهای فوق، اکنون اگر بخواهیم نسخه اول تابع Ping-Website را با pipe کردن یک آرایه فراخوانی کنیم، خروجی که در کنسول نمایش داده خواهد شد، تنها آیتم آخر از آرایه خواهد بود:
PS /> "www.google.com", "www.yahoo.com" | Ping-Website                 

Website       Result  Number Of Attempts
-------       ------  ------------------
www.yahoo.com Success                  3
دلیل آن نیز این است که به صورت صریح کدها را درون بلاک process ننوشته بودیم. همانطور که عنوان شد، در حالت پیش‌فرض، بدنه توابع درون بلاک end قرار خواهند گرفت و تنها یکبار اجرا خواهند شد. بنابراین:
Function Ping-Website {
    [CmdletBinding()]
    Param(
        # As before
    )
    process {
        # As before
    }
}
اینبار اگر تابع را مجدداً فراخوانی کنیم، خروجی مطلوب را نمایش خواهد داد:
PS /> "www.google.com", "www.yahoo.com" | Ping-Website

Website        Result  Number Of Attempts
-------        ------  ------------------
www.google.com Success                  3
www.yahoo.com  Success                  3

بلاک dynamicparam
از این بلاک برای تعریف پارامترهای داینامیک که به صورت on the fly نیاز هست ایجاد شوند، استفاده میشود. برای درک بهتر آن فرض کنید میخواهیم تابعی را بنویسیم که امکان خواندن یک فایل CSV را به ما میدهد. تا اینجای کار توسط Import-CSV به یک خط دستور قابل انجام است. اما فرض کنید میخواهیم به کاربر این امکان را بدهیم که یک ستون موردنظر از فایل را مشاهده کند. همچنین میخواهیم یک اعتبارسنجی هم روی نام ستونی که کاربر قرار است وارد کند نیز داشته باشیم. به عنوان مثال یک فایل CSV با ستون‌های name, lname, age داریم و کاربر میخواهد تنها ستون اول یک name را واکشی کند:
PS /> Read-Csv ./users.csv -Columns name
برای اینکار میتوانیم با کمک dynamic param یک پارامتر را در زمان اجرا ایجاده کرده و مقادیری را که کاربر برای ستون‌ها مجاز است وارد کند، براساس هدر فایل CSV تنظیم کنیم:
using namespace System.Management.Automation
Function Read-Csv {
    Param (
        [Parameter(Mandatory = $true, Position = 0)]
        [string]$Path
    )
    DynamicParam {
        $firstLine = Get-Content $Path | Select-Object -First 1
        [String[]]$headers = $firstLine -split ', '
        $parameters = [RuntimeDefinedParameterDictionary]::new()
        $parameter = [RuntimeDefinedParameter]::new(
            'Columns', [String[]], [Attribute[]]@(
                [Parameter]@{ Mandatory = $false; Position = 1 }
                [ValidateSet]::new($headers)
            )
        )
        $parameters.Add($parameter.Name, $parameter) 
        Return $parameters
    }
    Begin {
        $csvContent = Import-Csv $Path
        If ($PSBoundParameters.ContainsKey('Columns')) {
            $columns = $PSBoundParameters['Columns']
            $csvContent | Select-Object -Property $columns
        }
        Else {
            $csvContent
        }
    }
}
درون کنسول PowerShell هم یک IntelliSense برای مقادیر مجاز نمایش داده خواهد شد:

مطالب
کش خروجی API در ASP.NET Core با Redis
در این مقاله نمی‌خواهیم به طور عمیقی وارد جزییاتی مثل توضیح Redis یا کش بشویم؛ فرض شده‌است که کاربر با این مفاهیم آشناست. به طور خلاصه کش کردن یعنی همیشه به دیتابیس یا هارددیسک برای گرفتن اطلاعاتی که می‌خواهیم و گرفتنش هم کند است، وصل نشویم و بجای آن، اطلاعات را در یک محل موقتی که گرفتنش خیلی سریعتر بوده قرار دهیم و برای استفاده به آنجا برویم و اطلاعات را با سرعت بالا بخوانیم. کش کردن هم دسته بندی‌های مختلفی دارد که بر حسب سناریوهای مختلفی که وجود دارد، کاربرد خود را دارند. مثلا ساده‌ترین کش در ASP.NET Core، کش محلی (In-Memory Cache) می‌باشد که اینترفیس IMemoryCache را اعمال می‌کند و نیازی به هیچ پکیجی ندارد و به صورت درونی در ASP.NET Core در دسترس است که برای حالت توسعه، یا حالتیکه فقط یک سرور داشته باشیم، مناسب است؛ ولی برای برنامه‌های چند سروری، نوع دیگری از کش که به اصطلاح به آن Distributed Cache می‌گویند، بهتر است استفاده شود. چند روش برای پیاده‌سازی با این ساختار وجود دارد که نکته مشترکشان اعمال اینترفیس واحد IDistributedCache می‌باشد. در نتیجه‌ی آن، تغییر ساختار کش به روش‌های دیگر، که اینترفیس مشابهی را اعمال می‌کنند، با کمترین زحمت صورت می‌گیرد. این روش‌ها به طور خیلی خلاصه شامل موارد زیر می‌باشند: 

1- Distributed Memory Cache: در واقع Distributed نیست و کش معمولی است؛ فقط برای اعمال اینترفیس IDistributedCache که امکان تغییر آن در ادامه‌ی توسعه نرم‌افزار میسر باشد، این روش توسط مایکروسافت اضافه شده‌است. نیاز به نصب پکیجی را ندارد و به صورت توکار در ASP.NET Core در دسترس است.
2- Distributed SQL Server Cache: کاربرد چندانی ندارد. با توجه به اینکه هدف اصلی از کش کردن، افزایش سرعت و عدم اتصال به دیتابیس است، استفاده از حافظه‌ی رم، بجای دیتابیس ترجیح داده می‌شود.
3- Distributed Redis Cache: استفاده از Redis که به طور خلاصه یک دیتابیس Key/Value در حافظه است. سرعت بالایی دارد و محبوب‌ترین روش بین برنامه‌نویسان است. برای اعمال آن در ASP.NET Core نیاز به نصب پکیج می‌باشد.

موارد بالا انواع زیرساخت و ساختار (Cache Provider) برای پیاده‌سازی کش می‌باشند. روش‌های مختلفی برای استفاده از این Cache Providerها وجود دارد. مثلا یک روش، استفاده مستقیم در کدهای درونی متد یا کلاسمان می‌باشد و یا در روش دیگر می‌توانیم به صورت یک Middleware این پروسه را مدیریت کنیم، یا در روش دیگر (که موضوع این مقاله است) از ActionFilterAttribute استفاده می‌کنیم. یکی از روش‌های جالب دیگر کش کردن، اگر از Entity Framework به عنوان ORM استفاده می‌کنیم، استفاده از سطح دوم کش آن (EF Second Level Cache) می‌باشد. EF دو سطح کش دارد که سطح اول آن توسط خود Context به صورت درونی استفاده می‌شود و ما می‌توانیم از سطح دوم آن استفاده کنیم. مزیت آن به نسبت روش‌های قبلی این است که نتیجه‌ی کوئری ما (که با عبارات لامبدا نوشته می‌شود) را کش می‌کند و علاوه بر امکان تنظیم زمان انقضا برای این کش، در صورت تغییر یک entity خاص (انجام عملیات Update/Insert/Delete) خود به خود، کش کوئری مربوط به آن entity پاک می‌شود تا با مقدار جدید آن جایگزین شود که روش‌های دیگر این مزیت را ندارند. در این مقاله قرار نیست در مورد این روش کش صحبت کنیم. استفاده از این روش کش به صورت توکار در EF Core وجود ندارد و برای استفاده از آن در صورتی که از EF Core قبل از ورژن 3 استفاده می‌کنید می‌توانید از پکیج  EFSecondLevelCache.Core  و در صورت استفاده از EF Core 3 از پکیج  EF Core Second Level Cache Interceptor  استفاده نمایید که در هر دو حالت می‌توان هم از Memory Cache Provider و هم از Redis Cache Provider استفاده نمود.

در این مقاله می‌خواهیم Responseهای APIهایمان را در یک پروژه‌ی Web API، به ساده‌ترین حالت ممکن کش کنیم. زیرساخت این کش می‌تواند هر کدام از موارد ذکر شده‌ی بالا باشد. در این مقاله از Redis برای پیاده‌سازی آن استفاده می‌کنیم که با نصب پکیج Microsoft.Extensions.Caching.StackExchangeRedis انجام می‌گیرد. این بسته‌ی نیوگت که متعلق به مایکروسافت بوده و روش پایه‌ی استفاده از Redis در ASP.NET Core است، اینترفیس IDistributedCache را اعمال می‌کند:
Install-Package Microsoft.Extensions.Caching.StackExchangeRedis

سپس اینترفیس IResponseCacheService را می‌سازیم تا از این اینترفیس به جای IDistributedCache استفاده کنیم. البته می‌توان از IDistributedCache به طور مستقیم استفاده کرد؛ ولی چون همه‌ی ویژگی‌های این اینترفیس را نمی‌خواهیم و هم اینکه می‌خواهیم serialize کردن نتایج API را در کلاسی که از این اینترفیس ارث‌بری می‌کند (ResponseCacheService) بیاوریم (تا آن را کپسوله‌سازی (Encapsulation) کرده باشیم تا بعدا بتوانیم مثلا بجای پکیج Newtonsoft.Json، از System.Text.Json برای serialize کردن‌ها استفاده کنیم):
public interface IResponseCacheService
    {
        Task CacheResponseAsync(string cacheKey, object response, TimeSpan timeToLive);
        Task<string> GetCachedResponseAsync(string cacheKey);
    }
یادآوری: Redis قابلیت ذخیره‌ی داده‌هایی از نوع آرایه‌ی بایت‌ها را دارد (و نه هر نوع دلخواهی را). بنابراین اینجا ما بجای ذخیره‌ی مستقیم نتایج APIهایمان (که ممکن نیست)، می‌خواهیم ابتدا آن‌ها را با serialize کردن به نوع رشته‌ای (که فرمت json دارد) تبدیل کنیم و سپس آن را ذخیره نماییم.

حالا کلاس ResponseCacheService که این اینترفیس را اعمال می‌کند می‌سازیم: 
    public class ResponseCacheService : IResponseCacheService, ISingletonDependency
    {
        private readonly IDistributedCache _distributedCache;

        public ResponseCacheService(IDistributedCache distributedCache)
        {
            _distributedCache = distributedCache;
        }

        public async Task CacheResponseAsync(string cacheKey, object response, TimeSpan timeToLive)
        {
            if (response == null) return;
            var serializedResponse = JsonConvert.SerializeObject(response);
            await _distributedCache.SetStringAsync(cacheKey, serializedResponse, new DistributedCacheEntryOptions
            {
                AbsoluteExpirationRelativeToNow = timeToLive
            });
        }

        public async Task<string> GetCachedResponseAsync(string cacheKey)
        {
            var cachedResponse = await _distributedCache.GetStringAsync(cacheKey);
            return string.IsNullOrWhiteSpace(cachedResponse) ? null : cachedResponse;
        }
    }
دقت کنید که اینترفیس IDistributedCache در این کلاس استفاده شده است. اینترفیس ISingletonDependency صرفا یک اینترفیس نشان گذاری برای اعمال خودکار ثبت سرویس به صورت Singleton می‌باشد (اینترفیس را خودمان ساخته‌ایم و آن را برای رجیستر راحت سرویس‌هایمان تنظیم کرده‌ایم). اگر نمی‌خواهید از این روش برای ثبت این سرویس استفاده کنید، می‌توانید به صورت عادی این سرویس را رجیستر کنید که در ادامه، در قسمت مربوطه به صورت کامنت شده آمده است.

