مطالب
رمزنگاری و رمزگشایی خودکار خواص مدل‌ها در ASP.NET Core
فرض کنید قصد دارید خاصیت Id مدل مورد استفاده‌ی در یک View را رمزنگاری کنید تا در سمت کلاینت به سادگی قابل تغییر نباشد. همچنین این Id زمانیکه به سمت سرور ارسال شد، به صورت خودکار رمزگشایی شود و بدون نیاز به تغییرات خاصی در کدهای متداول اکشن متدها، اطلاعات نهایی آن قابل استفاده باشند. برای این منظور در ASP.NET Core می‌توان یک Action Result رمزنگاری کننده و یک Model binder رمزگشایی کننده را طراحی کرد.


نیاز به علامتگذاری خواصی که باید رمزنگاری شوند

می‌خواهیم خاصیت یا خاصیت‌های مشخصی، از یک مدل را رمزنگاری شده به سمت کلاینت ارسال کنیم. به همین جهت ویژگی خالی زیر را به پروژه اضافه می‌کنیم تا از آن تنها جهت علامتگذاری این نوع خواص، استفاده کنیم:
using System;

namespace EncryptedModelBinder.Utils
{
    [AttributeUsage(AttributeTargets.Property, AllowMultiple = false)]
    public class EncryptedFieldAttribute : Attribute { }
}


رمزنگاری خودکار مدل خروجی از یک اکشن متد

در ادامه کدهای کامل یک ResultFilter را مشاهده می‌کنید که مدل ارسالی به سمت کلاینت را یافته و سپس خواصی از آن‌را که با ویژگی EncryptedField مزین شده‌اند، به صورت خودکار رمزنگاری می‌کند:
namespace EncryptedModelBinder.Utils
{
    public class EncryptedFieldResultFilter : ResultFilterAttribute
    {
        private readonly IProtectionProviderService _protectionProviderService;
        private readonly ILogger<EncryptedFieldResultFilter> _logger;
        private readonly ConcurrentDictionary<Type, bool> _modelsWithEncryptedFieldAttributes = new ConcurrentDictionary<Type, bool>();

        public EncryptedFieldResultFilter(
            IProtectionProviderService protectionProviderService,
            ILogger<EncryptedFieldResultFilter> logger)
        {
            _protectionProviderService = protectionProviderService;
            _logger = logger;
        }

        public override void OnResultExecuting(ResultExecutingContext context)
        {
            var model = context.Result switch
            {
                PageResult pageResult => pageResult.Model, // For Razor pages
                ViewResult viewResult => viewResult.Model, // For MVC Views
                ObjectResult objectResult => objectResult.Value, // For Web API results
                _ => null
            };

            if (model is null)
            {
                return;
            }

            if (typeof(IEnumerable).IsAssignableFrom(model.GetType()))
            {
                foreach (var item in model as IEnumerable)
                {
                    encryptProperties(item);
                }
            }
            else
            {
                encryptProperties(model);
            }
        }

        private void encryptProperties(object model)
        {
            var modelType = model.GetType();
            if (_modelsWithEncryptedFieldAttributes.TryGetValue(modelType, out var hasEncryptedFieldAttribute)
                && !hasEncryptedFieldAttribute)
            {
                return;
            }

            foreach (var property in modelType.GetProperties())
            {
                var attribute = property.GetCustomAttributes(typeof(EncryptedFieldAttribute), false).FirstOrDefault();
                if (attribute == null)
                {
                    continue;
                }

                hasEncryptedFieldAttribute = true;

                var value = property.GetValue(model);
                if (value is null)
                {
                    continue;
                }

                if (value.GetType() != typeof(string))
                {
                    _logger.LogWarning($"[EncryptedField] should be applied to `string` proprties, But type of `{property.DeclaringType}.{property.Name}` is `{property.PropertyType}`.");
                    continue;
                }

                var encryptedData = _protectionProviderService.Encrypt(value.ToString());
                property.SetValue(model, encryptedData);
            }

            _modelsWithEncryptedFieldAttributes.TryAdd(modelType, hasEncryptedFieldAttribute);
        }
    }
}
توضیحات:
- در اینجا برای رمزنگاری از IProtectionProviderService استفاده شده‌است که در بسته‌ی DNTCommon.Web.Core تعریف شده‌است. این سرویس در پشت صحنه از سیستم Data Protection استفاده می‌کند.
- سپس رخ‌داد OnResultExecuting، بازنویسی شده‌است تا بتوان به مدل ارسالی به سمت کلاینت، پیش از ارسال نهایی آن، دسترسی یافت.
- context.Result می‌تواند از نوع PageResult صفحات Razor باشد و یا از نوع ViewResult مدل‌های متداول Viewهای پروژه‌های MVC و یا از نوع ObjectResult که مرتبط است به پروژه‌های Web Api بدون هیچ نوع View سمت سروری. هر کدام از این نوع‌ها، دارای خاصیت مدل هستند که در اینجا قصد بررسی آن‌را داریم.
- پس از مشخص شدن شیء Model، اکنون حلقه‌ای را بر روی خواص آن تشکیل داده و خواصی را که دارای ویژگی EncryptedFieldAttribute هستند، یافته و آن‌ها را رمزنگاری می‌کنیم.

روش اعمال این فیلتر باید به صورت سراسری باشد:
namespace EncryptedModelBinder
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddDNTCommonWeb();
            services.AddControllersWithViews(options =>
            {
                options.Filters.Add(typeof(EncryptedFieldResultFilter));
            });
        }
از این پس مدل‌های تمام خروجی‌های ارسالی به سمت کلاینت، بررسی شده و در صورت لزوم، خواص آن‌ها رمزنگاری می‌شود.


رمزگشایی خودکار مدل دریافتی از سمت کلاینت

تا اینجا موفق شدیم خواص ویژه‌ای از مدل‌ها را رمزنگاری کنیم. مرحله‌ی بعد، رمزگشایی خودکار این اطلاعات در سمت سرور است. به همین جهت نیاز داریم تا در سیستم Model Binding پیش‌فرض ASP.NET Core مداخله کرده و منطق سفارشی خود را تزریق کنیم. بنابراین در ابتدا یک IModelBinderProvider سفارشی را تهیه می‌کنیم تا در صورتیکه خاصیت جاری در حال بررسی توسط سیستم Model Binding دارای ویژگی EncryptedFieldAttribute بود، از EncryptedFieldModelBinder برای پردازش آن استفاده کند:
namespace EncryptedModelBinder.Utils
{
    public class EncryptedFieldModelBinderProvider : IModelBinderProvider
    {
        public IModelBinder GetBinder(ModelBinderProviderContext context)
        {
            if (context == null)
            {
                throw new ArgumentNullException(nameof(context));
            }

            if (context.Metadata.IsComplexType)
            {
                return null;
            }

            var propName = context.Metadata.PropertyName;
            if (string.IsNullOrWhiteSpace(propName))
            {
                return null;
            }

            var propInfo = context.Metadata.ContainerType.GetProperty(propName);
            if (propInfo == null)
            {
                return null;
            }

            var attribute = propInfo.GetCustomAttributes(typeof(EncryptedFieldAttribute), false).FirstOrDefault();
            if (attribute == null)
            {
                return null;
            }

            return new BinderTypeModelBinder(typeof(EncryptedFieldModelBinder));
        }
    }
}
که این EncryptedFieldModelBinder به صورت زیر تعریف می‌شود:
namespace EncryptedModelBinder.Utils
{
    public class EncryptedFieldModelBinder : IModelBinder
    {
        private readonly IProtectionProviderService _protectionProviderService;

        public EncryptedFieldModelBinder(IProtectionProviderService protectionProviderService)
        {
            _protectionProviderService = protectionProviderService;
        }

        public Task BindModelAsync(ModelBindingContext bindingContext)
        {
            if (bindingContext == null)
            {
                throw new ArgumentNullException(nameof(bindingContext));
            }

            var logger = bindingContext.HttpContext.RequestServices.GetRequiredService<ILoggerFactory>();
            var fallbackBinder = new SimpleTypeModelBinder(bindingContext.ModelType, logger);
            var valueProviderResult = bindingContext.ValueProvider.GetValue(bindingContext.ModelName);
            if (valueProviderResult == ValueProviderResult.None)
            {
                return fallbackBinder.BindModelAsync(bindingContext);
            }

            bindingContext.ModelState.SetModelValue(bindingContext.ModelName, valueProviderResult);

            var valueAsString = valueProviderResult.FirstValue;
            if (string.IsNullOrWhiteSpace(valueAsString))
            {
                return fallbackBinder.BindModelAsync(bindingContext);
            }

            var decryptedResult = _protectionProviderService.Decrypt(valueAsString);
            bindingContext.Result = ModelBindingResult.Success(decryptedResult);
            return Task.CompletedTask;
        }
    }
}
در اینجا مقدار ارسالی به سمت سرور به صورت یک رشته دریافت شده و سپس رمزگشایی می‌شود و بجای مقدار فعلی خاصیت، مورد استفاده قرار می‌گیرد. به این ترتیب دیگر نیازی به تغییر کدهای اکشن متدها برای رمزگشایی اطلاعات نیست.

پس از این تعاریف نیاز است EncryptedFieldModelBinderProvider را به صورت زیر به سیستم معرفی کرد:
namespace EncryptedModelBinder
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddDNTCommonWeb();
            services.AddControllersWithViews(options =>
            {
                options.ModelBinderProviders.Insert(0, new EncryptedFieldModelBinderProvider());
                options.Filters.Add(typeof(EncryptedFieldResultFilter));
            });
        }


یک مثال

فرض کنید مدل‌های زیر تعریف شده‌اند:
namespace EncryptedModelBinder.Models
{
    public class ProductInputModel
    {
        [EncryptedField]
        public string Id { get; set; }

        [EncryptedField]
        public int Price { get; set; }

        public string Name { get; set; }
    }
}

namespace EncryptedModelBinder.Models
{
    public class ProductViewModel
    {
        [EncryptedField]
        public string Id { get; set; }

        [EncryptedField]
        public int Price { get; set; }

        public string Name { get; set; }
    }
}
که بعضی از خواص آن‌ها با ویژگی EncryptedField مزین شده‌اند.
اکنون کنترلر زیر زمانیکه رندر شود، View متناظر با اکشن متد Index آن، یکسری لینک را به اکشن متد Details، جهت مشاهده‌ی جزئیات محصول، تولید می‌کند. همچنین اکشن متد Products آن هم فقط یک خروجی JSON را به همراه دارد:
namespace EncryptedModelBinder.Controllers
{
    public class HomeController : Controller
    {
        public IActionResult Index()
        {
            var model = getProducts();
            return View(model);
        }

        public ActionResult<string> Details(ProductInputModel model)
        {
            return model.Id;
        }

        public ActionResult<List<ProductViewModel>> Products()
        {
            return getProducts();
        }

        private static List<ProductViewModel> getProducts()
        {
            return new List<ProductViewModel>
            {
                new ProductViewModel { Id = "1", Name = "Product 1"},
                new ProductViewModel { Id = "2", Name = "Product 2"},
                new ProductViewModel { Id = "3", Name = "Product 3"}
            };
        }
    }
}
کدهای View اکشن متد Index به صورت زیر است:
@model List<ProductViewModel>

<h3>Home</h3>

<ul>
    @foreach (var item in Model)
    {
        <li><a asp-action="Details" asp-route-id="@item.Id">@item.Name</a></li>
    }
</ul>
در ادامه اگر برنامه را اجرا کنیم، می‌توان مشاهده کرد که تمام asp-route-id‌ها که به خاصیت ویژه‌ی Id اشاره می‌کنند، به صورت خودکار رمزنگاری شده‌اند:


و اگر یکی از لینک‌ها را درخواست کنیم، خروجی model.Id، به صورت معمولی و رمزگشایی شده‌ای مشاهده می‌شود (این خروجی یک رشته‌است که هیچ ویژگی خاصی به آن اعمال نشده‌است. به همین جهت، اینبار این خروجی معمولی مشاهده می‌شود). هدف از اکشن متد Details، نمایش رمزگشایی خودکار اطلاعات است.