حالا کدهای لازم برای رجیستر کردن Redis و تنظیمات آن را در برنامه اضافه می‌کنیم. قدم اول ایجاد یک کلاس POCO به نام RedisCacheSettings است که به فیلدی به همین نام در appsettings.json نگاشت می‌شود:
public class RedisCacheSettings
    {
        public bool Enabled { get; set; }
        public string ConnectionString { get; set; }
        public int DefaultSecondsToCache { get; set; }
    }

این فیلد را در appsettings.json هم اضافه می‌کنیم تا در استارتاپ برنامه، با مپ شدن به کلاس RedisCacheSettings، قابلیت استفاده شدن در تنظیمات Redis را داشته باشد. 
"RedisCacheSettings": {
      "Enabled": true,
      "ConnectionString": "192.168.1.107:6379,ssl=False,allowAdmin=True,abortConnect=False,defaultDatabase=0,connectTimeout=500,connectRetry=3",
      "DefaultSecondsToCache": 600
    },

  حالا باید سرویس Redis را در متد ConfigureServices، به همراه تنظیمات آن رجیستر کنیم. می‌توانیم کدهای مربوطه را مستقیم در متد ConfigureServices بنویسیم و یا به صورت یک متد الحاقی در کلاس جداگانه بنویسیم و از آن در ConfigureServices استفاده کنیم و یا اینکه از روش Installer برای ثبت خودکار سرویس و تنظیماتش استفاده کنیم. اینجا از روش آخر استفاده می‌کنیم. برای این منظور کلاس CacheInstaller را می‌سازیم: 
    public class CacheInstaller : IServiceInstaller
    {
        public void InstallServices(IServiceCollection services, AppSettings appSettings, Assembly startupProjectAssembly)
        {
            var redisCacheService = appSettings.RedisCacheSettings;
            services.AddSingleton(redisCacheService);

            if (!appSettings.RedisCacheSettings.Enabled) return;

            services.AddStackExchangeRedisCache(options =>
                options.Configuration = appSettings.RedisCacheSettings.ConnectionString);

            // Below code applied with ISingletonDependency Interface
            // services.AddSingleton<IResponseCacheService, ResponseCacheService>();
        }
    }

خب تا اینجا اینترفیس اختصاصی خودمان را ساختیم و Redis را به همراه تنظیمات آن، رجیستر کردیم. برای اعمال کش، چند روش وجود دارد که همانطور که گفته شد، اینجا از روش ActionFilterAttribute استفاده می‌کنیم که یکی از راحت‌ترین راه‌های اعمال کش در APIهای ماست. کلاس CachedAttribute را ایجاد می‌کنیم:
    [AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
    public class CachedAttribute : Attribute, IAsyncActionFilter
    {
        private readonly int _secondsToCache;
        private readonly bool _useDefaultCacheSeconds;
        public CachedAttribute()
        {
            _useDefaultCacheSeconds = true;
        }
        public CachedAttribute(int secondsToCache)
        {
            _secondsToCache = secondsToCache;
            _useDefaultCacheSeconds = false;
        }

        public async Task OnActionExecutionAsync(ActionExecutingContext context, ActionExecutionDelegate next)
        {
            var cacheSettings = context.HttpContext.RequestServices.GetRequiredService<RedisCacheSettings>();

            if (!cacheSettings.Enabled)
            {
                await next();
                return;
            }

            var cacheService = context.HttpContext.RequestServices.GetRequiredService<IResponseCacheService>();

            // Check if request has Cache
            var cacheKey = GenerateCacheKeyFromRequest(context.HttpContext.Request);
            var cachedResponse = await cacheService.GetCachedResponseAsync(cacheKey);

            // If Yes => return Value
            if (!string.IsNullOrWhiteSpace(cachedResponse))
            {
                var contentResult = new ContentResult
                {
                    Content = cachedResponse,
                    ContentType = "application/json",
                    StatusCode = 200
                };
                context.Result = contentResult;
                return;
            }

            // If No => Go to method => Cache Value
            var actionExecutedContext = await next();

            if (actionExecutedContext.Result is OkObjectResult okObjectResult)
            {
                var secondsToCache = _useDefaultCacheSeconds ? cacheSettings.DefaultSecondsToCache : _secondsToCache;
                await cacheService.CacheResponseAsync(cacheKey, okObjectResult.Value,
                    TimeSpan.FromSeconds(secondsToCache));
            }
        }

        private static string GenerateCacheKeyFromRequest(HttpRequest httpRequest)
        {
            var keyBuilder = new StringBuilder();
            keyBuilder.Append($"{httpRequest.Path}");
            foreach (var (key, value) in httpRequest.Query.OrderBy(x => x.Key))
            {
                keyBuilder.Append($"|{key}-{value}");
            }

            return keyBuilder.ToString();
        }
    }
در این کلاس، تزریق وابستگی‌های IResponseCacheService و RedisCacheSettings به روش خاصی انجام شده است و نمی‌توانستیم از روش Constructor Dependency Injection استفاده کنیم چون در این حالت می‌بایستی این ورودی در Controller مورد استفاده هم تزریق شود و سپس در اتریبیوت [Cached] بیاید که مجاز به اینکار نیستیم؛ بنابراین از این روش خاص استفاده کردیم. مورد دیگر فرمول ساخت کلید کش می‌باشد تا بتواند کش بودن یک Endpoint خاص را به طور خودکار تشخیص دهد که این متد در همین کلاس آمده است. 
 
حالا ما می‌توانیم با استفاده از attributeی به نام  [Cached]  که روی APIهای از نوع HttpGet قرار می‌گیرد آن‌ها را براحتی کش کنیم. کلاس بالا هم طوری طراحی شده (با دو سازنده متفاوت) که در حالت استفاده به صورت [Cached] از مقدار زمان پیشفرضی استفاده می‌کند که در فایل appsettings.json تنظیم شده است و یا اگر زمان خاصی را مد نظر داشتیم (مثال 1000 ثانیه) می‌توانیم آن را به صورت  [(Cached(1000]  بیاوریم. کلاس زیر نمونه‌ی استفاده‌ی از آن می‌باشد:
[Cached]
[HttpGet]
public IActionResult Get()
  {
    var rng = new Random();
    var weatherForecasts = Enumerable.Range(1, 5).Select(index => new WeatherForecast
    {
      Date = DateTime.Now.AddDays(index),
      TemperatureC = rng.Next(-20, 55),
      Summary = Summaries[rng.Next(Summaries.Length)]
    })
      .ToArray();
    return Ok(weatherForecasts);
  }
بنابراین وقتی تنظیمات اولیه، برای پیاده‌سازی این کش انجام شود، اعمال کردن آن به سادگی قرار دادن یک اتریبیوت ساده‌ی [Cached] روی هر apiی است که بخواهیم خروجی آن را کش کنیم. فقط توجه نمایید که این روش فقط برای اکشن‌هایی که کد 200 را بر می‌گردانند، یعنی متد Ok را return می‌کنند (OkObjectResult) کار می‌کند. بعلاوه اگر از اتریبیوت ApiResultFilter یا مفهوم مشابه آن برای تغییر خروجی API به فرمت خاص استفاده می‌کنید، باید در آن تغییرات کوچکی را انجام دهید تا با این حالت هماهنگ شود. 
مطالب
چقدر سی‌شارپ را می‌شناسیم؟!
هر چند که #C به عنوان یک زبان ساده برای درک و یادگیری شناخته میشود، گاهی رفتاری غیرمنتظره را حتی برای توسعه دهنده‌های با تجربه خواهد داشت. در این نوشته مروری بر بعضی از این رفتارها و توضیح دلایل پشت آن خواهیم کرد.

Value 

اگر مقدار null مدیریت نشود، میتواند باعث ایجاد نتایج نامطلوب، یا باعث از کار افتادن برنامه شود. شئ null به خودی خود مخرب نیست؛ اما اگر بخواهیم به یکی از متدها یا خاصیت‌های آن دسترسی داشته باشیم، با استثنای معروف NullReferenceException روبرو می‌شویم. برای در امان ماندن، باید همیشه اطمینان داشته باشیم که پیش از استفاده از امکانات شئ، ارجاع آن null نباشد. در قطعه کد زیر برخی از رفتارهای null value آورده شده:
// Behavior 1 
object obj = null;
bool objValueEqual = obj.Equals(null);

// Behavior 2 
object obj = null;
Type objType = obj.GetType();

// Behavior 3
string str = (string)null;
bool strType = str is string;

// Behavior 4
int num = 5;
Nullable<int> nullableNum = 5;
bool typeEqual = num.GetType() == nullableNum.GetType();

// Behavior 5
Type inType = typeof(int);
Type nullableIntType = typeof(Nullable<int>);
bool typeEqual = inType == nullableIntType;
  • در رفتار اول هرچند که متد Equals از شی null در دسترس است و با مقدار null مقایسه شده اما در زمان اجرا پیغام خطای NullReferenceException را خواهیم داشت. 
  • در رفتار دوم هم پیغام خطا را خواهیم داشت. شئ با مقدار null، در زمان اجرا هیچ نوعی را برنمیگرداند. 
  • در رفتار سوم هر چند که مقدار null صریحا به رشته تبدیل شده و برای چاپ متغیر str پیام خطایی را نخواهیم داشت، اما متغیر strType در خروجی، false خواهد بود. همانطور که در رفتار دوم گفته شد، شیء با مقدار null هیچ نوعی را برنمیگرداند. 
  • خروجی رفتار چهارم true خواهد بود. به این صورت که هر دو از نوع System.int32 خواهند بود.
  • در رفتار پنجم اگر از نوع‌ها، خروجی جداگانه بگیریم، خواهیم دیدکه نوع int از System.int32 و <Nullable<int از نوع System.Nullable`1[System.Int32] میباشند، در نتیجه خروجی false است. اشیای nullable بعد از اینکه مقداری مشخص را دریافت کردند، به صورت یک شیء غیر nullable رفتار خواهند کرد.