و یا اگر اکشن متدی که همانند اکشن متدهای Web API، فقط یک شیء JSON را باز می‌گرداند، فراخوانی کنیم نیز می‌توان به خروجی رمزنگاری شده‌ی زیر رسید:



کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: EncryptedModelBinder.zip
مطالب
EF Code First #2

در قسمت قبل با تنظیمات و قراردادهای ابتدایی EF Code first آشنا شدیم، هرچند این تنظیمات حجم کدنویسی ابتدایی راه اندازی سیستم را به شدت کاهش می‌دهند، اما کافی نیستند. در این قسمت نگاهی سطحی و مقدماتی خواهیم داشت بر امکانات مهیا جهت تنظیم ویژگی‌های مدل‌های برنامه در EF Code first.

تنظیمات EF Code first توسط اعمال متادیتای خواص

اغلب متادیتای مورد نیاز جهت اعمال تنظیمات EF Code first در اسمبلی System.ComponentModel.DataAnnotations.dll قرار دارند. بنابراین اگر مدل‌های خود را در اسمبلی و پروژه class library جداگانه‌ای تعریف و نگهداری می‌کنید (مثلا به نام DomainClasses)، نیاز است ابتدا ارجاعی را به این اسمبلی به پروژه جاری اضافه نمائیم. همچنین تعدادی دیگر از متادیتای قابل استفاده در خود اسمبلی EntityFramework.dll قرار دارند. بنابراین در صورت نیاز باید ارجاعی را به این اسمبلی نیز اضافه نمود.
همان مثال قبل را در اینجا ادامه می‌دهیم. دو کلاس Blog و Post در آن تعریف شده (به این نوع کلاس‌ها POCO – the Plain Old CLR Objects نیز گفته می‌شود)، به همراه کلاس Context که از کلاس DbContext مشتق شده است. ابتدا دیتابیس قبلی را دستی drop کنید. سپس در کلاس Blog، خاصیت public int Id را مثلا به public int MyTableKey تغییر دهید و پروژه را اجرا کنید. برنامه بلافاصله با خطای زیر متوقف می‌شود:

One or more validation errors were detected during model generation:
\tSystem.Data.Entity.Edm.EdmEntityType: : EntityType 'Blog' has no key defined.

زیرا EF Code first در این کلاس خاصیتی به نام Id یا BlogId را نیافته‌است و امکان تشکیل Primary key جدول را ندارد. برای رفع این مشکل تنها کافی است ویژگی Key را به این خاصیت اعمال کنیم:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace EF_Sample01.Models
{
public class Blog
{
[Key]
public int MyTableKey { set; get; }

همچنین تعدادی ویژگی دیگر مانند MaxLength و Required را نیز می‌توان بر روی خواص کلاس اعمال کرد:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace EF_Sample01.Models
{
public class Blog
{
[Key]
public int MyTableKey { set; get; }

[MaxLength(100)]
public string Title { set; get; }

[Required]
public string AuthorName { set; get; }

public IList<Post> Posts { set; get; }
}
}

این ویژگی‌ها دو مقصود مهم را برآورده می‌سازند:
الف) بر روی ساختار بانک اطلاعاتی تشکیل شده تاثیر دارند:

CREATE TABLE [dbo].[Blogs](
[MyTableKey] [int] IDENTITY(1,1) NOT NULL,
[Title] [nvarchar](100) NULL,
[AuthorName] [nvarchar](max) NOT NULL,
CONSTRAINT [PK_Blogs] PRIMARY KEY CLUSTERED
(
[MyTableKey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

همانطور که ملاحظه می‌کنید در اینجا طول فیلد Title به 100 تنظیم شده است و همچنین فیلد AuthorName اینبار NOT NULL است. به علاوه primary key نیز بر اساس ویژگی Key اعمالی تعیین شده است.
البته برای اجرای کدهای تغییر کرده مدل، فعلا بانک اطلاعاتی قبلی را دستی می‌توان حذف کرد تا بتوان به ساختار جدید رسید. در مورد جزئیات مبحث DB Migration در قسمت‌های بعدی مفصلا بحث خواهد شد.

ب) اعتبار سنجی اطلاعات پیش از ارسال کوئری به بانک اطلاعاتی
برای مثال اگر در حین تعریف وهله‌ای از کلاس Blog، خاصیت AuthorName مقدار دهی نگردد، پیش از اینکه رفت و برگشتی به بانک اطلاعاتی صورت گیرد، یک validation error را دریافت خواهیم کرد. یا برای مثال اگر طول اطلاعات خاصیت Title بیش از 100 حرف باشد نیز مجددا در حین ثبت اطلاعات، یک استثنای اعتبار سنجی را مشاهده خواهیم کرد. البته امکان تعریف پیغام‌های خطای سفارشی نیز وجود دارد. برای این حالت تنها کافی است پارامتر ErrorMessage این ویژگی‌ها را مقدار دهی کرد. برای مثال:
[Required(ErrorMessage = "لطفا نام نویسنده را مشخص نمائید")]
public string AuthorName { set; get; }

نکته‌ی مهمی که در اینجا وجود دارد، وجود یک اکوسیستم هماهنگ و سازگار است. این نوع اعتبار سنجی هم با EF Code first هماهنگ است و هم برای مثال در ASP.NET MVC به صورت خودکار جهت اعتبار سنجی سمت سرور و کلاینت یک مدل می‌تواند مورد استفاده قرار گیرد و مفاهیم و روش‌های مورد استفاده در آن نیز یکی است.


تنظیمات EF Code first به کمک Fluent API

اگر علاقمند به استفاده از متادیتا، جهت تعریف قیود و ویژگی‌های خواص کلاس‌های مدل خود نیستید، روش دیگری نیز در EF Code first به نام Fluent API تدارک دیده شده است. در اینجا امکان تعریف همان ویژگی‌ها توسط کدنویسی نیز وجود دارد، به علاوه اعمال قیود دیگری که توسط متادیتای مهیا قابل تعریف نیستند.
محل تعریف این قیود، کلاس Context که از کلاس DbContext مشتق شده است، می‌باشد و در اینجا، کار با تحریف متد OnModelCreating شروع می‌شود:

using System.Data.Entity;
using EF_Sample01.Models;

namespace EF_Sample01
{
public class Context : DbContext
{
public DbSet<Blog> Blogs { set; get; }
public DbSet<Post> Posts { set; get; }

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
modelBuilder.Entity<Blog>().HasKey(x => x.MyTableKey);
modelBuilder.Entity<Blog>().Property(x => x.Title).HasMaxLength(100);
modelBuilder.Entity<Blog>().Property(x => x.AuthorName).IsRequired();

base.OnModelCreating(modelBuilder);
}
}
}

به کمک پارامتر modelBuilder، امکان دسترسی به متدهای تنظیم کننده ویژگی‌های خواص یک مدل یا موجودیت وجود دارد. در اینجا چون می‌توان متدها را به صورت یک زنجیره به هم متصل کرد و همچنین حاصل نهایی شبیه به جمله بندی انگلیسی است، به آن Fluent API یا API روان نیز گفته می‌شود.
البته در این حالت امکان تعریف ErrorMessage وجود ندارد و برای این منظور باید از همان data annotations استفاده کرد.


نحوه مدیریت صحیح تعاریف نگاشت‌ها به کمک Fluent API

OnModelCreating محل مناسبی جهت تعریف حجم انبوهی از تنظیمات کلاس‌های مختلف مدل‌های برنامه نیست. در حد سه چهار سطر مشکلی ندارد اما اگر بیشتر شد بهتر است از روش زیر استفاده شود:

using System.Data.Entity;
using EF_Sample01.Models;
using System.Data.Entity.ModelConfiguration;

namespace EF_Sample01
{
public class BlogConfig : EntityTypeConfiguration<Blog>
{
public BlogConfig()
{
this.Property(x => x.Id).HasColumnName("MyTableKey");
this.Property(x => x.RowVersion).HasColumnType("Timestamp");
}
}


با ارث بری از کلاس EntityTypeConfiguration،‌ می‌توان به ازای هر کلاس مدل، تنظیمات را جداگانه انجام داد. به این ترتیب اصل SRP یا Single responsibility principle نقض نخواهد شد. سپس برای استفاده از این کلاس‌های Config تک مسئولیتی به نحو زیر می‌توان اقدام کرد:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
modelBuilder.Configurations.Add(new BlogConfig());




نحوه تنظیمات ابتدایی نگاشت کلاس‌ها به بانک اطلاعاتی در EF Code first

الزامی ندارد که EF Code first حتما با یک بانک اطلاعاتی از نو تهیه شده بر اساس پیش فرض‌های آن کار کند. در اینجا می‌توان از بانک‌های اطلاعاتی موجود نیز استفاده کرد. اما در این حالت نیاز خواهد بود تا مثلا نام جدولی خاص با کلاسی مفروض در برنامه، یا نام فیلدی خاص که مطابق استانداردهای نامگذاری خواص در سی شارپ تعریف نشده، با خاصیتی در یک کلاس تطابق داده شوند. برای مثال اینبار تعاریف کلاس Blog را به نحو زیر تغییر دهید:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace EF_Sample01.Models
{
[Table("tblBlogs")]
public class Blog
{
[Column("MyTableKey")]
public int Id { set; get; }

[MaxLength(100)]
public string Title { set; get; }

[Required(ErrorMessage = "لطفا نام نویسنده را مشخص نمائید")]
public string AuthorName { set; get; }

public IList<Post> Posts { set; get; }

[Timestamp]
public byte[] RowVersion { set; get; }
}
}

در اینجا فرض بر این است که نام جدول متناظر با کلاس Blog در بانک اطلاعاتی مثلا tblBlogs است و نام خاصیت Id در بانک اطلاعاتی مساوی فیلدی است به نام MyTableKey. چون نام خاصیت را مجددا به Id تغییر داده‌ایم، دیگر ضرورتی به ذکر ویژگی Key وجود نداشته است. برای تعریف این دو از ویژگی‌های Table و Column جهت سفارشی سازی نام‌های خواص و کلاس استفاده شده است.
یا اگر در کلاس خود خاصیتی محاسبه شده بر اساس سایر خواص، تعریف شده است و قصد نداریم آن‌را به فیلدی در بانک اطلاعاتی نگاشت کنیم، می‌توان از ویژگی NotMapped برای مزین سازی و تعریف آن کمک گرفت.
به علاوه اگر از نام پیش فرض کلید خارجی تشکیل شده خرسند نیستید می‌توان به کمک ویژگی ForeignKey، نسبت به تعریف مقداری جدید مطابق تعاریف یک بانک اطلاعاتی موجود، اقدام کرد.
همچنین خاصیت دیگری به نام RowVersion در اینجا اضافه شده که با ویژگی TimeStamp مزین گردیده است. از این خاصیت ویژه برای بررسی مسایل همزمانی ثبت اطلاعات در EF استفاده می‌شود. به علاوه بانک اطلاعاتی می‌تواند به صورت خودکار آن‌را در حین ثبت مقدار دهی کند.
تمام این تغییرات را به کمک Fluent API نیز می‌توان انجام داد:

modelBuilder.Entity<Blog>().ToTable("tblBlogs");
modelBuilder.Entity<Blog>().Property(x => x.Id).HasColumnName("MyTableKey");
modelBuilder.Entity<Blog>().Property(x => x.RowVersion).HasColumnType("Timestamp");



تبدیل پروژه‌های قدیمی EF به کلاس‌های EF Code first به صورت خودکار

روش متداول کار با EF از روز اول آن، مهندسی معکوس خودکار اطلاعات یک بانک اطلاعاتی و تبدیل آن به یک فایل EDMX بوده است. هنوز هم می‌توان از این روش در اینجا نیز بهره جست. برای مثال اگر قصد دارید یک پروژه قدیمی را تبدیل به نمونه جدید Code first کنید، یا یک بانک اطلاعاتی موجود را مهندسی معکوس کنید، بر روی پروژه در Solution explorer کلیک راست کرده و گزینه Add|New Item را انتخاب کنید. سپس از صفحه ظاهر شده، ADO.NET Entity data model را انتخاب کرده و در ادامه گزینه «Generate from database» را انتخاب کنید. این روال مرسوم کار با EF Database first است.
پس از اتمام کار به entity data model designer مراجعه کرده و بر روی صفحه کلیک راست نمائید. از منوی ظاهر شده گزینه «Add code generation item» را انتخاب کنید. سپس در صفحه باز شده از لیست قالب‌های موجود، گزینه «ADO.NET DbContext Generator» را انتخاب نمائید. این گزینه به صورت خودکار اطلاعات فایل EDMX قدیمی یا موجود شما را تبدیل به کلاس‌های مدل Code first معادل به همراه کلاس DbContext معرف آن‌ها خواهد کرد.

روش دیگری نیز برای انجام اینکار وجود دارد. نیاز است افزونه‌ی به نام Entity Framework Power Tools را دریافت کنید. پس از نصب، از منوی Entity Framework آن گزینه‌ی «Reverse Engineer Code First» را انتخاب نمائید. در اینجا می‌توان مشخصات اتصال به بانک اطلاعاتی را تعریف و سپس نسبت به تولید خودکار کدهای مدل‌ها و DbContext مرتبط اقدام کرد.



استراتژی‌های مقدماتی تشکیل بانک اطلاعاتی در EF Code first

اگر مثال این سری را دنبال کرده باشید، مشاهده کرده‌اید که با اولین بار اجرای برنامه، یک بانک اطلاعاتی پیش فرض نیز تولید خواهد شد. یا اگر تعاریف ویژگی‌های یک فیلد را تغییر دادیم، نیاز است تا بانک اطلاعاتی را دستی drop کرده و اجازه دهیم تا بانک اطلاعاتی جدیدی بر اساس تعاریف جدید مدل‌ها تشکیل شود که ... هیچکدام از این‌ها بهینه نیستند.
در اینجا دو استراتژی مقدماتی را در حین آغاز یک برنامه می‌توان تعریف کرد:

System.Data.Entity.Database.SetInitializer(new DropCreateDatabaseIfModelChanges<Context>());
// or
System.Data.Entity.Database.SetInitializer(new DropCreateDatabaseAlways<Context>());

می‌توان بانک اطلاعاتی را در صورت تغییر اطلاعات یک مدل به صورت خودکار drop کرده و نسبت به ایجاد نمونه‌ای جدید اقدام کرد (DropCreateDatabaseIfModelChanges)؛ یا در حین آزمایش برنامه همیشه (DropCreateDatabaseAlways) با شروع برنامه، ابتدا باید بانک اطلاعاتی drop شده و سپس نمونه جدیدی تولید گردد.
محل فراخوانی این دستور هم باید در نقطه آغازین برنامه، پیش از وهله سازی اولین DbContext باشد. مثلا در برنامه‌های وب در متد Application_Start فایل global.asax.cs یا در برنامه‌های WPF در متد سازنده کلاس App می‌توان بانک اطلاعاتی را آغاز نمود.
البته الزامی به استفاده از کلاس‌های DropCreateDatabaseIfModelChanges یا DropCreateDatabaseAlways وجود ندارد. می‌توان با پیاده سازی اینترفیس IDatabaseInitializer از نوع کلاس Context تعریف شده در برنامه، همان عملیات را شبیه سازی کرد یا سفارشی نمود:

public class MyInitializer : IDatabaseInitializer<Context>
{
public void InitializeDatabase(Context context)
{
if (context.Database.Exists() ||
context.Database.CompatibleWithModel(throwIfNoMetadata: false))
context.Database.Delete();

context.Database.Create();
}
}

سپس برای استفاده از این کلاس در ابتدای برنامه، خواهیم داشت:

System.Data.Entity.Database.SetInitializer(new MyInitializer());


نکته:
اگر از یک بانک اطلاعاتی موجود استفاده می‌کنید (محیط کاری) و نیازی به پیش فرض‌های EF Code first ندارید و همچنین این بانک اطلاعاتی نیز نباید drop شود یا تغییر کند، می‌توانید تمام این پیش فرض‌ها را با دستور زیر غیرفعال کنید:

Database.SetInitializer<Context>(null);

بدیهی است این دستور نیز باید پیش از ایجاد اولین وهله از شیء DbContext فراخوانی شود.


همچنین باید درنظر داشت که در آخرین نگارش‌های پایدار EF Code first، این موارد بهبود یافته‌اند و مبحثی تحت عنوان DB Migration ایجاد شده است تا نیازی نباشد هربار بانک اطلاعاتی drop شود و تمام اطلاعات از دست برود. می‌توان صرفا تغییرات کلاس‌ها را به بانک اطلاعاتی اعمال کرد که به صورت جداگانه، در قسمتی مجزا بررسی خواهد شد. به این ترتیب دیگر نیازی به drop بانک اطلاعاتی نخواهد بود. به صورت پیش فرض در صورت از دست رفتن اطلاعات یک استثناء را سبب خواهد شد (که توسط برنامه نویس قابل تنظیم است) و در حالت خودکار یا دستی با تنظیمات ویژه قابل اعمال است.



تنظیم استراتژی‌های آغاز بانک اطلاعاتی در فایل کانفیگ برنامه

الزامی ندارد که حتما متد Database.SetInitializer را دستی فراخوانی کنیم. با اندکی تنظیم فایل‌های app.config و یا web.config نیز می‌توان نوع استراتژی مورد استفاده را تعیین کرد:

<appSettings>
<add key="DatabaseInitializerForType MyNamespace.MyDbContextClass, MyAssembly"
value="MyNamespace.MyInitializerClass, MyAssembly" />
</appSettings>

<appSettings>
<add key="DatabaseInitializerForType MyNamespace.MyDbContextClass, MyAssembly"
value="Disabled" />
</appSettings>

یکی از دو حالت فوق باید در قسمت appSettings فایل کانفیگ برنامه تنظیم شود. حالت دوم برای غیرفعال کردن پروسه آغاز بانک اطلاعاتی و اعمال تغییرات به آن، بکار می‌رود.
برای نمونه در مثال جاری، جهت استفاده از کلاس MyInitializer فوق، می‌توان از تنظیم زیر نیز استفاده کرد:

<appSettings>
<add key="DatabaseInitializerForType EF_Sample01.Context, EF_Sample01"
value="EF_Sample01.MyInitializer, EF_Sample01" />
</appSettings>



اجرای کدهای ویژه در حین تشکیل یک بانک اطلاعاتی جدید

امکان سفارشی سازی این آغاز کننده‌های پیش فرض نیز وجود دارد. برای مثال:

public class MyCustomInitializer : DropCreateDatabaseIfModelChanges<Context>
{
protected override void Seed(Context context)
{
context.Blogs.Add(new Blog { AuthorName = "Vahid", Title = ".NET Tips" });
context.Database.ExecuteSqlCommand("CREATE INDEX IX_title ON tblBlogs (title)");
base.Seed(context);
}
}

در اینجا با ارث بری از کلاس DropCreateDatabaseIfModelChanges یک آغاز کننده سفارشی را تعریف کرده‌ایم. سپس با تحریف متد Seed آن می‌توان در حین آغاز یک بانک اطلاعاتی، تعدادی رکورد پیش فرض را به آن افزود. کار ذخیره سازی نهایی در متد base.Seed انجام می‌شود.
برای استفاده از آن اینبار در حین فراخوانی متد System.Data.Entity.Database.SetInitializer، از کلاس MyCustomInitializer استفاده خواهیم کرد.
و یا توسط متد context.Database.ExecuteSqlCommand می‌توان دستورات SQL را مستقیما در اینجا اجرا کرد. عموما دستوراتی در اینجا مدنظر هستند که توسط ORMها پشتیبانی نمی‌شوند. برای مثال تغییر collation یک ستون یا افزودن یک ایندکس و مواردی از این دست.


سطح دسترسی مورد نیاز جهت فراخوانی متد Database.SetInitializer

استفاده از متدهای آغاز کننده بانک اطلاعاتی نیاز به سطح دسترسی بر روی بانک اطلاعاتی master را در SQL Server دارند (زیرا با انجام کوئری بر روی این بانک اطلاعاتی مشخص می‌شود، آیا بانک اطلاعاتی مورد نظر پیشتر تعریف شده است یا خیر). البته این مورد حین کار با SQL Server CE شاید اهمیتی نداشته باشد. بنابراین اگر کاربری که با آن به بانک اطلاعاتی متصل می‌شویم سطح دسترسی پایینی دارد نیاز است Persist Security Info=True را به رشته اتصالی اضافه کرد. البته این مورد را پس از انجام تغییرات بر روی بانک اطلاعاتی جهت امنیت بیشتر حذف کنید (یا به عبارتی در محیط کاری Persist Security Info=False باید باشد).

Server=(local);Database=yourDatabase;User ID=yourDBUser;Password=yourDBPassword;Trusted_Connection=False;Persist Security Info=True


تعیین Schema و کاربر فراخوان دستورات SQL

در EF Code first به صورت پیش فرض همه چیز بر مبنای کاربری با دسترسی مدیریتی یا dbo schema در اس کیوال سرور تنظیم شده است. اما اگر کاربر خاصی برای کار با دیتابیس تعریف گردد که در هاست‌های اشتراکی بسیار مرسوم است، دیگر از دسترسی مدیریتی dbo خبری نخواهد بود. اینبار نام جداول ما بجای dbo.tableName مثلا someUser.tableName می‌باشند و عدم دقت به این نکته، اجرای برنامه را غیرممکن می‌سازد.
برای تغییر و تعیین صریح کاربر متصل شده به بانک اطلاعاتی اگر از متادیتا استفاده می‌کنید، روش زیر باید بکارگرفته شود:

[Table("tblBlogs", Schema="someUser")]    
public class Blog

و یا در حالت بکارگیری Fluent API به نحو زیر قابل تنظیم است:

modelBuilder.Entity<Blog>().ToTable("tblBlogs", schemaName:"someUser");






بازخوردهای دوره
Lazy loading در تزریق وابستگی‌ها به کمک StructureMap
- بله. چون در تعریف قبلی آن، متد Set در کلاس پایه DbContext از قبل موجود بود و پیاده سازی شده بود. به همین جهت نیازی به پیاده سازی مجدد آن نبود. بدیهی است هر تعریف جدید دیگری را که اضافه کنید، خودتان هم باید مطابق معمول روال کار با اینترفیس‌ها، پیاده سازی آن‌را به کلاس Context خودتان اضافه کنید.
- ضمنا در اینجا Lazy تعریف کردن یک Set غیرضروری است. این Set فقط به یک جدول از بانک اطلاعاتی اشاره می‌کند و جزئی از کوئری LINQ نوشته شده خواهد بود. اگر قرار است چیزی را Lazy تعریف کنید، Lazy<IUnitOfWork> uow در سازنده‌ی یک کلاس خواهد بود. کل شیء و نه یک خاصیت از آن. زمانیکه Uow وهله سازی می‌شود، تمام Setهای آن در دسترس هستند و Lazy تعریف کردن آن‌ها در اینجا فایده‌ای ندارد.
- همچنین EF برای Setها مباحث Lazy loading خاص خودش را دارد و از این بحث جدا است.
مطالب
درخت‌ها و گراف‌ها قسمت سوم
همانطور که در قسمت قبلی گفتیم، در این قسمت قرار است به پیاده سازی درخت جست و جوی دو دویی مرتب شده بپردازیم. در مطلب قبلی اشاره کردیم که ما متدهای افزودن، جستجو و حذف را قرار است به درخت اضافه کنیم و برای هر یک از این متدها توضیحاتی را ارائه خواهیم کرد. به این نکته دقت داشته باشید درختی که قصد پیاده سازی آن را داریم یک درخت متوازن نیست و ممکن است در بعضی شرایط کارآیی مطلوبی نداشته باشد.
همانند مثال‌ها و پیاده سازی‌های قبلی، دو کلاس داریم که یکی برای ساختار گره است <BinaryTreeNode<T و دیگری برای ساختار درخت اصلی <BinaryTree<T.
کلاس BinaryTreeNode که در پایین نوشته شده‌است بعدا داخل کلاس BinaryTree قرار خواهد گرفت:
internal class BinaryTreeNode<T> :
    IComparable<BinaryTreeNode<T>> where T : IComparable<T>
{
    // مقدار گره
    internal T value;
 