مدیریت مقادیر null در سربارگذاری متدها   

        static void Main(string[] args)
        {
            Console.WriteLine(Method(null));
            Console.ReadLine();
        }
        private static string Method(object obj)
        {
            return "Object parameter";
        }
        private static string Method(string str)
        {
            return "String parameter";
        }
در قطعه کد بالا، فراخوانی متد سربارگذاری شده با مقدار ورودی null، باعث اجرای متدی میشود که پارامتر ورودی آن از نوع رشته است. تا زمانیکه یکی از پارامترها بتواند به دیگری تبدیل شود، برنامه بدون خطا کامپایل خواهد شد. اما اگر هیچ تبدیل نوعی بین پارامترها وجود نداشته باشد، کد کامپایل نخواهد شد. بین متدهای سربارگذاری شده، متدی که نوع پارامتر آن مشخص‌تر است، فراخوانی میشود. برای اینکه متد خاصی را مجبور به اجرا کنیم، باید مقدار null را پیش از ارسال، به نوع پارامتر آن متد تبدیل کنید.(object)null

رفتارهای ()Math.Round

var rounded = Math.Round(1.5); // 2
var rounded = Math.Round(2.5); // 2

var rounded = Math.Round(2.5, MidpointRounding.ToEven); // 2
var rounded = Math.Round(2.5, MidpointRounding.AwayFromZero); // 3

var value = 1.4f;
var rounded = Math.Round(value + 0.1f); // 1
متد Round از کلاس Math، ورودی را که عددی اعشاری است، گرد میکند. اگر مقدار اعشار کمتر از ۰.۵ باشد، به سمت پایین و اگر بیشتر از ۰.۵ باشد، به سمت بالا گرد میشود. اما اگر ورودی دقیقا مقدار اعشاری ۰.۵ را داشته باشد چطور؟ متد Round به صورت پیش‌فرض ورودی  را به نزدیکترین عدد زوج گرد میکند، به این دلیل خط‌های ۱ و ۲ از قطعه کد بالا، خروجی یکسان ۲ را خواهند داشت. این متد آرگومان دومی هم دارد که دو حالت MidpointRounding.ToEven و MidpointRounding.AwayFromZero را می‌توان برای آن مشخص کرد. ToEven همان رفتار پیش‌فرض متد است که ورودی را به نزدیکترین عدد زوج گرد میکند و از حالت AwayFromZero میشود برای گرد کردن ورودی به عدد بزرگتر استفاده کرد (خط ۵). 
در خط ۸ یک حالت خاص دیگر نیز داریم. انتظار میرود که خروجی، به نزدیکترین عدد زوج گرد شود و نتیجه ۲ باشد؛ مثل خط ۱، اما خروجی ۱ خواهد بود. وقتی ورودی‌ها را از نوع float در نظر بگیریم، مقدار 0.1f کمی کمتر از ۰.۱ خواهد بود و نتیجه محاسبه کمی کمتر از ۱.۵. برای پرهیز از این مسئله بهتر است ورودی متد Round را از نوع decimal در نظر بگیریم.
 

مقدار دهی اولیه کلاسها 

پیشنهاد میشود برای جلوگیری از وقوع استثناءها از مقدار دهی اولیه کلاسها در سازنده کلاس، بخصوص اگر سازنده استاتیک داشته باشیم، پرهیز کنیم. ترتیب مقدار دهی اولیه زمانیکه از یک کلاس یه وهله ساخته میشود، به قرار زیر است:
  • فیلدهای استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • سازنده استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • فیلدهایی از کلاس که در نمونه ساخته شده در دسترس قرار میگیرند.
  • سازنده کلاس که در زمان ایجاد یک نمونه از کلاس در دسترس قرار میگیرد.
در قطعه کد زیر اگر نمونه‌ای از کلاس FailingClass ساخته شود، انتظار میرود که خطای InvalidOperationException صادر شود؛ اما برنامه با خطای TypeInitializationException متوقف میشود. در واقع در زمان اجرا به صورت خودکار خطای TypeInitializationException، خطای InvalidOperationException را پوشش میدهد. اگر بجای  InvalidOperationException یک دستور ساده WriteLine داشته باشیم، سازنده کلاس FailingClass مجال کامل شدن را خواهد داشت. اما با خطایی که داخل سازنده صادر کرده‌ایم، سازنده کلاس بدون اینکه به طور کامل به پایان برسد، متوقف خواهد شد. 
    public static class Config
    {
        public static bool ThrowException { get; set; } = true;
    }

    public class FailingClass
    {
        static FailingClass()
        {
            if (Config.ThrowException)
            {
                throw new InvalidOperationException();
            }
        }
    }
حال که میدانیم خطای اصلی که در این مواقع صادر میشود چیست، شاید بخواهیم به روش زیر آن را مدیریت کنیم.
try
{
   var failedInstance = new FailingClass();
}
catch (TypeInitializationException) { }

Config.ThrowException = false;
var instance = new FailingClass();
اگر قطعه کد بالا را بدون بخش try  اجرا کنیم، برنامه ابتدا صدور خطا را false میکند و بدون مشکل از کلاس نمونه‌ای ساخته میشود. اما اگر بخش try را داشته باشیم، هر چند که خطا در بخش try گرفته میشود و تنظیم صدور خطا false است، باز هم در خط آخر و در زمان ایجاد یک نمونه از کلاس، پیام خطای TypeInitializationException خواهیم داشت. علت آن است که سازنده استاتیک کلاس فقط یک بار فراخوانی میشود و اگر در این فراخوانی خطایی رخ دهد، این خطا در اثر ایجاد سایر نمونه‌ها و یا استفاده مستقیم از کلاس، مجددا صادر خواهد شد. در نتیجه این کلاس تا زمانیکه پردازش آن در جریان است، غیرقابل استفاده خواهد بود. یک مثال دیگر از ترتیب فراخوانی‌ها را بررسی میکنیم.
public class BaseClass
{
    {
        public BaseClass()
        {
            VirtualMethod(1);
        }
        public virtual int VirtualMethod(int dividend)
        {
            return dividend / 1;
        }
    }

    public class DerivedClass : BaseClass
    {
        int divisor;
        public DerivedClass()
        {
            divisor = 1;
        }
        public override int VirtualMethod(int dividend)
        {
            return base.VirtualMethod(dividend / divisor);
        }
    }
در قطعه کد بالا هر چند که همه چیز درست به نظر میرسد، اما اگر از کلاس DerivedClass نمونه‌ای ساخته شود، با پیام خطای DivideByZeroException مواجه میشویم. علت این مشکل ترتیب مقدار دهی اولیه در کلاسهای فرزند است. ابتدا فیلدهای کلاس فرزند مقدار دهی میشوند و بعد فیلدهای کلاس پایه، بعد سازنده کلاس پایه فراخوانی میشود و پس از آن سازنده کلاس فرزند. ترتیب فراخوانی‌ها به همین جا محدود نمیشود. 
در مثال بالا متد VirtualMethod که در سازنده کلاس پایه فراخوانی شده، پیش از این که کد داخل خود را اجرا کند، متد VirtualMethod را در کلاس فرزند، فراخوانی میکند و کلاس فرزند مجالی را برای مقدار دهی متغیر divisor، در سازنده خود نخواهد داشت. در نتیجه مقدار این متغیر در متد VirtualMethod صفر خواهد ماند و باعث صدور استثناء میشود. برای پرهیز از چنین مشکلاتی بهتر است فیلدهای یک کلاس به صورت مستقیم مقدار دهی اولیه بشوند. مقدار دهی اولیه و یا فراخوانی متدهای virtual در سازنده کلاس‌ها میتواند باعث بروز رفتارهای پیش بینی نشده‌ای شوند.

چند ریختی 

 چند ریختی قابلیتی است برای کلاسهای متفاوت تا بتوانند یک اینترفیس مشابه را به صورت‌های مختلفی پیاده‌سازی کنند. اما قطعه کد زیر قاعده چند ریختی را نقض میکند. 
 class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method();
            result = ((BaseClass)instance).Method();
            Console.WriteLine(instance + " -> " + result); // Derived Class ...  -> Method in BaseClass
            Console.ReadLine();

        }
    }

    public class BaseClass
    {
        public virtual string Method()
        {
            return "Method in BaseClass";
        }
    }

    public class DerivedClass : BaseClass
    {
        public override string ToString()
        {
            return "Derived Class ... ";
        }

        public new string Method()
        {
            return "Method in DerivedClass";
        }
    }
در خروجی کنسول هرچند که Instance همچنان وهله‌ای از DerivedClass است اما به دلیل تبدیل در خط ۷، Method کلاس DerivedClass به وسیله کلاس پایه پنهان شده و Method کلاس پایه فراخوانی میشود. در قطعه کد زیر حالت مشابه‌ای را که در بالا داشتیم، برای interface‌ها دیده میشود.
class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method(); // -> Method in DerivedClass
            result = ((IInterface)instance).Method(); // -> Method belonging to IInterface
            Console.WriteLine(result);
            Console.ReadLine();
        }
    }

    public interface IInterface
    {
        string Method();
    }

    public class DerivedClass : IInterface
    {
        public string Method()
        {
            return "Method in DerivedClass";
        }
        string IInterface.Method()
        {
            return "Method belonging to IInterface";
        }
}
هرچند که به نظر میرسد دلیلی برای استفاده از روشهای گفته شده وجود ندارد، اما اگر بخواهیم بیش از یک پیاده‌سازی را برای یک متد در یک کلاس داشته باشیم، میتواند مورد توجه قرار گیرد. بخصوص اگر نیاز باشد که پیاده‌سازی دوم خودش به طور مستقلی در کلاسی دیگر استفاده شود.

Iterators 

Iterator‌ها (تکرار شونده‌ها) ساختارهایی هستند که برای حرکت در عناصر یک collection استفاده میشوند. عموما از دستور foreach استفاده و نوع جنریک <IEnumerable<T را نمایندگی میکنند. هر چند که استفاده از آنها ساده است، اما اگر کارکرد داخلی iteratorها را درک نکنیم ممکن است به دام استفاده نادرست از آنها گرفتار شویم. در قطعه کد زیر کلاس Test صدا زده میشود و مقادیر یک تا پنج به صورت یک IEnumerable از داخل بلوک using بازگشت داده میشود. 
private IEnumerable<int> GetEnumerable(StringBuilder log)
{
     using (var test = new Test(log))
      {
          return Enumerable.Range(1, 5);
      }
}

فرض کنیم کلاس Test اینترفیس IDisposable را پیاده‌سازی کرده و در سازنده و متد Dispose خود پیامهایی را به log اضافه کند. در مثالهای واقعی، کلاس Testمیتواند اتصالی به پایگاه داده باشد و رکوردهای خوانده شده، بازگشت داده شوند. توسط حلقه زیر مقدار خروجی تابع را چاپ میکنیم.
var log = new StringBuilder();
            
foreach (var number in GetEnumerable(log))
{
     log.AppendLine($"{number}");
}
انتظار میرود که خروجی به این صورت باشد که ابتدا رشته Created (از سازنده کلاس Test) چاپ شود بعد اعداد یک تا پنج و در نهایت رشته Disposed (از متد Dispose کلاس Test). به عبارتی در ابتدای کار، بلوک using، سازنده کلاس را فراخوانی کند و بعد از اینکه بلوک به پایان کارش رسید متد Dispose کلاس فراخوانی شود. اما در واقع خروجی به صورت زیر خواهد بود. 
Created
Disposed
1
2
3
4
5
این تفاوت در دنیای واقعی مهم است؛ به اینصورت که مثلا اتصال به پایگاه داده قبل از اینکه داده‌ها خوانده شوند، بسته میشود و قطعه کد به درستی عمل نخواهد کرد. تنها راه حل، پیمایش در collection داخل using و بازگشت هر مقدار به صورت مجزا است، که در زیر آمده است.
 using (var test = new Test(log))
 {
     foreach (var i in Enumerable.Range(1,5))
     {
         yield return i;
     }
 }
فقط در این صورت است که کلاس Test بعد از اتمام کار حلقه و در زمان درست به پایان میرسد. توسط کلمه کلیدی yield و برای متدی که خروجی قابل پیمایش داشته باشد میتوان چندین مقدار را بازگشت داد. ترتیب اجرای دستورات در قطعه کد بالا به این صورت است که ابتدا نمونه‌ای از کلاس Test ایجاد میشود و سازنده کلاس فراخوانی میشود، سپس حلقه foreach به تعداد مشخص شده در Range مقادیر بازگشتی را در خروجی تابع قرار میدهد. وقتی که کار حلقه تمام شد، بلوک using دستورات را ادامه خواهد داد که برابر با خاتمه دادن به تمام نمونه‌ها و منابع استفاده شده در بلوک است؛ یعنی فراخوانی متد Dispose. با استفاده از این روش خروجی به شکل زیر خواهد بود. 
Created
1
2
3
4
5
Disposed

مطالب
چگونگی تعریف خاصیتی از نوع Enum در EF Code First
فرض می‌کنیم که یک Enum بصورت زیر داریم :
[Flags]
public enum Gender : byte
{
     None=0, Male=1, Female=2,
};
حال می‌خواهیم از این Enum در یک مدل ساده استفاده کنیم. از آنجا که EF هنوز قادر به ‍‍‍‍‍‍‍‍‍‍پشتیبانی از Enum نمی‌باشد باید به روش زیر عمل کنیم:
1) توسط data Annotation
public class User
{
    public int UserId { get; set; }
    public string FirstName { get; set; }
    public string LastName { get; set; }
    public string Username { get; set; }

    [Column(Name="Gender")]
    public int InternalGender { get; set; }
    [NotMapped]
    public Gender Gender
    {
        get { return (Gender)this.InternalGender; }
        set { this.InternalGender = (int)value; }
    }

    public DateTime DateOfBirth { get; set; }
}
2) توسط Fluent API
 modelBuilder.Entity<Participant>().Ignore(p => p.Gender);
 modelBuilder.Entity<Participant>().Property(p => p.InternalGender).HasColumnName("Gender");

نظرات مطالب
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 3#
با اجازه دوست عزیزم مهندس فتح الهی
من به نظرم Helpers رو اگه به شکل زیر Re factor کنیم بهتر باشه :)
اول یه کلاس تعریف می‌کنیم و اطلاعات لازم برای ترسیم پیش نمایش رو تو اون کلاس میزاریم
public class ShapeSpecification
    {
        public PointF StartPoint{get;set;}
        public PointF EndPoint{get;set;}
        public Color ForeColor{get;set;}
        public byte Thickness{get;set;}
        public bool IsFill{get;set;}
        public Brush BackgroundBrush{get;set;}
    }
یه کلاس دیگه هم نقاط ابتدا و انتها و طول و عرض رو تو خودش داره
public class StartPoints
    {
        public float XPoint { get; set; }
        public float YPoint { get; set; }
        public float Width { get; set; }
        public float Height { get; set; }
    }
حالا یه اینترفیس تعریف می‌کنیم که فقط یه متد داره به نام   Draw
 public interface IPeiview
    {
        void Draw(ShapeSpecification shapeScepification);
    }
حالا می‌رسیم به کلاس Helpers اصلیمون که میتونه هم استاتیک باشه و هم معمولی به دو شکل زیر
public class Helpers
    {
        private readonly IPeiview peiview;

        public Helpers(IPeiview peiview)
        {
            this.peiview = peiview;
        }

        public void Draw(ShapeSpecification shapeSpecification)
        {
            peiview.Draw(shapeSpecification);
        }
    }
 public static  class Helpers
    {

        public static void Draw(ShapeSpecification shapeSpecification, IPeiview peiview)
        {
            peiview.Draw(shapeSpecification);
        }
    }
که فقط یه متد ساده Draw داره و اونم تابع Draw اینترفیسی که بش دادیم رو صدا میزینه
یه کلاس دیگه هم تعریف میکنیم که مسئولیتش تشخیص بوم‌های چهارگانه است برای شروع نقطه‌ی ترسیم
public static class AreaParser
    {
        public static StartPoints Parse(PointF startPoint, PointF endPoint)
        {
            var startPoints = new StartPoints();

            startPoints.Width = Math.Abs(endPoint.X - startPoint.X);
            startPoints.Height = Math.Abs(endPoint.Y - startPoint.Y);

            if (startPoint.X <= endPoint.X && startPoint.Y <= endPoint.Y)
            {
                startPoints.XPoint = startPoint.X;
                startPoints.YPoint = startPoint.Y;
            }

            else if (startPoint.X >= endPoint.X && startPoint.Y >= endPoint.Y)
            {
                startPoints.XPoint = endPoint.X;
                startPoints.YPoint = endPoint.Y;
            }

            else if (startPoint.X >= endPoint.X && startPoint.Y <= endPoint.Y)
            {
                startPoints.XPoint = endPoint.X;
                startPoints.YPoint = startPoint.Y;
            }

            else if (startPoint.X <= endPoint.X && startPoint.Y >= endPoint.Y)
            {
                startPoints.XPoint = startPoint.X;
                startPoints.YPoint = endPoint.Y;
            }
            return startPoints;
        }
    }
نکته: این کلاس رو اگه با Func ایجاد کنیم خیلی بهتر و تمیزتر  وقشنکتر هم میشد که من می‌گزرم فعلا ازش
حالا ما هر شکل جدید که اضافه کنیم به پروژه Paint خودمون و قصد پیش نمایش اونو داشته باشیم فقط کافیه یه کلاس برا پیش نمایشش ایجاد کنیم که کلاس Ipreview رو Implement کنه و متد Draw مخصوص به خودش را داشته باشه و از شر Swith‌های طولانی خلاص میشیم مثلا من برای دایره اینکارو کردم
public class CirclePreview:IPeiview
    {
        private readonly Graphics graphics;

        public CirclePreview(Graphics graphics)
        {
            this.graphics = graphics;
        }
        public void Draw(ShapeSpecification shapeScepification)
        {
            var startPoints = AreaParser.Parse(shapeScepification.StartPoint, shapeScepification.EndPoint);

            float raduis = Math.Max(startPoints.Width, startPoints.Height);

            if (shapeScepification.IsFill)
                this.graphics.FillEllipse(shapeScepification.BackgroundBrush, startPoints.XPoint, startPoints.YPoint, raduis, raduis);
            else
                this.graphics.DrawEllipse(new Pen(shapeScepification.ForeColor, shapeScepification.Thickness), startPoints.XPoint, startPoints.YPoint, raduis, raduis);
        }
    }


مطالب
Globalization در ASP.NET MVC - قسمت چهارم
در قسمت قبل مقدمه ای راجع به انواع منابع موجود در ASP.NET و برخی مسائل پیرامون آن ارائه شد. در این قسمت راجع به نحوه رفتار ASP.NET در برخورد با انواع منابع بحث می‌شود.

مدیریت منابع در ASP.NET 
در مدل پرووایدر منابع در ASP.NET کار مدیریت منابع از کلاس ResourceProviderFactory شروع می‌شود. این کلاس که از نوع abstract تعریف شده است، دو متد برای فراهم کردن پرووایدرهای کلی و محلی دارد.
کلاس پیش‌فرض در ASP.NET برای پیاده‌سازی ResourceProviderFactory در اسمبلی System.Web قرار دارد. این کلاس که ResXResourceProviderFactory نام دارد نمونه‌هایی از کلاس‌های LocalResxResourceProvider و GlobalResxResourceProvider را برمی‌گرداند. درباره این کلاس‌ها در ادامه بیشتر بحث خواهد شد.

نکته: هر سه کلاس پیش‌فرض اشاره شده در بالا و نیز سایر کلاس‌های مربوط به عملیات مدیریت منابع در آن‌ها، همگی در فضای نام System.Web.Compilation قرار دارند و متاسفانه دارای سطح دسترسی internal هستند. بنابراین به صورت مستقیم در دسترس نیستند.

برای نمونه با توجه به تصویر فرضی نشان داده شده در قسمت قبل، در اولین بارگذاری صفحه SubDir1\Page1.aspx عبارات ضمنی بکاربرده شده در این صفحه برای منابع محلی (در قسمت قبل شرح داده شده است) باعث فراخوانی متد مربوط به Local Resources در کلاس ResXResourceProviderFactory می‌شود. این متد نمونه‌ای از کلاس LocalResXResourceProvider برمی‌گرداند. (در ادامه با نحوه سفارشی‌سازی این کلاس‌ها نیز آشنا خواهیم شد).
رفتار پیش‌فرض این پرووایدر این است که نمونه‌ای از کلاس ResourceManager با توجه به کلید درخواستی برای صفحه موردنظر (مثلا نوع Page1.aspx در اسمبلی App_LocalResources.subdir1.XXXXXX که در تصویر موجود در قسمت قبل نشان داده شده است) تولید می‌کند. حال این کلاس با استفاده از کالچر مربوط به درخواست موردنظر، ورودی موردنظر را از منبع مربوطه استخراج می‌کند. مثلا اگر کالچر موردبحث es (اسپانیایی) باشد، اسمبلی ستلایت موجود در مسیر نسبی \es\ انتخاب می‌شود.
برای روشن‌تر شدن بحث به تصویر زیر که عملیات مدیریت منابع پیش فرض در ASP.NET در درخواست صفحه Page1.aspx از پوشه SubDir1 را نشان می‌دهد، دقت کنید:

همانطور که در قسمت اول این سری مطالب عنوان شد، رفتار کلاس ResourceManager برای یافتن کلیدهای Resource، استخراج آن از نزدیکترین گزینه موجود است. یعنی مثلا برای یافتن کلیدی در کالچر es در مثال بالا، ابتدا اسمبلی‌های مربوط به این کالچر جستجو می‌شود و اگر ورودی موردنظر یافته نشد، جستجو در اسمبلی‌های ستلایت پیش‌فرض سیستم موجود در ریشه فولدر bin برنامه ادامه می‌یابد، تا درنهایت نزدیک‌ترین گزینه پیدا شود (فرایند fallback).

نکته: همانطور که در تصویر بالا نیز مشخص است، نحوه نامگذاری اسمبلی منابع محلی به صورت <App_LocalResources.<SubDirectory>.<A random code است.