    // شامل گره پدر
    internal BinaryTreeNode<T> parent;
 
    // شامل گره سمت چپ
    internal BinaryTreeNode<T> leftChild;
 
    // شامل گره سمت راست
    internal BinaryTreeNode<T> rightChild;
 
    /// <summary>سازنده</summary>
    /// <param name="value">مقدار گره ریشه</param>
    public BinaryTreeNode(T value)
    {
        if (value == null)
        {
            // از آن جا که نال قابل مقایسه نیست اجازه افزودن را از آن سلب می‌کنیم
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
 
        this.value = value;
        this.parent = null;
        this.leftChild = null;
        this.rightChild = null;
    }
 
    public override string ToString()
    {
        return this.value.ToString();
    }
 
    public override int GetHashCode()
    {
        return this.value.GetHashCode();
    }
 
    public override bool Equals(object obj)
    {
        BinaryTreeNode<T> other = (BinaryTreeNode<T>)obj;
        return this.CompareTo(other) == 0;
    }
 
    public int CompareTo(BinaryTreeNode<T> other)
    {
        return this.value.CompareTo(other.value);
    }
}
تکلیف کدهای اولیه که کامنت دارند روشن است و قبلا چندین بار بررسی کردیم ولی کدها و متدهای جدیدتری نیز نوشته شده‌اند که آن‌ها را بررسی می‌کنیم:
ما در مورد این درخت می‌گوییم که همه چیز آن مرتب شده است و گره‌ها به ترتیب چیده شده اند و اینکار تنها با مقایسه کردن گره‌های درخت امکان پذیر است. این مقایسه برای برنامه نویسان از طریق یک ذخیره در یک ساختمان داده خاص یا اینکه آن را به یک نوع Type قابل مقایسه ارسال کنند امکان پذیر است. در سی شارپ نوع قابل مقایسه با کلمه‌های کلیدی زیر امکان پذیر است:
T : IComparable<T>
در اینجا T می‌تواند هر نوع داده‌ای مانند Byte و int و ... باشد؛ ولی علامت : این محدودیت را اعمال می‌کند که کلاس باید از اینترفیس IComparable ارث بری کرده باشد. این اینترفیس برای پیاده‌سازی تنها شامل تعریف یک متد است به نام (CompareTo(T obj که عمل مقایسه داخل آن انجام می‌گردد و در صورت بزرگ بودن شیء جاری از آرگومان داده شده، نتیجه‌ی برگردانده شده، مقداری مثبت، در حالت برابر بودن، مقدار 0 و کوچکتر بودن مقدارمنفی خواهد بود. شکل تعریف این اینترفیس تقریبا چنین چیزی باید باشد:
public interface IComparable<T>
{
    int CompareTo(T other);
}
نوشتن عبارت بالا در جلوی کلاس، به ما این اطمینان را می‌بخشد که که نوع یا کلاسی که به آن پاس می‌شود، یک نوع قابل مقایسه است و از طرف دیگر چون می‌خواهیم گره‌هایمان نوعی قابل مقایسه باشند <IComparable<T را هم برای آن ارث بری می‌کنیم.
همچنین چند متد دیگر را نیز override کرده‌ایم که اصلی‌ترین آن‌ها GetHashCode و Equal است. موقعی که متد CompareTo مقدار 0 بر می‌گرداند مقدار برگشتی Equals هم باید True باشد.
... و یک نکته مفید برای خاطرسپاری اینکه موقعیکه دو شیء با یکدیگر برابر باشند، کد هش تولید شده آن‌ها نیز با هم برابر هستند. به عبارتی اشیاء یکسان کد هش یکسانی دارند. این رفتار سبب می‌شود که که بتوانید مشکلات زیادی را که در رابطه با مقایسه کردن پیش می‌آید، حل نمایید. 

پیاده سازی کلاس اصلی BinarySearchTree
مهمترین نکته در کلاس زیر این مورد است که ما اصرار داشتیم، T باید از اینترفیس IComparable مشتق شده باشد. بر این حسب ما می‌توانیم با نوع داده‌هایی چون int یا string کار کنیم، چون قابل مقایسه هستند ولی نمی‌توانیم با  []int یا streamreader کار کنیم چرا که قابل مقایسه نیستند.
public class BinarySearchTree<T>    where T : IComparable<T>
{
    /// کلاسی که بالا تعریف کردیم
    internal class BinaryTreeNode<T> :
        IComparable<BinaryTreeNode<T>> where T : IComparable<T>
    {
        // …
    }
 
    /// <summary>
    /// ریشه درخت
    /// </summary>
    private BinaryTreeNode<T> root;
 
    /// <summary>
    /// سازنده کلاس
    /// </summary>
    public BinarySearchTree()
    {
        this.root = null;
    }
 
//پیاده سازی متدها مربوط به افزودن و حذف و جست و جو
}
در کد بالا ما کلاس اطلاعات گره را به کلاس اضافه می‌کنیم و یه سازنده و یک سری خصوصیت رابه آن اضافه کرده ایم.در این مرحله گام به گام هر یک از سه متد افزودن ، جست و جو و حذف را بررسی می‌کنیم و جزئیات آن را توضیح می‌دهیم.

افزودن یک عنصر جدید
افزودن یک عنصر جدید در این درخت مرتب شده، مشابه درخت‌های قبلی نیست و این افزودن باید طوری باشد که مرتب بودن درخت حفظ گردد. در این الگوریتم برای اضافه شدن عنصری جدید، دستور العمل چنین است: اگر درخت خالی بود عنصر را به عنوان ریشه اضافه کن؛ در غیر این صورت مراحل زیر را نجام بده:
  • اگر عنصر جدید کوچکتر از ریشه است، با یک تابع بازگشتی عنصر جدید را به زیر درخت چپ اضافه کن.
  • اگر عنصر جدید بزرگتر از ریشه است، با یک تابع بازگشتی عنصر جدید را به زیر درخت راست اضافه کن.
  • اگر عنصر جدید برابر ریشه هست، هیچ کاری نکن و خارج شو.

پیاده سازی الگوریتم بالا در کلاس اصلی:
public void Insert(T value)
{
    this.root = Insert(value, null, root);
}
 
/// <summary>
/// متدی برای افزودن عنصر به درخت
/// </summary>
/// <param name="value">مقدار جدید</param>
/// <param name="parentNode">والد گره جدید</param>
/// <param name="node">گره فعلی که همان ریشه است</param>
/// <returns>گره افزوده شده</returns>
private BinaryTreeNode<T> Insert(T value,
        BinaryTreeNode<T> parentNode, BinaryTreeNode<T> node)
{
    if (node == null)
    {
        node = new BinaryTreeNode<T>(value);
        node.parent = parentNode;
    }
    else
    {
        int compareTo = value.CompareTo(node.value);
        if (compareTo < 0)
        {
            node.leftChild =
                Insert(value, node, node.leftChild);
        }
        else if (compareTo > 0)
        {
            node.rightChild =
                Insert(value, node, node.rightChild);
        }
    }
 
    return node;
}
متد درج سه آرگومان دارد، یکی مقدار گره جدید است؛ دوم گره والد که با هر بار صدا زدن تابع بازگشتی، گره والد تغییر خواهد کرد و به گره‌های پایین‌تر خواهد رسید و سوم گره فعلی که با هر بار پاس شدن به تابع بازگشتی، گره ریشه‌ی آن زیر درخت است.
در مقاله قبلی اگر به یاد داشته باشید گفتیم که جستجو چگونه انجام می‌شود و برای نمونه به دنبال یک عنصر هم گشتیم و جستجوی یک عنصر در این درخت بسیار آسان است. ما این کد را بدون تابع بازگشتی و تنها با یک حلقه while پیاده خواهیم کرد. هر چند مشکلی با پیاده سازی آن به صورت بازگشتی وجود ندارد.
الگوریتم از ریشه بدین صورت آغاز می‌گردد و به ترتیب انجام می‌شود:
  • اگر عنصر جدید برابر با گره فعلی باشد، همان گره را بازگشت بده.
  • اگر عنصر جدید کوچکتر از گره فعلی است، گره سمت چپ را بردار و عملیات را از ابتدا آغاز کن (در کد زیر به ابتدای حلقه برو).
  • اگر عنصر جدید بزرگتر از گره فعلی است، گره سمت راست را بردار و عملیات را از ابتدا آغاز  کن.
در انتها اگر الگوریتم، گره را پیدا کند، گره پیدا شده را باز می‌گرداند؛ ولی اگر گره را پیدا نکند، یا درخت خالی باشد، مقدار برگشتی نال خواهد بود.

حذف یک عنصر
حذف کردن در این درخت نسبت به درخت دودودیی معمولی پیچیده‌تر است. اولین گام این عمل، جستجوی گره مدنظر است. وقتی گره‌ایی را مدنظر داشته باشیم، سه بررسی زیر انجام می‌گیرد:
  • اگر گره برگ هست و والد هیچ گره‌ای نیست، به راحتی گره مد نظر را حذف می‌کنیم و ارتباط گره والد با این گره را نال می‌کنیم.
  • اگر گره تنها یک فرزند دارد (هیچ فرقی نمی‌کند چپ یا راست) گره مدنظر حذف و فرزندش را جایگزینش می‌کنیم.
  • اگر گره دو فرزند دارد، کوچکترین گره در زیر درخت سمت راست را پیدا کرده و با گره مدنظر جابجا می‌کنیم. سپس یکی از دو عملیات بالا را روی گره انجام می‌دهیم.
اجازه دهید عملیات بالا را به طور عملی بررسی کنیم. در درخت زیر ما می‌خواهیم گره 11 را حذف کنیم. پس کوچکترین گره سمت راست، یعنی 13 را پیدا می‌کنیم و با گره 11 جابجا می‌کنیم.

بعد از جابجایی، یکی از دو عملیات اول بالا را روی گره 11 اعمال می‌کنیم و در این حالت گره 11 که یک گره برگ است، خیلی راحت حذف و ارتباطش را با والد، با یک نال جایگزین می‌کنیم.