نکته: پس از اولین بارگذاری هر اسمبلی، آن اسمبلی به همراه خود نمونه کلاس ResourceManager که مثلا توسط کلاس LocalResXResourceProvider تولید شده است در حافظه سرور کش می‌شوند تا در استفاده‌های بعدی به کار روند.

نکته: فرایند مشابه‌ای برای یافتن کلیدها در منابع کلی (Global Resources) به انجام می‌رسد. تنها تفاوت آن این است که کلاس ResXResourceProviderFactory نمونه‌ای از کلاس GlobalResXResourceProvider تولید می‌کند.

چرا پرووایدر سفارشی؟
تا اینجا بالا با کلیات عملیاتی که ASP.NET برای بارگذاری منابع محلی و کلی به انجام می‌رساند، آشنا شدیم. حالا باید به این پرسش پاسخ داد که چرا پرووایدری سفارشی نیاز است؟ علاوه بر دلایلی که در قسمت‌های قبلی به آنها اشاره شد، می‌توان دلایل زیر را نیز برشمرد:
 
- استفاده از منابع و یا اسمبلی‌های ستلایت موجود - اگر بخواهید در برنامه خود از اسمبلی‌هایی مشترک، بین برنامه‌های ویندوزی و وبی استفاده کنید، و یا بخواهید به هردلیلی از اسمبلی‌های جداگانه‌ای برای این منابع استفاده کنید، مدل پیش‌فرض موجود در ASP.NET جوابگو نخواهد بود.

- استفاده از منابع دیگری به غیر از فایلهای resx. مثل دیتابیس - برای برنامه‌های تحت وب که صفحات بسیار زیاد به همراه ورودی‌های بیشماری از Resourceها دارند، استفاده از مدل پرووایدر منابع پیش‌فرض در ASP.NET و ذخیره تمامی این ورودی‌ها درون فایل‌های resx. بار نسبتا زیادی روی حافظه سرور خواهد گذاشت. درصورت مدیریت بهینه فراخوانی‌های سمت دیتابیس می‌توان با بهره‌برداری از جداول یک دیتابیس به عنوان منبع، کمک زیادی به وب سرور کرد! هم‌چنین با استفاده از دیتابیس می‌توان مدیریت بهتری بر ورودی‌ها داشت و نیز امکان ذخیره‌سازی حجم بیشتری از داده‌ها در اختیار توسعه دهنده قرار خواهد گرفت.
البته به غیر از دیتابیس و فایل‌های resx. نیز گزینه‌های دیگری برای ذخیره‌سازی ورودی‌های این منابع وجود دارند. به عنوان مثال می‌توان مدیریت این منابع را کلا به سیستم دیگری سپرد و درخواست ورودی‌های موردنیاز را به یکسری وب‌سرویس سپرد. برای پیاده سازی چنین سیستمی نیاز است تا مدلی سفارشی تهیه و استفاده شود.

- پیاده سازی امکان به روزرسانی منابع در زمان اجرا - درصورتی‌که بخواهیم امکان بروزرسانی ورودی‌ها را در زمان اجرا در استفاده از فایلهای resx. داشته باشیم، یکی از راه‌حل‌ها، سفارشی سازی این پرووایدرهاست.

مدل پرووایدر منابع
همانطور که قبلا هم اشاره شد، وظیفه استخراج داده‌ها از Resourceها به صورت پیش‌فرض، درنهایت بر عهده نمونه‌ای از کلاس ResourceManager است. در واقع این کلاس کل فرایند انتخاب مناسب‌ترین کلید از منابع موجود را با توجه به کالچر رابط کاربری (UI Culture) در ثرد جاری کپسوله می‌کند. درباره این کلاس در ادامه بیشتر بحث خواهد شد.
هم‌چنین بازهم همانطور که قبلا توضیح داده شد، استفاده از ورودی‌های منابع موجود به دو روش انجام می‌شود. استفاده از عبارات بومی‌سازی و نیز با استفاده از برنامه‌نویسی که ازطریق دومتد GetLocalResourceObject و GetGlobalResourceObject انجام می‌شود. درضمن کلیه عبارات بومی‌سازی در زمان رندر صفحات وب درنهایت تبدیل به فراخوانی‌هایی از این دو متد در کلاس TemplateControl خواهند شد.
عملیات پس از فراخوانی این دو متد جایی است که مدل Resource Provider پیش‌فرض ASP.NET وارد کار می‌شود. این فرایند ابتدا با فراخوانی نمونه‌ای از کلاس ResourceProviderFactory آغاز می‌شود که پیاده‌سازی پیش‌فرض آن در کلاس ResXResourceProviderFactory قرار دارد.
این کلاس سپس با توجه به نوع منبع درخواستی (Global یا Local) نمونه‌ای از پرووایدر مربوطه (که باید اینترفیس IResourceProvider را پیاده‌سازی کرده باشند) را تولید می‌کند. پیاده‌سازی پیش‌فرض این پرووایدرها در ASP.NET در کلاس‌های GlobalResXResourceProvider و LocalResXResourceProvider قرار دارد.
این پروایدرها درنهایت باتوجه به محل ورودی درخواستی، نمونه مناسب از کلاس RsourceManager را تولید و استفاده می‌کنند.
هم‌چنین در پروایدرهای محلی، برای استفاده از عبارات بومی‌سازی ضمنی، نمونه‌ای از کلاس ResourceReader مورد استفاده قرار می‌گیرد. در زمان تجزیه و تحلیل صفحه وب درخواستی در سرور، با استفاده از این کلاس کلیدهای موردنظر یافته می‌شوند. این کلاس درواقع پیاده‌سازی اینترفیس IResourceReader بوده که حاوی یک Enumerator که جفت داده‌های Key-Value از کلیدهای Resource را برمی‌گرداند، است.
تصویر زیر نمایی کلی از فرایند پیش‌فرض موردبحث را نشان می‌دهد:

این فرایند باتوجه به پیاده سازی نسبتا جامع آن، قابلیت بسیاری برای توسعه و سفارشی سازی دارد. بنابراین قبل از ادامه مبحث بهتر است، کلاس‌های اصلی این مدل بیشتر شرح داده شوند.

پیاده‌سازی‌ها
کلاس ResourceProviderFactory به صورت زیر تعریف شده است:
public abstract class ResourceProviderFactory
{
    public abstract IResourceProvider CreateGlobalResourceProvider(string classKey);
    public abstract IResourceProvider CreateLocalResourceProvider(string virtualPath);
}
همانطور که مشاهده می‌کنید دو متد برای تولید پرووایدرهای مخصوص منابع کلی و محلی در این کلاس وجود دارد. پرووایدر کلی تنها نیاز به نام کلید Resource برای یافتن داده موردنظر دارد. اما پرووایدر محلی به مسیر صفحه درخواستی برای اینکار نیاز دارد که با توجه به توضیحات ابتدای این مطلب کاملا بدیهی است.
پس از تولید پرووایدر موردنظر با استفاده از متد مناسب با توجه به شرایط شرح داده شده در بالا، نمونه تولیدشده از کلاس پرووایدر موردنظر وظیفه فراهم‌کردن کلیدهای Resource را برعهده دارد. پرووایدرهای موردبحث باید اینترفیس IResourceProvider را که به صورت زیر تعریف شده است، پیاده سازی کنند:
public interface IResourceProvider
{
    IResourceReader ResourceReader { get; }
    object GetObject(string resourceKey, CultureInfo culture);
}
همانطور که می‌بینید این پرووایدرها باید یک RsourceReader برای خواندن کلیدهای Resource فراهم کنند. همچنین یک متد با عنوان GetObject که کار اصلی برگرداندن داده ذخیره‌شده در ورودی موردنظر را برعهده دارد باید در این پرووایدرها پیاده‌سازی شود. همانطور که قبلا اشاره شد، پیاده‌سازی پیش‌فرض این کلاس‌ها درنهایت نمونه‌ای از کلاس ResourceManager را برای یافتن مناسب‌ترین گزینه از بین کلیدهای موجود تولید می‌کند. این نمونه مورد بحث در متد GetObject مورد استفاده قرار می‌گیرد. 

نکته: کدهای نشان‌داده‌شده در ادامه مطلب با استفاده از ابزار محبوب ReSharper استخراج شده‌اند. این ابزار برای دریافت این کدها معمولا از APIهای سایت SymbolSource.org استفاده می‌کند. البته منبع اصلی تمام کدهای دات نت فریمورک همان referencesource.microsoft.com است.
 
کلاس ResXResourceProviderFactory
پیاده‌سازی پیش‌فرض کلاس ResourceProviderFactory در ASP.NET که در کلاس ResXResourceProviderFactory قرار دارد، به صورت زیر است:
// Type: System.Web.Compilation.ResXResourceProviderFactory
// Assembly: System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a
// Assembly location: C:\Windows\Microsoft.NET\assembly\GAC_32\System.Web\v4.0_4.0.0.0__b03f5f7f11d50a3a\System.Web.dll

using System.Runtime;
using System.Web;
namespace System.Web.Compilation
{
  internal class ResXResourceProviderFactory : ResourceProviderFactory
  {
    [TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
    public ResXResourceProviderFactory()    {    }
    public override IResourceProvider CreateGlobalResourceProvider(string classKey)
    {
      return (IResourceProvider) new GlobalResXResourceProvider(classKey);
    }
    public override IResourceProvider CreateLocalResourceProvider(string virtualPath)
    {
      return (IResourceProvider) new LocalResXResourceProvider(VirtualPath.Create(virtualPath));
    }
  }
}
در این کلاس برای تولید پرووایدر منابع محلی از کلاس VirtualPath استفاده شده است که امکاناتی جهت استخراج مسیرهای موردنظر با توجه به مسیر نسبی و مجازی ارائه‌شده فراهم می‌کند. متاسفانه این کلاس نیز با سطح دسترسی internal تعریف شده است و امکان استفاده مستقیم از آن وجود ندارد.
 
کلاس GlobalResXResourceProvider
پیاده‌سازی پیش‌فرض اینترفیس IResourceProvider در ASP.NET برای منابع کلی که در کلاس GlobalResXResourceProvider قرار دارد، به صورت زیر است:
internal class GlobalResXResourceProvider : BaseResXResourceProvider
{
  private string _classKey;
  internal GlobalResXResourceProvider(string classKey)
  {
    _classKey = classKey;
  }
  protected override ResourceManager CreateResourceManager()
  {
    string fullClassName = BaseResourcesBuildProvider.DefaultResourcesNamespace + "." + _classKey;
    // If there is no app resource assembly, return null
    if (BuildManager.AppResourcesAssembly == null)
      return null;
    ResourceManager resourceManager = new ResourceManager(fullClassName, BuildManager.AppResourcesAssembly);
    resourceManager.IgnoreCase = true;
    return resourceManager;
  }
  public override IResourceReader ResourceReader
  {
    get
    {
      // App resources don't support implicit resources, so the IResourceReader should never be needed 
      throw new NotSupportedException();
    }
  }
}
در این کلاس عملیات تولید نمونه مناسب از کلاس ResourceManager انجام می‌شود. مقدار BaseResourcesBuildProvider.DefaultResourcesNamespace به صورت زیر تعریف شده است:
internal const string DefaultResourcesNamespace = "Resources";
که قبلا هم درباره این مقدار پیش فرض اشاره‌ای شده بود.
پارامتر classKey درواقع اشاره به نام فایل اصلی منبع کلی دارد. مثلا اگر این مقدار برابر Resource1 باشد، کلاس ResourceManager برای نوع داده Resources.Resource1 تولید خواهد شد.
هم‌چنین اسمبلی موردنظر برای یافتن ورودی‌های منابع کلی که از BuildManager.AppResourcesAssembly دریافت شده است، به صورت پیش فرض هم‌نام با مسیر منابع کلی و با عنوان App_GlobalResources تولید می‌شود.
کلاس BuildManager فرایندهای کامپایل کدها و  صفحات برای تولید اسمبلی‌ها و نگهداری از آن‌ها در حافظه را مدیریت می‌کند. این کلاس که محتوای نسبتا مفصلی دارد (نزدیک به 2000 خط کد) به صورت public و sealed تعریف شده است. بنابراین با ریفرنس دادن اسمبلی System.Web در فضای نام System.Web.Compilation در دسترس است، اما نمی‌توان کلاسی از آن مشتق کرد. BuildManager حاوی تعداد زیادی اعضای استاتیک برای دسترسی به اطلاعات اسمبلی‌هاست. اما متاسفانه بیشتر آن‌ها سطح دسترسی عمومی ندارند.

نکته: همانطور که در بالا نیز اشاره شد، ازآنجاکه کلاس ResourceReader در اینجا تنها برای عبارات بومی سازی ضمنی کاربرد دارد، و نیز عبارات بومی‌سازی ضمنی تنها برای منابع محلی کاربرد دارند، در این کلاس برای خاصیت مربوطه در پیاده سازی اینترفیس IResourceProvider یک خطای عدم پشتیبانی (NotSupportedException) صادر شده است.

کلاس LocalResXResourceProvider
پیاده‌سازی پیش‌فرض اینترفیس IResourceProvider در ASP.NET برای منابع محلی که در کلاس LocalResXResourceProvider قرار دارد، به صورت زیر است:
internal class LocalResXResourceProvider : BaseResXResourceProvider
{
  private VirtualPath _virtualPath;
  internal LocalResXResourceProvider(VirtualPath virtualPath)
  {
    _virtualPath = virtualPath;
  }
  protected override ResourceManager CreateResourceManager()
  {
    ResourceManager resourceManager = null;
    Assembly pageResAssembly = GetLocalResourceAssembly();
    if (pageResAssembly != null)
    {
      string fileName = _virtualPath.FileName;
      resourceManager = new ResourceManager(fileName, pageResAssembly);
      resourceManager.IgnoreCase = true;
    }
    else
    {
      throw new InvalidOperationException(SR.GetString(SR.ResourceExpresionBuilder_PageResourceNotFound));
    }
    return resourceManager;
  }
  public override IResourceReader ResourceReader
  {
    get
    {
      // Get the local resource assembly for this page 
      Assembly pageResAssembly = GetLocalResourceAssembly();
      if (pageResAssembly == null) return null;
      // Get the name of the embedded .resource file for this page 
      string resourceFileName = _virtualPath.FileName + ".resources";
      // Make it lower case, since GetManifestResourceStream is case sensitive 
      resourceFileName = resourceFileName.ToLower(CultureInfo.InvariantCulture);
      // Get the resource stream from the resource assembly
      Stream resourceStream = pageResAssembly.GetManifestResourceStream(resourceFileName);
      // If this page has no resources, return null 
      if (resourceStream == null) return null;
      return new ResourceReader(resourceStream);
    }
  }
  [PermissionSet(SecurityAction.Assert, Unrestricted = true)]
  private Assembly GetLocalResourceAssembly()
  {
    // Remove the page file name to get its directory
    VirtualPath virtualDir = _virtualPath.Parent;
    // Get the name of the local resource assembly
    string cacheKey = BuildManager.GetLocalResourcesAssemblyName(virtualDir);
    BuildResult result = BuildManager.GetBuildResultFromCache(cacheKey);
    if (result != null)
    {
      return ((BuildResultCompiledAssembly)result).ResultAssembly;
    }
    return null;
  }
}
عملیات موجود در این کلاس باتوجه به فرایندهای مربوط به یافتن اسمبلی مربوطه با استفاده از مسیر ارائه‌شده، کمی پیچیده‌تر از کلاس قبلی است.
در متد GetLocalResourceAssembly عملیات یافتن اسمبلی متناظر با درخواست جاری انجام می‌شود. اینکار باتوجه به نحوه نامگذاری اسمبلی منابع محلی که در ابتدای این مطلب اشاره شد انجام می‌شود. مثلا اگر صفحه درخواستی در مسیر SubDir1/Page1.aspx/~ باشد، در این متد با استفاده از ابزارهای موجود عنوان اسمبلی نهایی برای این مسیر که به صورت App_LocalResources.SubDir1.XXXXX است تولید و درنهایت اسمبلی مربوطه استخراج می‌شود.
درضمن در اینجا هم کلاس ResourceManager برای نوع داده متناظر با نام فایل اصلی منبع محلی تولید می‌شود. مثلا برای مسیر مجازی SubDir1/Page1.aspx/~ نوع داده‌ای با نام Page1.aspx درنظر گرفته خواهد شد (با توجه به نام فایل منبع محلی که باید به صورت Page1.aspx.resx باشد. در قسمت قبل در این باره شرح داده شده است).

نکته: کلاس SR (مخفف String Resources) که در فضای نام System.Web قرار دارد، حاوی عناوین کلیدهای Resourceهای مورداستفاده در اسمبلی System.Web است. این کلاس با سطح دسترسی internal و به صورت sealed تعریف شده است. عنوان تمامی کلیدها به صورت ثوابتی از نوع رشته تعریف شده‌‌اند.
SR درواقع یک Wrapper بر روی کلاس ResourceManager است تا از تکرار عناوین کلیدهای منابع که از نوع رشته هستند، در جاهای مختلف برنامه جلوگیری شود. کار این کلاس مشابه کاری است که کتابخانه T4MVC برای نگهداری عناوین کنترلرها و اکشن‌ها به صورت رشته‌های ثابت انجام می‌دهد. از این روش در جای جای دات نت فریمورک برای نگهداری رشته‌های ثابت استفاده شده است!
 
نکته: باتوجه به استفاده از عبارات بومی‌سازی ضمنی در استفاده از ورودی‌های منابع محلی، خاصیت ResourceReader در این کلاس نمونه‌ای متناظر برای درخواست جاری از کلاس ResourceReader با استفاده از Stream استخراج شده از اسمبلی یافته شده، تولید می‌کند.

کلاس پایه BaseResXResourceProvider
کلاس پایه BaseResXResourceProvider که در دو پیاده‌سازی نشان داده شده در بالا استفاده شده است (هر دو کلاس از این کلاس مشتق شده‌اند)، به صورت زیر است: 
internal abstract class BaseResXResourceProvider : IResourceProvider
{
  private ResourceManager _resourceManager;
  ///// IResourceProvider implementation
  public virtual object GetObject(string resourceKey, CultureInfo culture)
  {
    // Attempt to get the resource manager
    EnsureResourceManager();
    // If we couldn't get a resource manager, return null 
    if (_resourceManager == null) return null;
    if (culture == null) culture = CultureInfo.CurrentUICulture;
    return _resourceManager.GetObject(resourceKey, culture);
  }
  public virtual IResourceReader ResourceReader { get { return null; } }
  ///// End of IResourceProvider implementation 
  protected abstract ResourceManager CreateResourceManager();
  private void EnsureResourceManager()
  {
    if (_resourceManager != null)  return;
    _resourceManager = CreateResourceManager();
  }
}
در این کلاس پیاده‌سازی اصلی اینترفیس IResourceProvider انجام شده است. همانطور که می‌بینید کار نهایی استخراج ورودی‌های منابع در متد GetObject با استفاده از نمونه فراهم شده از کلاس ResourceManager انجام می‌شود.

نکته: دقت کنید که در کد بالا درصورت فراهم نکردن مقداری برای کالچر، از کالچر UI در ثرد جاری (CultureInfo.CurrentUICulture) به عنوان مقدار پیش‌فرض استفاده می‌شود.

کلاس ResourceManager
در زمان اجرا ASP.NET کلید مربوط به منبع موردنظر را با استفاده از کالچر جاری UI انتخاب می‌کند. در قسمت اول این سری مطالب شرح کوتاهی بابت انواع کالچرها داده شد، اما برای توضیحات کاملتر به اینجا مراجعه کنید.
در ASP.NET به صورت پیش‌فرض تمام منابع در زمان اجرا از طریق نمونه‌ای از کلاس ResourceManager در دسترس خواهند بود. به ازای هر نوع Resource که درخواستی برای یک کلید آن ارسال می‌شود یک نمونه از کلاس ResourceManager ساخته می‌شود. در این هنگام (یعنی پس از اولین درخواست به کلیدهای یک منبع) اسمبلی ستلایت مناسب آن پس از یافته شدن (یا تولیدشدن در زمان اجرا) به دامین ASP.NET جاری بارگذاری می‌شود و تا زمانیکه این دامین Unload نشود در حافظه سرور باقی خواهد ماند.

نکته: کلاس ResourceManager تنها توانایی استخراج کلیدهای Resource از اسمبلی‌های ستلایتی (فایل‌های resources. که در قسمت اول به آن‌ها اشاره شد) که در AppDomain جاری بارگذاری شده‌اند را دارد.

کلاس ResourceManager به صورت زیر نمونه سازی می‌شود:
System.Resources.ResourceManager(string baseName, Assembly assemblyName)
پارامتر baseName به نام کامل ریشه اسمبلی اصلی موردنظر(با فضای نام و ...) اما بدون پسوند اسمبلی مربوطه (resources.) اشاره دارد. این نام که برابر نام کلاس نهایی تولیدشده برای منبع موردنظر است همنام با فایل اصلی و پیش‌فرض منبع (فایلی که حاوی عنوان هیچ زبان و کالچری نیست) تولید می‌شود. مثلا برای اسمبلی ستلایت با عنوان MyApplication.MyResource.fa-IR.resources باید از عبارت MyApplication.MyResource استفاده شود.
پارامتر assemblyName نیز به اسمبلی حاوی اسمبلی ستلایت اصلی اشاره دارد. درواقع همان اسمبلی اصلی که نوع داده مربوط به فایل منبع اصلی درون آن embed شده است.
مثلا:
var manager = new System.Resources.ResourceManager("Resources.Resource1", typeof(Resource1).Assembly)
یا
var manager = new System.Resources.ResourceManager("Resources.Resource1", Assembly.LoadFile(@"c:\MyResources\MyGlobalResources.dll"))
 
روش دیگری نیز برای تولید نمونه‌ای از این کلاس وجود دارد که با استفاده از متد استاتیک زیر که در خود کلاس ResourceManager تعریف شده است انجام می‌شود:
public static ResourceManager CreateFileBasedResourceManager(string baseName, string resourceDir, Type usingResourceSet)
در این متد کار استخراج ورودی‌های منابع مستقیما از فایل‌های resources. انجام می‌شود. در اینجا baseName نام فایل اصلی منبع بدون پیشوند resources. است. resourceDir نیز مسیری است که فایل‌های resources. در آن قرار دارند. usingResourceSet نیز نوع کلاس سفارشی سازی شده از ResourceSet برای استفاده به جای کلاس پیش‌فرض است که معمولا مقدار null برای آن وارد می‌شود تا از همان کلاس پیش‌فرض استفاده شود (چون برای بیشتر نیازها همین کلاس پیش‌فرض کفایت می‌کند).
 