/// عنصر مورد نظر را جست و جوی می‌کند و اگر مخالف نال بود گره برگشتی را به تابع حذف ارسال می‌کند
public void Remove(T value)
{
    BinaryTreeNode<T> nodeToDelete = Find(value);
    if (nodeToDelete != null)
    {
        Remove(nodeToDelete);
    }
}
 
private void Remove(BinaryTreeNode<T> node)
{
    //بررسی می‌کند که آیا دو فرزند دارد یا خیر
    // این خط باید اول همه باشد که مرحله یک و دو بعد از آن اجرا شود
    if (node.leftChild != null && node.rightChild != null)
    {
        BinaryTreeNode<T> replacement = node.rightChild;
        while (replacement.leftChild != null)
        {
            replacement = replacement.leftChild;
        }
        node.value = replacement.value;
        node = replacement;
    }
 
    // مرحله یک و دو اینجا بررسی میشه
    BinaryTreeNode<T> theChild = node.leftChild != null ?
            node.leftChild : node.rightChild;
 
    // اگر حداقل یک فرزند داشته باشد
    if (theChild != null)
    {
        theChild.parent = node.parent;
 
        // بررسی می‌کند گره ریشه است یا خیر
        if (node.parent == null)
        {
            root = theChild;
        }
        else
        {
            // جایگزینی عنصر با زیر درخت فرزندش
            if (node.parent.leftChild == node)
            {
                node.parent.leftChild = theChild;
            }
            else
            {
                node.parent.rightChild = theChild;
            }
        }
    }
    else
    {
        // کنترل وضعیت موقعی که عنصر ریشه است
        if (node.parent == null)
        {
            root = null;
        }
        else
        {
            // اگر گره برگ است آن را حذف کن
            if (node.parent.leftChild == node)
            {
                node.parent.leftChild = null;
            }
            else
            {
                node.parent.rightChild = null;
            }
        }
    }
}

در کد بالا ابتدا جستجو انجام می‌شود و اگر جواب غیر نال بود، گره برگشتی را به تابع حذف ارسال می‌کنیم. در تابع حذف اول از همه برسی می‌کنیم که آیا گره ما دو فرزند دارد یا خیر که اگر دو فرزنده بود، ابتدا گره‌ها را تعویض و سپس یکی از مراحل یک یا دو را که در بالاتر ذکر کردیم، انجام دهیم.


دو فرزندی

اگر گره ما دو فرزند داشته باشد، گره سمت راست را گرفته و از آن گره آن قدر به سمت چپ حرکت می‌کنیم تا به برگ یا گره تک فرزنده که صد در صد فرزندش سمت راست است، برسیم و سپس این دو گره را با هم تعویض می‌کنیم.


تک فرزندی

در مرحله بعد بررسی می‌کنیم که آیا گره یک فرزند دارد یا خیر؛ شرط بدین صورت است که اگر فرزند چپ داشت آن را در theChild قرار می‌دهیم، در غیر این صورت فرزند راست را قرار می‌دهیم. در خط بعدی باید چک کرد که theChild نال است یا خیر. اگر نال باشد به این معنی است که غیر از فرزند چپ، حتی فرزند راست هم نداشته، پس گره، یک برگ است ولی اگر مخالف نال باشد پس حداقل یک گره داشته است.

اگر نتیجه نال نباشد باید این گره حذف و گره فرزند ارتباطش را با والد گره حذفی برقرار کند. در صورتیکه گره حذفی ریشه باشد و والدی نداشته باشد، این نکته باید رعایت شود که گره فرزند بری متغیر root که در سطح کلاس تعریف شده است، نیز قابل شناسایی باشد.

در صورتی که خود گره ریشه نباشد و والد داشته باشد، غیر از اینکه فرزند باید با والد ارتباط داشته باشد، والد هم باید از طریق دو خاصیت فرزند چپ و راست با فرزند ارتباط برقرار کند. پس ابتدا برسی می‌کنیم که گره حذفی کدامین فرزند بوده: چپ یا راست؟ سپس فرزند گره حذفی در آن خاصیت جایگزین خواهد شد و دیگر هیچ نوع اشاره‌ای به گره حذفی نیست و از درخت حذف شده است.


بدون فرزند (برگ)

حال اگر گره ما برگ باشد مرحله دوم، کد داخل else اجرا خواهد شد و بررسی می‌کند این گره در والد فرزند چپ است یا راست و به این ترتیب با نال کردن آن فرزند در والد ارتباط قطع شده و گره از درخت حذف می‌شود.


پیمایش درخت به روش DFS یا LVR یا In-Order

public void PrintTreeDFS()
{
    PrintTreeDFS(this.root);
    Console.WriteLine();
}
 

private void PrintTreeDFS(BinaryTreeNode<T> node)
{
    if (node != null)
    {
        PrintTreeDFS(node.leftChild);
        Console.Write(node.value + " ");
        PrintTreeDFS(node.rightChild);
    }
}


در مقاله بعدی درخت دودویی متوازن را که پیچیده‌تر از این درخت است و از کارآیی بهتری برخوردار هست، بررسی می‌کنیم.

مطالب
معرفی Reactive extensions
Reactive extensions یا به صورت خلاصه Rx ،کتابخانه‌ی سورس باز تهیه شده‌ای توسط مایکروسافت است که اگر بخواهیم آن‌را به ساده‌ترین شکل ممکن تعریف کنیم، معنای Linq to events را می‌دهد و امکان مدیریت تعامل‌های پیچیده‌ی async را به صورت declaratively فراهم می‌کند. هدف آن بسط فضای نام System.Linq و تبدیل نتایج یک کوئری LINQ به یک مجموعه‌ی Observable است؛ به همراه مدیریت مسایل همزمانی آن.
این افزونه جزو موفق‌ترین کتابخانه‌های دات نتی مایکروسافت در سال‌های اخیر به شما می‌رود؛ تا حدی که معادل‌های بسیاری از آن برای زبان‌های دیگر مانند Java، JavaScript، Python، ‍CPP و غیره نیز تهیه شده‌اند.


استفاده از Rx به همراه یک کوئری LINQ

یک برنامه‌ی کنسول جدید را ایجاد کنید. سپس برای نصب کتابخانه‌ی Rx، دستور ذیل را در کنسول پاورشل نیوگت اجرا نمائید:
 PM> Install-Package Rx-Main
نصب آن از طریق نیوگت، به صورت خودکار کلیه وابستگی‌های مرتبط با آن‌را نیز به پروژه‌ی جاری اضافه می‌کند:
<?xml version="1.0" encoding="utf-8"?>
<packages>
  <package id="Rx-Core" version="2.2.4" targetFramework="net45" />
  <package id="Rx-Interfaces" version="2.2.4" targetFramework="net45" />
  <package id="Rx-Linq" version="2.2.4" targetFramework="net45" />
  <package id="Rx-Main" version="2.2.4" targetFramework="net45" />
  <package id="Rx-PlatformServices" version="2.2.4" targetFramework="net45" />
</packages>
سپس متد Main این برنامه را به نحو ذیل تغییر دهید:
using System;
using System.Linq;

namespace Rx01
{
    class Program
    {
        static void Main(string[] args)
        {
            var query = Enumerable.Range(1, 5).Select(number => number);
            foreach (var number in query)
            {
                Console.WriteLine(number);
            }
            finished();
        }

        private static void finished()
        {
            Console.WriteLine("Done!");
        }
    }
}
در اینجا یک سری عملیات متداول را مشاهده می‌کنید. بازه‌ای از اعداد توسط متد Enumerable.Range ایجاد شده و سپس به کمک یک حلقه‌، تمام آیتم‌های آن نمایش داده می‌شوند. همچنین در پایان کار نیز یک متد دیگر فراخوانی شده‌است.
اکنون اگر بخواهیم همین عملیات را توسط Rx انجام دهیم، به شکل زیر خواهد بود:
using System;
using System.Linq;
using System.Reactive.Linq;

namespace Rx01
{
    class Program
    {
        static void Main(string[] args)
        {
            var query = Enumerable.Range(1, 5).Select(number => number);
            var observableQuery = query.ToObservable();
            observableQuery.Subscribe(onNext: number => Console.WriteLine(number), onCompleted: () => finished());
        }

        private static void finished()
        {
            Console.WriteLine("Done!");
        }
    }
}
ابتدا نیاز است تا کوئری متداول LINQ را تبدیل به نمونه‌ی Observable آن کرد. اینکار را توسط متد الحاقی ToObservable که در فضای نام System.Reactive.Linq تعریف شده‌است، انجام می‌دهیم. به این ترتیب، هر زمانیکه که عددی به query اضافه می‌شود، با استفاده از متد Subscribe می‌توان تغییرات آن‌را تحت کنترل قرار داد. برای مثال در اینجا هربار که عددی در بازه‌ی 1 تا 5 تولید می‌شود، یکبار پارامتر onNext اجرا خواهد شد. برای نمونه در مثال فوق، از نتیجه‌ی آن برای نمایش مقدار دریافتی، استفاده شده‌است. سپس توسط پارامتر اختیاری onCompleted، در پایان کار، یک متد خاص را می‌توان فراخوانی کرد. خروجی برنامه در این حالت نیز به صورت ذیل است:
1
2
3
4
5
Done!
البته اگر قصد خلاصه نویسی داشته باشیم، سطر آخر متد Main، با سطر ذیل یکی است:
 observableQuery.Subscribe(Console.WriteLine, finished);

در این مثال ساده صرفا یک Syntax دیگر را نسبت به حلقه‌ی foreach متداول مشاهده کردیم که اندکی فشرده‌تر است. در هر دو حالت نیز عملیات انجام شده در تردجاری صورت گرفته‌اند. اما قابلیت‌ها و ارزش‌های واقعی Rx زمانی آشکار خواهند شد که پردازش موازی و پردازش در تردهای دیگر را در آن فعال کنیم.


الگوی Observer

Rx پیاده سازی کننده‌ی الگوی طراحی شیءگرایی به نام Observer است. برای توضیح آن یک لامپ و سوئیچ برق را درنظر بگیرید. زمانیکه لامپ مشاهده می‌کند سوئیچ برق در حالت روشن قرار گرفته‌است، روشن خواهد شد و برعکس. در اینجا به سوئیچ، subject و به لامپ، observer گفته می‌شود. هر زمان که حالت سوئیچ تغییر می‌کند، از طریق یک callback، وضعیت خود را به observer اعلام خواهد کرد. علت استفاده از callbackها، ارائه راه‌حل‌های عمومی است تا بتواند با انواع و اقسام اشیاء کار کند. به این ترتیب هر بار که شیء observer از نوع متفاوتی تعریف می‌شود (مثلا بجای لامپ یک خودرو قرار گیرد)، نیازی نخواهد بود تا subject را تغییر داد.
در Rx دو اینترفیس معادل observer و subject تعریف شده‌اند. در اینجا اینترفیس IObserver معادل observer است و اینترفیس IObservable معادل subject می‌باشد:
    class Subject : IObservable<int>
    {
        public IDisposable Subscribe(IObserver<int> observer)
        {
        }
    }
کار متد Subscribe، اتصال به Observer است و برای این حالت نیاز به کلاسی دارد که اینترفیس IObserver را پیاده سازی کند.
    class Observer : IObserver<int>
    {
        public void OnCompleted()
        {
        }

        public void OnError(Exception error)
        {
        }

        public void OnNext(int value)
        {
        }
    }
در اینجا OnCompleted زمانی اجرا می‌شود که پردازش مجموعه‌ای از اعداد int پایان یافته باشد. OnError در زمان وقوع استثنایی اجرا می‌شود و OnNext به ازای هر عدد موجود در مجموعه‌ی در حال پردازش، یکبار اجرا می‌شود. البته نیازی به پیاده سازی صریح این اینترفیس نیست و توسط متد توکار Observer.Create می‌توان به همین نتیجه رسید.
مجموعه‌های Observable کلید کار با Rx هستند. در مثال قبل ملاحظه کردیم که با استفاده از متد الحاقی ToObservable بر روی یک کوئری LINQ و یا هر نوع IEnumerable ایی،  می‌توان یک مجموعه‌ی Observable را ایجاد کرد. خروجی کوئری حاصل از آن به صورت خودکار اینترفیس IObservable را پیاده سازی می‌کند که دارای یک متد به نام Subscribe است.
در متد Subscribe کاری که به صورت خودکار صورت خواهد گرفت، ایجاد یک حلقه‌ی foreach بر روی مجموعه‌ی مورد آنالیز و سپس فراخوانی متد OnNext کلاس پیاده سازی کننده‌ی IObserver به ازای هر آیتم موجود در مجموعه است (فراخوانی observer.OnNext). در پایان کار هم فقط return this در اینجا صورت خواهد گرفت. در حین پردازش حلقه، اگر خطایی رخ دهد، متد observer.OnError انجام می‌شود.

در مثال قبل،کوئری LINQ نوشته شده، خروجی از نوع IObservable ندارد. به کمک متد الحاقی ToObservable:
public static System.IObservable<TSource> ToObservable<TSource>(
    this System.Collections.Generic.IEnumerable<TSource> source,
    System.Reactive.Concurrency.IScheduler scheduler)
به صورت خودکار، IEnumerable حاصل از کوئری LINQ را تبدیل به یک IObservable کرده‌ایم. به این ترتیب اکنون کوئری LINQ ما همانند سوئیچ برق عمل می‌کند و با تغییر آیتم‌های موجود در آن، مشاهده‌گرهایی که به آن متصل شده‌اند (از طریق فراخوانی متد Subscribe)، امکان دریافت سیگنال‌های تغییر وضعیت آن‌را خواهند داشت.
البته استفاده از متد Subscribe به نحوی که در مثال قبل ذکر شد، خلاصه شده‌ی الگوی Observer است. اگر بخواهیم دقیقا مانند الگو عمل کنیم، چنین شکلی را خواهد داشت:
 var query = Enumerable.Range(1, 5).Select(number => number);
var observableQuery = query.ToObservable();
var observer = Observer.Create<int>(onNext: number => Console.WriteLine(number));
observableQuery.Subscribe(observer);
ابتدا توسط متد ToObservable یک IObservable (سوئیچ) را ایجاد کرده‌ایم. سپس توسط کلاس Observer موجود در فضای نام System.Reactive، یک IObserver (لامپ) را ایجاد کرده‌ایم. کار اتصال سوئیچ به لامپ در متد Subscribe انجام می‌شود. اکنون هر زمانیکه تغییری در وضعیت observableQuery حاصل شود، سیگنالی را به observer ارسال می‌کند. در اینجا callbacks کار مدیریت observer را انجام می‌دهند.


پردازش نتایج یک کوئری LINQ در تردی دیگر توسط Rx

برای اجرای نتایج متد Subscribe در یک ترد جدید، می‌توان پارامتر scheduler متد ToObservable را مقدار دهی کرد:
using System;
using System.Linq;
using System.Reactive.Concurrency;
using System.Reactive.Linq;
using System.Threading;

namespace Rx01
{
    class Program
    {
        static void Main(string[] args)
        {
            Console.WriteLine("Thread-Id: {0}", Thread.CurrentThread.ManagedThreadId);
            var query = Enumerable.Range(1, 5).Select(number => number);
            var observableQuery = query.ToObservable(scheduler: NewThreadScheduler.Default);
            observableQuery.Subscribe(onNext: number =>
            {
                Console.WriteLine("number: {0}, on Thread-id: {1}", number, Thread.CurrentThread.ManagedThreadId);
            }, onCompleted: () => finished());
        }

        private static void finished()
        {
            Console.WriteLine("Done!");
        }
    }
}
خروجی این مثال به نحو ذیل است:
 Thread-Id: 1
number: 1, on Thread-id: 3
number: 2, on Thread-id: 3
number: 3, on Thread-id: 3
number: 4, on Thread-id: 3
number: 5, on Thread-id: 3
Done!
پیش از آغاز کار و در متد Main، ترد آی دی ثبت شده مساوی 1 است. سپس هربار که callback متد Subscribe فراخوانی شده‌است، ملاحظه می‌کنید که ترد آی دی آن مساوی عدد 3 است. به این معنا که کلیه نتایج در یک ترد مشخص دیگر پردازش شده‌اند.
NewThreadScheduler.Default در فضای نام System.Reactive.Concurrency واقع شده‌است.


یک نکته
در نگارش‌های آغازین Rx، مقدار scheduler را می‌شد معادل Scheduler.NewThread نیز قرار داد که در نگارش‌های جدید منسوخ شده درنظر گرفته شده و به زودی حذف خواهد شد. معادل‌های جدید آن اکنون NewThreadScheduler.Default، ThreadPoolScheduler.Default و امثال آن هستند.


مدیریت خاتمه‌ی اعمال انجام شده‌ی در تردهای دیگر توسط Rx

یکی از مواردی که حین اجرای نتیجه‌ی callbackهای پردازش شده‌ی در تردهای دیگر نیاز است بدانیم، زمان خاتمه‌ی کار آن‌ها است. برای نمونه در مثال قبل، نمایش Done پس از پایان تمام callbacks انجام شده‌است. فرض کنید، callback پایان عملیات را حذف کرده و متد finished را پس از فراخوانی متد observableQuery.Subscribe قرار دهیم:
observableQuery.Subscribe(onNext: number =>
{
   Console.WriteLine("number: {0}, on Thread-id: {1}", number,     
                              Thread.CurrentThread.ManagedThreadId);
}/*, onCompleted: () => finished()*/);
finished();
اینبار اگر برنامه را اجرا کنیم به خروجی ذیل خواهیم رسید:
 Thread-Id: 1
number: 1, on Thread-id: 3
Done!
number: 2, on Thread-id: 3
number: 3, on Thread-id: 3
number: 4, on Thread-id: 3
number: 5, on Thread-id: 3
این خروجی بدین معنا است که متد  observableQuery.Subscribeدر حین اجرا شدن در تردی دیگر، صبر نخواهد کرد تا عملیات مرتبط با آن خاتمه یابد و سپس سطر بعدی را اجرا کند. بنابراین برای حل این مشکل، تنها کافی است به آن اعلام کنیم که پس از پایان عملیات، onCompleted را اجرا کن.


مدیریت استثناهای رخ داده در حین پردازش مجموعه‌های واکنشگرا

متد Subscribe دارای چندین overload است. تا اینجا نمونه‌ای که دارای پارامترهای onNext و onCompleted بودند را بررسی کردیم. اگر بخواهیم مدیریت استثناءها را نیز در اینجا اضافه کنیم، فقط کافی است از overload دیگر آن که دارای پارامتر onError است، استفاده نمائیم:
observableQuery.Subscribe(
  onNext: number => Console.WriteLine(number),
  onError: exception => Console.WriteLine(exception.Message),
  onCompleted: () => finished());
اگر callback پارامتر onError اجرا شود، دیگر به onCompleted نخواهیم رسید. همچنین دیگر onNext ایی نیز اجرا نخواهد شد.


مدیریت ترد اجرای نتایج حاصل از Rx در یک برنامه‌ی دسکتاپ WPF یا WinForms

تا اینجا مشاهده کردیم که اجرای callbackهای observer در یک ترد دیگر، به سادگی تنظیم پارامتر scheduler متد ToObservable است. اما در برنامه‌های دسکتاپ برای به روز رسانی عناصر رابط کاربری، حتما باید در تردی قرار داشته باشیم که آن رابط کاربری در آن ایجاد شده‌است یا به عبارتی در ترد اصلی برنامه؛ در غیر اینصورت برنامه کرش خواهد کرد. مدیریت این مساله نیز در Rx بسیار ساده‌است. ابتدا نیاز است بسته‌ی Rx-WPF را نصب کرد:
 PM> Install-Package Rx-WPF
سپس توسط متد ObserveOn می‌توان مشخص کرد که نتیجه‌ی عملیات باید بر روی کدام ترد اجرا شود:
 observableQuery.ObserveOn(DispatcherScheduler.Current).Subscribe(...)
روش دیگر آن استفاده از متد ObserveOnDispatcher می‌باشد:
 observableQuery.ObserveOnDispatcher().Subscribe(...)
بنابراین مشخص سازی پارامتر scheduler متد ToObservable، به معنای اجرای query آن در یک ترد دیگر و استفاده از متد ObserveOn، به معنای مشخص سازی ترد اجرای callbackهای مشاهده‌گر است.

و یا اگر از WinForms استفاده می‌کنید، ابتدا بسته‌ی Rx خاص آن‌را نصب کنید:
 PM> Install-Package Rx-WinForms
و سپس ترد اجرای callbackها را SynchronizationContext.Current مشخص نمائید:
 observableQuery.ObserveOn(SynchronizationContext.Current).Subscribe(...)

یک نکته‌
در Rx فرض می‌شود که کوئری شما زمانبر است و callbackهای مشاهده‌گر سریع عمل می‌کنند. بنابراین هدف از callbackهای آن، پردازش‌های سنگین نیست. جهت آزمایش این مساله، اینبار query ابتدایی برنامه را به شکل ذیل تغییر دهید که در آن بازگشت زمانبر یک سری داده شبیه سازی شده‌اند.
 var query = Enumerable.Range(1, 5).Select(number =>
{
   Thread.Sleep(250);
   return number;
});
سپس با استفاده از متد ToObservable، ترد دیگری را برای اجرای واقعی آن مشخص کنید تا در حین اجرای آن برنامه در حالت هنگ به نظر نرسد و سپس نمایش آن‌را به کمک متد ObserveOn، بر روی ترد اصلی برنامه انجام دهید.
نظرات مطالب
اصول طراحی شی گرا SOLID - #بخش سوم اصل LSP
سلام.
خیلی ممنون از بابت مقالات آموزشی خوبتون.
فقط سوالی برای من تو این بخش سوم پیش اومد و اون هم اینکه بعد از تعریف کلاس abstract تعریف کلاس‌های rectangle و square به چه شکل شد؟ لطفا کد اون کلاس‌ها رو هم اضافه کنید.
با تشکر
مطالب
امکان ساده سازی تعاریف اشیاء در C# 9.0 با Target Typing
ویژگی جدید مورد بحث در این قسمت، «Improved Target Typing» نام دارد. اما «Target Typing» چیست؟ حدس زدن نوع یک شیء بر اساس زمینه‌ای که توسط آن تعریف شده‌است، Target Typing نامیده می‌شود. نمونه‌ای از آن‌را سال‌هاست که با استفاده از واژه‌ی کلیدی var در #C استفاده می‌کنید. اما قابلیتی که در C# 9.0 اضافه شده‌است، تقریبا معکوس آن است.


Target Typing در C# 9.0

مشکلی که بعضی‌ها با واژه‌ی کلیدی var دارند، این است که اندکی خوانایی کدها را کاهش می‌دهد و در این حالت بلافاصله مشخص نیست که نوع شیء در حال استفاده چیست. در C# 9.0 برای این دسته از برنامه نویس‌ها راه حل دیگری را پیشنهاد داده‌اند: نوع ابتدایی را مشخص کنید، اما نیازی به ذکر نوع پس از واژه‌ی کلیدی new نیست و همانند var، خود کامپایلر آن‌را حدس خواهد زد! برای توضیح آن دو کلاس ساده‌ی زیر را درنظر بگیرید:
    public class Person
    {
        public string FirstName { get; set; }
    }

    public class PersonWithCtor
    {
        public PersonWithCtor(string firstName)
        {
            this.FirstName = firstName;
        }

        public string FirstName { get; set; }
    }
روش متداول استفاده‌ی از کلاس Person ساده که بدون سازنده‌است، از ابتدایی‌ترین نگارش #C به صورت زیر است:
Person person = new Person();
این روش در C# 3.0 به صورت زیر خلاصه شد:
var person = new Person();
که در این حالت کامپایلر در زمان کامپایل، واژه‌ی کلیدی var را به صورت خودکار به نمونه‌ی قبلی تبدیل کرده و عملیات کامپایل را تکمیل می‌کند. اگر با این روش تعریف متغیرها و اشیاء مشکل دارید و به نظرتان خوانایی آن کاهش یافته، می‌توانید در C# 9.0 به صورت زیر عمل کنید:
Person person = new();
در این حالت ابتدا نوع متغیر و یا شیء ذکر می‌شود. سپس در جائیکه قرار است new صورت گیرد، دیگر نیازی به تکرار آن نیست که به آن «Improved Target Typing» هم گفته می‌شود.