نکته: برای تولید فایل resources. از یک فایل resx. میتوان از ابزار resgen همانند زیر استفاده کرد:
resgen d:\MyResources\MyResource.fa.resx

نکته: عملیاتی که درون کلاس ResourceManager انجام می‌شود پیچیده‌تر از آن است که به نظر می‌آید. این عملیات شامل فرایندهای بسیاری شامل بارگذاری کلیدهای مختلف یافته شده و مدیریت ذخیره موقت آن‌ها در حافظه (کش)، کنترل و مدیریت انواع Resource Setها، و مهمتر از همه مدیریت عملیات Fallback و ... که در نهایت شامل هزاران خط کد است که با یک جستجوی ساده قابل مشاهده و بررسی است (^).

نمونه‌سازی مناسب از ResourceManager
در کدهای نشان داده شده در بالا برای پیاده‌سازی پیش‌فرض در ASP.NET، مهمترین نکته همان تولید نمونه مناسب از کلاس ResourceManager است. پس از آماده شدن این کلاس عملیات استخراج ورودی‌های منابع براحتی و با مدیریت کامل انجام می‌شود. اما ازآنجاکه تقریبا تمامی APIهای موردنیاز با سطح دسترسی internal تعریف شده‌اند، متاسفانه تهیه و تولید این نمونه مناسب خارج از اسمبلی System.Web به صورت مستقیم وجود ندارد.
درهرصورت، برای آشنایی بیشتر با فرایند نشان داده شده، تولید این نمونه مناسب و استفاده مستقیم از آن می‌تواند مفید و نیز جالب باشد. پس از کمی تحقیق و با استفاده از Reflection به کدهای زیر رسیدم:
private ResourceManager CreateGlobalResourceManager(string classKey)
{
  var baseName = "Resources." + classKey;
  var buildManagerType = typeof(BuildManager);
  var property = buildManagerType.GetProperty("AppResourcesAssembly", BindingFlags.Static | BindingFlags.NonPublic | BindingFlags.GetField);
  var appResourcesAssembly = (Assembly)property.GetValue(null, null);
  return new ResourceManager(baseName, appResourcesAssembly) { IgnoreCase = true };
}
تنها نکته کد فوق دسترسی به اسمبلی منابع کلی در خاصیت AppResourcesAssembly از کلاس BuildManager با استفاده از BindingFlagهای نشان داده شده است.
نحوه استفاده از این متد هم به صورت زیر است:
var manager = CreateGlobalResourceManager("Resource1");
Label1.Text = manager.GetString("String1");
اما برای منابع محلی کار کمی پیچیده‌تر است. کد مربوط به تولید نمونه مناسب از ResourceManager برای منابع محلی به صورت زیر خواهد بود:
private ResourceManager CreateLocalResourceManager(string virtualPath)
{
  var virtualPathType = typeof(BuildManager).Assembly.GetType("System.Web.VirtualPath", true);
  var virtualPathInstance = Activator.CreateInstance(virtualPathType, BindingFlags.NonPublic | BindingFlags.Instance, null, new object[] { virtualPath }, CultureInfo.InvariantCulture);
  var buildResultCompiledAssemblyType = typeof(BuildManager).Assembly.GetType("System.Web.Compilation.BuildResultCompiledAssembly", true);
  var propertyResultAssembly = buildResultCompiledAssemblyType.GetProperty("ResultAssembly", BindingFlags.NonPublic | BindingFlags.Instance);
  var methodGetLocalResourcesAssemblyName = typeof(BuildManager).GetMethod("GetLocalResourcesAssemblyName", BindingFlags.NonPublic | BindingFlags.Static);
  var methodGetBuildResultFromCache = typeof(BuildManager).GetMethod("GetBuildResultFromCache", BindingFlags.NonPublic | BindingFlags.Static, null, new Type[] { typeof(string) }, null);

  var fileNameProperty = virtualPathType.GetProperty("FileName");
  var virtualPathFileName = (string)fileNameProperty.GetValue(virtualPathInstance, null);

  var parentProperty = virtualPathType.GetProperty("Parent");
  var virtualPathParent = parentProperty.GetValue(virtualPathInstance, null);
      
  var localResourceAssemblyName = (string)methodGetLocalResourcesAssemblyName.Invoke(null, new object[] { virtualPathParent });
  var buildResultFromCache = methodGetBuildResultFromCache.Invoke(null, new object[] { localResourceAssemblyName });
  Assembly localResourceAssembly = null;
  if (buildResultFromCache != null)
    localResourceAssembly = (Assembly)propertyResultAssembly.GetValue(buildResultFromCache, null);

  if (localResourceAssembly == null)
    throw new InvalidOperationException("Unable to find the matching resource file.");

  return new ResourceManager(virtualPathFileName, localResourceAssembly) { IgnoreCase = true };
}
ازجمله نکات مهم این متد تولید یک نمونه از کلاس VirtualPath برای Parse کردن مسیر مجازی واردشده برای صفحه درخواستی است. از این کلاس برای بدست آوردن نام فایل منبع محلی به همراه مسیر فولدر مربوطه جهت استخراج اسمبلی متناظر استفاده میشود.
نکته مهم دیگر این کد دسترسی به متد GetLocalResourcesAssemblyName از کلاس BuildManager است که با استفاده از مسیر فولدر مربوط به صفحه درخواستی نام اسمبلی منبع محلی مربوطه را برمی‌گرداند.
درنهایت با استفاده از متد GetBuildResultFromCache از کلاس BuildManager اسمبلی موردنظر بدست می‌آید. همانطور که از نام این متد برمی‌آید این اسمبلی از کش خوانده می‌شود. البته مدیریت این اسمبلی‌ها کاملا توسط BuildManager و سایر ابزارهای موجود در ASP.NET انجام خواهد شد.

نحوه استفاده از متد فوق نیز به صورت زیر است: 
var manager = CreateLocalResourceManager("~/Default.aspx");
Label1.Text = manager.GetString("Label1.Text");
 
نکته: ارائه و شرح کدهای پیاده‌سازی‎‌های پیش‌فرض برای آشنایی با نحوه صحیح سفارشی سازی این کلاس‌ها آورده شده است. پس با دقت بیشتر بر روی این کدها سعی کنید نحوه پیاده‌سازی مناسب را برای سفارشی‌سازی موردنظر خود پیدا کنید.

تا اینجا با مقدمات فرایند تولید پرووایدرهای سفارشی برای استفاده در فرایند بارگذاری ورودی‌های Resourceها آشنا شدیم. در ادامه به بحث تولید پرووایدرهای سفارشی برای استفاده از دیگر انواع منابع (به غیر از فایل‌های resx.) خواهم پرداخت.

منابع:
مطالب
سازگارسازی کلاس‌های اعتبارسنجی Twitter Bootstrap 3 با فرم‌های ASP.NET MVC
چندی پیش در همین وب‌سایت مطلبی تحت عنوان «اعمال کلاس‌های ویژه اعتبارسنجی Twitter bootstrap به فرم‌های ASP.NET MVC» منتشر شد. این مقاله مرتبط با نسخه دوم فریم‌ورک محبوب Bootstrap بود. قصد داریم به بازنویسی کدهای مرتبط بپردازیم و کلاس‌های مرتبط با نسخه سوم این فریم‌ورک را هم با فرم‌های خودمان سازگار کنیم. مثل مقاله‌ی ذکر شده توضیحات را با یک مثال همراه می‌کنم.

مدل برنامه
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace FormValidationWithBootstrap.Models
{
    [Table("Product")]
    public class ProductModel
    {
        [Key]
        public int Id { get; set; }
        [Required(ErrorMessage = "{0} یک فیلد اجباری است و باید آن را وارد کنید.")]
        [StringLength(50, ErrorMessage = "طول {0} باید کمتر از {1} کاراکتر باشد.")]
        [Display(Name = "نام کالا")]
        public string Name { get; set; }
        [Required(ErrorMessage = "{0} یک فیلد اجباری است و باید آن را وارد کنید.")]
        [Display(Name = "قیمت")]
        [DataType(DataType.Currency)]
        public double Price { get; set; }
        [Required(ErrorMessage = "{0} یک فیلد اجباری است و باید آن را وارد کنید.")]
        [Display(Name = "موجودی")]
        public int Qty { get; set; }
    }
}
قرار هست که جدولی داشته باشیم با نام Product برای ثبت محصولات. مدل برنامه شامل خاصیت‌های مرتبط و همچنین اعتبارسنجی‌های مد نظر ما هست.

کنترلر برنامه
using System.Web.Mvc;
using FormValidationWithBootstrap.Models;

namespace FormValidationWithBootstrap.Controllers
{
    public class ProductController : Controller
    {
        // GET: Product
        public ActionResult Index()
        {
            return View();
        }

        public ActionResult New()
        {
            return View();
        }

        [HttpPost]
        public ActionResult New(ProductModel product)
        {
            if (!ModelState.IsValid)
                return View(product);

            if (product.Name != "پفک")
            {
                ModelState.AddModelError("", "لطفا مشکلات را برطرف کنید!");
                ModelState.AddModelError("Name", "فقط محصولی با نام پفک قابل ثبت است :)");
                return View(product);
            }
            // todo:save...
            return RedirectToAction("Index");
        }
    }
}
در قسمت کنترلر نیز اتفاق خاصی نیفتاده و کارهای پایه فقط انجام شده؛ ضمن اینکه آمدیم برای داشتن خطاهای سفارشی نام محصول را چک کردیم و گفتیم اگر نام محصول چیزی غیر از «پفک» بود، از سمت سرور خطایی را صادر کند و بگوید که فقط پفک قابل ثبت هست.

View برنامه
@model FormValidationWithBootstrap.Models.ProductModel
@{
    ViewBag.Title = "New";
}
<h2>کالای جدید</h2>
@using (Html.BeginForm()) 
{
    @Html.AntiForgeryToken()
    <div>
        <hr />
        @Html.ValidationSummary(true, "", new { @class = "alert alert-danger" })
        <div>
            @Html.LabelFor(model => model.Name, htmlAttributes: new { @class = "control-label col-md-2" })
            <div>
                @Html.EditorFor(model => model.Name, new { htmlAttributes = new { @class = "form-control" } })
                @Html.ValidationMessageFor(model => model.Name, "", new { @class = "text-danger" })
            </div>
        </div>
        <div>
            @Html.LabelFor(model => model.Price, htmlAttributes: new { @class = "control-label col-md-2" })
            <div>
                @Html.EditorFor(model => model.Price, new { htmlAttributes = new { @class = "form-control" } })
                @Html.ValidationMessageFor(model => model.Price, "", new { @class = "text-danger" })
            </div>
        </div>
        <div>
            @Html.LabelFor(model => model.Qty, htmlAttributes: new { @class = "control-label col-md-2" })
            <div>
                @Html.EditorFor(model => model.Qty, new { htmlAttributes = new { @class = "form-control" } })
                @Html.ValidationMessageFor(model => model.Qty, "", new { @class = "text-danger" })
            </div>
        </div>
        <div>
            <div>
                <input type="submit" value="ثبت" />
                <input type="reset" value="ریست" />
                @Html.ActionLink("بازگشت به لیست", "Index", "Product", null, new {@class="btn btn-default"})
            </div>
        </div>
    </div>
}
فایل View برنامه با Scafflod Templateها ساخته شده و چون از Visual Studio 2013 استفاده شده، به‌صورت پیش‌فرض با بوت‌استرپ سازگار هست. تغییری که ایجاد شده تعویض کلاس مربوط به ValidationSummary هست که به alert alert-danger تغییر پیدا کرده و همچین دو دکمه «ریست» و «بازگشت به لیست» هم به کنار دکمه «ثبت» اضافه شده.

در فرم بالا شاهد هستیم که با کلیک بر روی دکمه ثبت تنها خطاهای مرتبط با هر ردیف ظاهر شده‌اند و هیچ تغییر رنگی که حاصل از کلاس‌های مرتبط با Bootstrap باشند حاصل نشده. برای رفع این مشکل کافی‌‌است اسکریپت زیر، به انتهای فایل View برنامه اضافه شود تا پیش‌فرض‌های jQuery Validator را تغییر دهیم و آن‌ها را با بوت‌استرپ سازگار کنیم. همچنین در حالت ارسال فرم به سرور و Postback و نمایش خطاهای سفارشی، قسمت بررسی field-validation-error صورت می‌گیرد و در صورتیکه موردی را پیدا کند، به سطر مرتبط با آن کلاس has-error اضافه خواهد شد. 
@section Scripts {
    @Scripts.Render("~/bundles/jqueryval")
    <script>
        // override jquery validate plugin defaults
        $.validator.setDefaults({
            highlight: function (element) {
                $(element).closest('.form-group').addClass('has-error');
            },
            unhighlight: function (element) {
                $(element).closest('.form-group').removeClass('has-error').addClass('has-success');
            },
            errorElement: 'span',
            errorClass: 'help-block',
            errorPlacement: function (error, element) {
                if (element.parent('.input-group').length) {
                    error.insertAfter(element.parent());
                } else {
                    error.insertAfter(element);
                }
            }
        });
        $(function () {
            $('form').each(function () {
                $(this).find('div.form-group').each(function () {
                    if ($(this).find('span.field-validation-error').length > 0) {
                        $(this).addClass('has-error');
                    }
                });
            });
        });
    </script>
}

با افزودن اسکریپت فوق، در حالت اعتبارسنجی فرم‌ها به شکل زیر می‌رسیم:

همچنین هنگامیکه کاربر فیلد را به درستی وارد کرد، رنگ فیلد و همچین آن ردیف به سبز تغییر خواهد کرد.

و همچنین در حالت رخ‌داد یک خطای سفارشی پس از postback از سمت سرور به حالت زیر خواهیم رسیذ.

کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید 

FormValidationWithBootstrap.rar 

مطالب
تزریق وابستگی (dependency injection) به زبان ساده

این مطلب در ادامه‌ی "آشنایی با الگوی IOC یا Inversion of Control (واگذاری مسئولیت)" می‌باشد که هر از چندگاهی یک قسمت جدید و یا کاملتر از آن ارائه خواهد شد.

==============
به صورت خلاصه ترزیق وابستگی و یا dependency injection ، الگویی است جهت تزریق وابستگی‌های خارجی یک کلاس به آن، بجای استفاده مستقیم از آن‌ها در درون کلاس.
برای مثال شخصی را در نظر بگیرید که قصد خرید دارد. این شخص می‌تواند به سادگی با کمک یک خودرو خود را به اولین محل خرید مورد نظر برساند. حال تصور کنید که 7 نفر عضو یک گروه، با هم قصد خرید دارند. خوشبختانه چون تمام خودروها یک اینترفیس مشخصی داشته و کار کردن با آن‌ها تقریبا شبیه به یکدیگر است، حتی اگر از یک ون هم جهت رسیدن به مقصد استفاده شود، امکان استفاده و راندن آن همانند سایر خودروها می‌باشد و این دقیقا همان مطلبی است که هدف غایی الگوی تزریق وابستگی‌ها است. بجای این‌که همیشه محدود به یک خودرو برای استفاده باشیم، بنابر شرایط، خودروی متناسبی را نیز می‌توان مورد استفاده قرار داد.
در دنیای نرم افزار، وابستگی کلاس Driver ، کلاس Car است. اگر موارد ذکر شده را بدون استفاده از تزریق وابستگی‌ها پیاده سازی کنیم به کلاس‌های زیر خواهیم رسید:

//Person.cs
namespace DependencyInjectionForDummies
{
class Person
{
public string Name { get; set; }
}
}

//Car.cs
using System;
using System.Collections.Generic;

namespace DependencyInjectionForDummies
{
class Car
{
List<Person> _passengers = new List<Person>();

public void AddPassenger(Person p)
{
_passengers.Add(p);
Console.WriteLine("{0} added!", p.Name);
}

public void Drive()
{
foreach (var passenger in _passengers)
Console.WriteLine("Driving {0} ...!", passenger.Name);
}
}
}

//Driver.cs
using System.Collections.Generic;

namespace DependencyInjectionForDummies
{
class Driver
{
private Car _myCar = new Car();

public void DriveToMarket(IList<Person> passengers)
{
foreach (var passenger in passengers)
_myCar.AddPassenger(passenger);

_myCar.Drive();
}
}
}

//Program.cs
using System.Collections.Generic;
using System;

namespace DependencyInjectionForDummies
{
class Program
{
static void Main(string[] args)
{
new Driver().DriveToMarket(
new List<Person>
{
new Person{ Name="Ali" },
new Person{ Name="Vahid" }
});

Console.WriteLine("Press a key ...");
Console.ReadKey();
}
}
}

توضیحات:
کلاس شخص (Person) جهت تعریف مسافرین، اضافه شده؛ سپس کلاس خودرو (Car) که اشخاص را می‌توان به آن اضافه کرده و سپس به مقصد رساند، تعریف گردیده است. همچنین کلاس راننده (Driver) که بر اساس لیست مسافرین، آن‌ها را به خودروی خاص ذکر شده هدایت کرده و سپس آن‌ها را با کمک کلاس خودرو به مقصد می‌رساند؛ نیز تعریف شده است. در پایان هم یک کلاینت ساده جهت استفاده از این کلاس‌ها ذکر شده است.
همانطور که ملاحظه می‌کنید کلاس راننده به کلاس خودرو گره خورده است و این راننده همیشه تنها از یک نوع خودروی مشخص می‌تواند استفاده کند و اگر روزی قرار شد از یک ون کمک گرفته شود، این کلاس باید بازنویسی شود.

خوب! اکنون اگر این کلاس‌ها را بر اساس الگوی تزریق وابستگی‌ها (روش تزریق در سازنده که در قسمت قبل بحث شد) بازنویسی کنیم به کلاس‌های زیر خواهیم رسید:

//ICar.cs
using System;

namespace DependencyInjectionForDummies
{
interface ICar
{
void AddPassenger(Person p);
void Drive();
}
}

//Car.cs
using System;
using System.Collections.Generic;

namespace DependencyInjectionForDummies
{
class Car : ICar
{
//همانند قسمت قبل
}
}

//Van.cs
using System;
using System.Collections.Generic;

namespace DependencyInjectionForDummies
{
class Van : ICar
{
List<Person> _passengers = new List<Person>();

public void AddPassenger(Person p)
{
_passengers.Add(p);
Console.WriteLine("{0} added!", p.Name);
}

public void Drive()
{
foreach (var passenger in _passengers)
Console.WriteLine("Driving {0} ...!", passenger.Name);
}
}
}

//Driver.cs
using System.Collections.Generic;

namespace DependencyInjectionForDummies
{
class Driver
{
private ICar _myCar;

public Driver(ICar myCar)
{
_myCar = myCar;
}

public void DriveToMarket(IList<Person> passengers)
{
foreach (var passenger in passengers)
_myCar.AddPassenger(passenger);

_myCar.Drive();
}
}
}

//Program.cs
using System.Collections.Generic;
using System;

namespace DependencyInjectionForDummies
{
class Program
{
static void Main(string[] args)
{
Driver driver = new Driver(new Van());
driver.DriveToMarket(
new List<Person>
{
new Person{ Name="Ali" },
new Person{ Name="Vahid" }
});

Console.WriteLine("Press a key ...");
Console.ReadKey();
}
}
}

توضیحات:
در اینجا یک اینترفیس جدید به نام ICar اضافه شده است و بر اساس آن می‌توان خودروهای مختلفی را با نحوه‌ی بکارگیری یکسان اما با جزئیات پیاده سازی متفاوت تعریف کرد. برای مثال در ادامه، یک کلاس ون با پیاده سازی این اینترفیس تشکیل شده است. سپس کلاس راننده‌ی ما بر اساس ترزیق این اینترفیس در سازنده‌ی آن بازنویسی شده است. اکنون این کلاس دیگر نمی‌داند که دقیقا چه خودرویی را باید مورد استفاده قرار دهد و از وابستگی مستقیم به نوعی خاص از آن‌ها رها شده است؛ اما می‌داند که تمام خودروها، اینترفیس مشخص و یکسانی دارند. به تمام آن‌ها می‌توان مسافرانی را افزود و سپس به مقصد رساند. در پایان نیز یک راننده جدید بر اساس خودروی ون تعریف شده، سپس یک سری مسافر نیز تعریف گردیده و نهایتا متد DriveToMarket فراخوانی شده است.
به این صورت به یک سری کلاس اصطلاحا loosely coupled رسیده‌ایم. دیگر راننده‌ی ما وابسته‌ی به یک خودروی خاص نیست و هر زمانی که لازم بود می‌توان خودروی مورد استفاده‌ی او را تغییر داد بدون اینکه کلاس راننده را بازنویسی کنیم.
یکی دیگر از مزایای تزریق وابستگی‌ها ساده سازی unit testing کلاس‌های برنامه توسط mocking frameworks است. به این صورت توسط این نوع فریم‌ورک‌ها می‌توان رفتار یک خودرو را تقلید کرد بجای اینکه واقعا با تمام ریز جرئیات آن‌ها بخواهیم سروکار داشته باشیم (وابستگی‌ها را به صورت مستقل می‌توان آزمایش کرد).