Target Typing و پارامترهای سازنده‌ی کلاس‌ها در C# 9.0

در مثال فوق، کلاس PersonWithCtor به همراه یک سازنده‌ی پارامتردار تعریف شده‌است. در این حالت Target Typing آن به صورت زیر خواهد بود:
Person person = new("User 1");
و یا نمونه‌ای از آن در حین تعریف مقادیر اولیه‌ی Listها است:
var personList = new List<Person>
        {
            new ("User 1"),
            new ("User 2"),
            // ...
        };
و یا حتی در حین تعریف پارامترهای یک متد نیز می‌توان از target typing استفاده کرد و تنها به ذکر new بسنده نمود:
public void Adopt(Person p)
{
    //...
}

public void CallerMethod()
{
    this.Adopt(new Person("User 1"));
    // C# 9.0
    this.Adopt(new("User 1"));
}
نمونه‌ی دیگری از این مثال را در حین مقدار دهی پارامتر دوم متد XmlReader.Create، در اینجا مشاهده می‌کنید:
XmlReader.Create(reader, new XmlReaderSettings() { IgnoreWhitespace = true });
// C# 9.0
XmlReader.Create(reader, new() { IgnoreWhitespace = true });


Target Typing و استفاده از خواص کلاس‌ها در C# 9.0

در همان مثال اول، اگر بخواهیم خاصیت FirstName را مقدار دهی کنیم و همچنین از Target Typing نیز استفاده کنیم ... روش زیر کامپایل نخواهد شد:
Person person = new
{
   FirstName = "User 2"
};
علت اینجا است که شیء‌ای که پس از علامت انتساب قرارگرفته‌است، یک anonymous object است و قابلیت انتساب به نوع Person را ندارد. در این حالت تنها کافی است ذکر () را پس از new، فراموش نکرد؛ تا قطعه کد زیر بدون مشکل کامپایل شود:
Person person = new()
{
   FirstName = "User 2"
};


امکان استفاده‌ی از Target typing با فیلدها در C# 9.0

امکان تعریف var با فیلدهای یک کلاس در زبان #C وجود ندارد. به همین جهت مجبور هستیم یک چنین تعاریف طولانی را در سطح کلاس‌ها داشته باشیم:
private ConcurrentDictionary<string, ObservableList<Cat>> _catsBefore = new ConcurrentDictionary<string, ObservableList<Cat>>();
اما با ارائه‌ی C# 9.0، می‌توان از target typing بر روی فیلدها نیز استفاده کرد و قطعه کد فوق را به صورت زیر خلاصه کرد:
private ConcurrentDictionary<string, ObservableList<Cat>> _cats = new(); // C# 9.0
این نکته در مورد مقدار دهی اولیه‌ی خواص نیز صدق می‌کند:
public ObservableCollection<Friend> Friends { get; } = new();


امکان ترکیب null-coalescing operator با target typing در C# 9.0

null-coalescing operator یا همان ?? به این معنا است که اگر متغیر سمت چپ آن نال نبود، همان مقدار درنظر گرفته شود و اگر نال بود، متغیر سمت راست آن بازگشت داده شود. در این حالت مثال زیر را در نظر بگیرید که در آن سگ و گربه از نوع پایه‌ی حیوان تعریف شده‌اند:
public interface IAnimal
{
}

public class Dog : IAnimal
{
}

public class Cat : IAnimal
{
}
در اینجا می‌خواهیم اگر برای مثال cat نال بود، حاصل عملگر ?? به متغیری از نوع IAnimal قابل انتساب باشد:
Cat cat = null;
Dog dog = new();
IAnimal animal = cat ?? dog;
یک چنین کاری در نگارش‌های پیشین #C مجاز نیست؛ اما در C# 9.0، چون target typeهای تعریف شده، قابل تبدیل به هم هستند، کامپایلر آن‌را بدون مشکل کامپایل می‌کند (البته قرار است در نگارش نهایی آن این امر محقق شود؛ هنوز نه!).


دانستنی‌هایی در مورد Target Typing

- نوشتن ()throw new مجاز است و نوع پیش‌فرض آن، System.Exception در نظر گرفته می‌شود.
- در حالت کار با tuples، نوشتن new اضافی است:
(int a, int b) t = new(1, 2); // "new" is redundant
و همچنین اگر پارامترهای آن ذکر نشوند، با مقدار پیش‌فرض آن نوع جایگزین خواهند شد:
(int a, int b) t = new(); // OK; same as (0, 0)


محدودیت‌های Target Typing در C# 9.0

- امکان نوشتن ()var dog = new وجود ندارد؛ چون نوع سمت راست این انتساب دیگر قابل حدس زدن نیست. نمونه‌ی دیگر آن anonymous type properties است؛ مانند new { Prop = new() } که در آن برای مثال نوع خاصیت Prop قابل حدس زدن نیست.
- target typing با binary operators قابل استفاده نیست.
- به عنوان ref قابل استفاده نیست.
مطالب
Blazor 5x - قسمت یازدهم - مبانی Blazor - بخش 8 - کار با جاوا اسکریپت
در حین کار با برنامه‌های وب، چشم‌پوشی از جاوا اسکریپت عملا ممکن نیست؛ هرچند با Blazor، امکان انجام کارهایی را یافته‌ایم که پیشتر با MVC و یا Razor pages میسر نبودند، اما هیچگاه به تنهایی نمی‌تواند جایگزین کامل جاوا اسکریپت، در تولید برنامه‌های وب باشد. بنابراین ضروری است که نحوه‌ی یکپارچگی جاوا اسکریپت را با برنامه‌های مبتنی بر Blazor، بررسی کنیم.


ایجاد کامپوننت جدید BlazorJS

برای بررسی نحوه‌ی تعامل جاوا اسکریپت و Blazor، در ابتدا کامپوننت جدید Pages\LearnBlazor\BlazorJS.razor را ایجاد کرده:
@page "/BlazorJS"

<h3>BlazorJS</h3>

@code
{
}
و همچنین مدخل منوی آن‌را نیز بر اساس مسیریابی ابتدای فایل این کامپوننت، به فایل Shared\NavMenu.razor اضافه می‌کنیم:
<li class="nav-item px-3">
    <NavLink class="nav-link" href="BlazorJS">
        <span class="oi oi-list-rich" aria-hidden="true"></span> BlazorJS
    </NavLink>
</li>


روش فراخوانی کدهای جاوا اسکریپتی از طریق کدهای سی‌شارپ Blazor

فرض کنید می‌خواهیم در حین کلیک بر روی دکمه‌ای مانند دکمه‌ی حذف، ابتدا تائیدیه‌ای را توسط تابع confirm جاوا اسکریپتی، از کاربر اخذ کنیم. روش انجام چنین کاری در برنامه‌های مبتنی بر Blazor به صورت زیر است:
@page "/BlazorJS"

@inject IJSRuntime JsRuntime

<h3>BlazorJS</h3>

<div class="row">
    <button class="btn btn-secondary" @onclick="TestConfirmBox">Test Confirm Button</button>
</div>
<div class="row">
    @if (ConfirmResult)
    {
        <p>Confirmation has been made!</p>
    }
    else
    {
        <p>Confirmation Pending!</p>
    }
</div>

@code {
    string ConfirmMessage = "Are you sure you want to click?";
    bool ConfirmResult;

    async Task TestConfirmBox()
    {
        ConfirmResult = await JsRuntime.InvokeAsync<bool>("confirm", ConfirmMessage);
    }
}
توضیحات:
- در اینجا می‌خواهیم تابع استاندارد confirm جاوا اسکریپتی را از طریق کدهای سی‌شارپ، با کلیک بر روی دکمه‌ی Test Confirm Button، فراخوانی کنیم. به همین جهت onclick@ این دکمه، به متد TestConfirmBox کدهای UI سی‌شارپ این کامپوننت، متصل شده‌است.
- برای دسترسی به توابع جاوا اسکریپتی، نیاز است سرویس توکار IJSRuntime را به کدهای کامپوننت تزریق کنیم که روش انجام آن‌را توسط دایرکتیو inject@ مشاهده می‌کنید. برای دسترسی به این سرویس توکار، نیاز به تنظیمات ابتدایی خاصی نیست و اینکار پیشتر انجام شده‌است.
- سرویس JsRuntime تزریق شده، دو متد مهم InvokeVoidAsync و InvokeAsync را جهت فراخوانی توابع جاوا اسکریپتی به همراه دارد. اگر تابعی، خروجی غیر void داشته باشد، باید از متد InvokeAsync استفاده کرد. برای مثال خروجی تابع استاندارد confirm، از نوع boolean است. بنابراین نوع این خروجی را به صورت یک آرگومان جنریک متد InvokeAsync مشخص کرده‌ایم.
- اولین پارامتر متد InvokeAsync، نام رشته‌ای تابع جاوا اسکریپتی است که قرار است صدا زده شود. پارامترهای اختیاری بعدی که به صورت params object?[]? args تعریف شده‌اند، لیست نامحدود آرگومان‌های ورودی این متد هستند.
- فیلد ConfirmMessage، پیامی را جهت اخذ تائید، تعریف می‌کند که به عنوان پارامتر متد confirm، توسط JsRuntime.InvokeAsync فراخوانی خواهد شد.
- فیلد ConfirmResult، نتیجه‌ی فراخوانی متد confirm جاوا اسکریپتی را به همراه دارد.
- در اینجا روش عکس العمل نشان دادن به خروجی دریافتی از متد جاوااسکریپتی را نیز مشاهده می‌کنید. پس از پایان متد TestConfirmBox که یک متد رویدادگران است، همانطور که در مطلب بررسی «چرخه‌ی حیات کامپوننت‌ها» نیز بررسی کردیم، متد StateHasChanged، در پشت صحنه فراخوانی می‌شود که سبب رندر مجدد UI خواهد شد. بنابراین در حین رندر مجدد UI، بر اساس مقدار جدید ConfirmResult دریافت شده‌ی از کاربر، با تشکیل یک if/else@، می‌توان به نتیجه‌ی تائید یا عدم تائید کاربر، واکنش نشان داد. با این توضیحات در اولین بار نمایش کامپوننت جاری چون مقدار ConfirmResult مساوی false است، پیام زیر را مشاهده می‌کنیم:


اما در ادامه با کلیک بر روی دکمه و تائید پیام ظاهر شده، عبارت زیر ظاهر می‌شود:



روش افزودن یک کتابخانه‌ی خارجی جاوا اسکریپتی به پروژه‌های Blazor

فرض کنید می‌خواهیم پیام‌های برنامه را توسط کتابخانه‌ی معروف جاوا اسکریپتی Toastr نمایش دهیم؛ با این دمو.
مرحله‌ی اول کار با این کتابخانه، دریافت فایل‌های CSS و JS آن است. برای این منظور قصد داریم از برنامه‌ی مدیریت بسته‌های LibMan استفاده کنیم:
dotnet tool install -g Microsoft.Web.LibraryManager.Cli
libman init
libman install bootstrap --provider unpkg --destination wwwroot/lib/bootstrap
libman install jquery --provider unpkg --destination wwwroot/lib/jquery
libman install toastr --provider unpkg --destination wwwroot/lib/toastr
بنابراین خط فرمان را در ریشه‌ی پروژه گشوده و پنج دستور فوق را اجرا می‌کنیم. دستور اول، ابزار خط فرمان LibMan را نصب می‌کند. دستور دوم، یک فایل libman.json خالی را در این پوشه ایجاد می‌کند و سه دستور بعدی، جی‌کوئری، بوت استرپ و toastr را دریافت و در پوشه‌ی wwwroot/lib قرار می‌دهند. Toastr برای اجرا، نیاز به jQuery نیز دارد.
البته تعاریف مداخل آن‌ها به فایل libman.json نیز اضافه می‌شوند. مزیت آن، اجرای دستور libman restore برای بازیابی و نصب مجدد تمام بسته‌های ذکر شده‌ی در فایل libman.json است.

پس از دریافت بسته‌های سمت کلاینت آن، مداخل مرتبط را به فایل Pages\_Host.cshtml برنامه‌ی Blazor Server اضافه خواهیم کرد (و یا در فایل wwwroot/index.html برنامه‌های Blazor WASM).
<head>
    <base href="~/" />
    <link rel="stylesheet" href="lib/toastr/build/toastr.min.css" />

</head>
<body>
 
    <script src="lib/jquery/dist/jquery.min.js"></script>
    <script src="lib/toastr/build/toastr.min.js"></script>
    <script src="_framework/blazor.server.js"></script>
</body>
مدخل فایل css آن‌را در قسمت head و فایل js آن‌را پیش از بسته شدن تگ body تعریف می‌کنیم. در اینجا نیازی به ذکر پوشه‌ی آغازین wwwroot نیست؛ چون base href تعریف شده، به این پوشه اشاره می‌کند.

یک نکته: می‌توان فایل csproj برنامه را به صورت زیر تغییر داد تا کار اجرای دستور libman restore را قبل از build، به صورت خودکار انجام دهد:
<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>
    <TargetFramework>net5.0</TargetFramework>
  </PropertyGroup>

  <Target Name="DebugEnsureLibManEnv" BeforeTargets="BeforeBuild" Condition=" '$(Configuration)' == 'Debug' ">
    <!-- Ensure libman is installed -->
    <Exec Command="libman --version" ContinueOnError="true">
      <Output TaskParameter="ExitCode" PropertyName="ErrorCode" />
    </Exec>
    <Error Condition="'$(ErrorCode)' != '0'" Text="libman is required to build and run this project. To continue, please run `dotnet tool install -g Microsoft.Web.LibraryManager.Cli`, and then restart your command prompt or IDE." />
    <Message Importance="high" Text="Restoring dependencies using 'libman'. This may take several minutes..." />
    <Exec WorkingDirectory="$(MSBuildProjectDirectory)" Command="libman restore" />
  </Target>
</Project>


روش فراخوانی یک کتابخانه‌ی خارجی جاوا اسکریپتی در پروژه‌های Blazor

پس از افزودن فایل‌های سمت کلاینت toastr و تعریف مداخل آن در فایل Pages\_Host.cshtml برنامه‌ی Blazor Server جاری، اکنون می‌خواهیم از این کتابخانه استفاده کنیم. یک روش کار با این نوع کتابخانه‌های عمومی و سراسری به صورت زیر است:
- ابتدا فایل خالی جدید wwwroot\js\common.js را ایجاد می‌کنیم.
- سپس تابع عمومی و سراسری ShowToastr را بر اساس امکانات کتابخانه‌ی toastr و مستندات آن، به صورت زیر ایجاد می‌کنیم:
window.ShowToastr = (type, message) => {
  // Toastr don't work with Bootstrap 4.2
  toastr.options.toastClass = "toastr"; // https://github.com/CodeSeven/toastr/issues/599

  if (type === "success") {
    toastr.success(message, "Operation Successful", { timeOut: 20000 });
  }
  if (type === "error") {
    toastr.error(message, "Operation Failed", { timeOut: 20000 });
  }
};
چون تابع ShowToastr به شیء window انتساب داده شده‌است، در سراسر برنامه‌ی جاری قابل دسترسی است.
سطر اول آن هم برای رفع عدم تداخل با بوت استرپ 4x اضافه شده‌است. بوت استرپ 4x به همراه کلاس‌های CSS مشابهی است که نیاز است با تنظیم toastClass به مقداری دیگر، این تداخل را برطرف کرد.

- در ادامه مدخل تعریف فایل wwwroot\js\common.js را به انتهای تگ body فایل Pages\_Host.cshtml اضافه می‌کنیم:
    <script src="lib/jquery/dist/jquery.min.js"></script>
    <script src="lib/toastr/build/toastr.min.js"></script>
    <script src="js/common.js"></script>
    <script src="_framework/blazor.server.js"></script>
</body>

در آخر برای آزمایش آن به کامپوننت Pages\LearnBlazor\BlazorJS.razor مراجعه کرده و تابع سراسری ShowToastr را دقیقا مانند روشی که در مورد تابع confirm بکار بردیم، توسط سرویس JsRuntime، فراخوانی می‌کنیم:
@page "/BlazorJS"

@inject IJSRuntime JsRuntime


<div class="row">
    <button class="btn btn-success" @onclick="@(()=>TestSuccess("Success Message"))">Test Toastr Success</button>
    <button class="btn btn-danger" @onclick="@(()=>TestFailure("Error Message"))">Test Toastr Failure</button>
</div>

@code {
    async Task TestSuccess(string message)
    {
        await JsRuntime.InvokeVoidAsync("ShowToastr", "success", message);
    }

    async Task TestFailure(string message)
    {
        await JsRuntime.InvokeVoidAsync("ShowToastr", "error", message);
    }
}
در اینجا دو دکمه، جهت فراخوانی متد ShowToastr با پارامترهای مختلفی تعریف شده‌اند. چون تابع ShowToastr خروجی ندارد، به همین جهت اینبار از متد InvokeVoidAsync استفاده کرده‌ایم. پارامتر اول آن، نام متد ShowToastr است. پارامتر‌های دوم و سوم آن با آرگومان‌های (type, message) تعریف شده‌ی تابع ShowToastr تطابق دارند. به علاوه در این مثال، روش ارسال پارامترها را نیز در onlick@ توسط arrow functions مشاهده می‌کنید.



کاهش کدهای تکراری فراخوانی متدهای جاوا اسکریپتی با تعریف متدهای الحاقی

می‌توان جهت کاهش تکرار کدهای استفاده از تابع ShowToastr، متدهای الحاقی زیر را برای سرویس IJSRuntime تهیه کرد:
using System.Threading.Tasks;
using Microsoft.JSInterop;

namespace BlazorServerSample.Utils
{
    public static class JSRuntimeExtensions
    {
        public static ValueTask ToastrSuccess(this IJSRuntime JSRuntime, string message)
        {
            return JSRuntime.InvokeVoidAsync("ShowToastr", "success", message);
        }

        public static ValueTask ToastrError(this IJSRuntime JSRuntime, string message)
        {
            return JSRuntime.InvokeVoidAsync("ShowToastr", "error", message);
        }
    }
}
و سپس فضای نام آن‌را به فایل Imports.razor_ معرفی نمود تا در تمام کامپوننت‌های برنامه قابل استفاده شوند.
@using BlazorServerSample.Utils
به این ترتیب به فراخوانی‌های ساده شده‌ی زیر خواهیم رسید:
async Task TestSuccess(string message)
{
   //await JsRuntime.InvokeVoidAsync("ShowToastr", "success", message);
   await JsRuntime.ToastrSuccess(message);
}


فراخوانی یک متد عمومی واقع در کامپوننت فرزند از طریق کامپوننت والد

فرض کنید در کامپوننت فرزند Pages\LearnBlazor\LearnBlazor‍Components\ChildComponent.razor که در قسمت‌های قبل آن‌را تکمیل کردیم، متد عمومی زیر تعریف شده‌است:
@inject IJSRuntime JsRuntime


@code {
    // ...

    public async Task TestSuccess(string message)
    {
        await JsRuntime.ToastrSuccess(message);
    }
}
اکنون اگر بخواهیم این متد عمومی را از طریق کامپوننت والد یا دربرگیرنده‌ی آن فراخوانی کنیم، نیاز است از مفهوم جدیدی به نام ref استفاده کرد. برای این منظور به کامپوننت Pages\LearnBlazor\ParentComponent.razor مراجعه کرده و تغییرات زیر را اعمال می‌کنیم:
@page "/ParentComponent"

<ChildComponent
    OnClickBtnMethod="ShowMessage"
    @ref="ChildComp"
    Title="This title is passed as a parameter from the Parent Component">
    <ChildContent>
        A `Render Fragment` from the parent!
    </ChildContent>
    <DangerChildContent>
        A danger content from the parent!
    </DangerChildContent>
</ChildComponent>

<div class="row">
    <button class="btn btn-success" @onclick="@(()=>ChildComp.TestSuccess("Done!"))">Show Alert</button>
</div>


@code {
    ChildComponent ChildComp;
    // ...
}
با استفاده از ref@ که به فیلد ChildComp انتساب داده شده‌است، می‌توان ارجاعی از کامپوننت فرزند را (وهله‌ای از کلاس مرتبط با آن‌را) در کامپوننت جاری بدست آورد و سپس از آن جهت فراخوانی متدهای عمومی کامپوننت فرزند استفاده کرد.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: Blazor-5x-Part-11.zip
مطالب
آشنایی با Refactoring - قسمت 3


قسمت سوم آشنایی با Refactoring در حقیقت به تکمیل قسمت قبل که در مورد «استخراج متدها» بود اختصاص دارد و به مبحث «استخراج یک یا چند کلاس از متدها» یا Extract Method Object اختصاص دارد.
زمانیکه کار «استخراج متدها» را شروع می‌کنیم، پس از مدتی به علت بالا رفتن تعداد متدهای کلاس جاری، به آنچنان شکل و شمایل خوشایند و زیبایی دست پیدا نخواهیم کرد. همچنین اینبار بجای متدی طولانی، با کلاسی طولانی سروکار خواهیم داشت. در این حالت بهتر است از متدهای استخراج شده مرتبط، یک یا چند کلاس جدید تهیه کنیم. به همین جهت به آن Extract Method Object می‌گویند.
بنابراین مرحله‌ی اول کار با یک قطعه کد با کیفیت پایین، استخراج متدهایی کوچک‌تر و مشخص‌تر، از متدهای طولانی آن است. مرحله بعد، کپسوله کردن این متدها در کلاس‌های مجزا و مرتبط با آن‌ها می‌باشد (logic segregation). بر این اساس که یکی از اصول ابتدایی شیء گرایی این مورد است: هر کلاس باید یک کار را انجام دهد (Single Responsibility Principle).
بنابراین اینبار از نتیجه‌ی حاصل از مرحله‌ی قبل شروع می‌کنیم و عملیات Refactoring را ادامه خواهیم داد:

using System.Collections.Generic;

namespace Refactoring.Day2.ExtractMethod.After
{
public class Receipt
{
private IList<decimal> _discounts;
private IList<decimal> _itemTotals;

public decimal CalculateGrandTotal()
{
_discounts = new List<decimal> { 0.1m };
_itemTotals = new List<decimal> { 100m, 200m };

decimal subTotal = CalculateSubTotal();
subTotal = CalculateDiscounts(subTotal);
subTotal = CalculateTax(subTotal);
return subTotal;
}

private decimal CalculateTax(decimal subTotal)
{
decimal tax = subTotal * 0.065m;
subTotal += tax;
return subTotal;
}

private decimal CalculateDiscounts(decimal subTotal)
{
if (_discounts.Count > 0)
{
foreach (decimal discount in _discounts)
subTotal -= discount;
}
return subTotal;
}

private decimal CalculateSubTotal()
{
decimal subTotal = 0m;
foreach (decimal itemTotal in _itemTotals)
subTotal += itemTotal;
return subTotal;
}
}
}

این مثال، همان نمونه‌ی کامل شده‌ی کد نهایی قسمت قبل است. چند اصلاح هم در آن انجام شده است تا قابل استفاده و مفهوم‌تر شود. عموما متغیرهای خصوصی یک کلاس را به صورت فیلد تعریف می‌کنند؛ نه خاصیت‌های set و get دار. همچنین مثال قبل نیاز به مقدار دهی این فیلدها را هم داشت که در اینجا انجام شده.
اکنون می‌خواهیم وضعیت این کلاس را بهبود ببخشیم و آن‌را از این حالت بسته خارج کنیم:

using System.Collections.Generic;

namespace Refactoring.Day3.ExtractMethodObject.After
{
public class Receipt
{
public IList<decimal> Discounts { get; set; }
public decimal Tax { get; set; }
public IList<decimal> ItemTotals { get; set; }

public decimal CalculateGrandTotal()
{
return new ReceiptCalculator(this).CalculateGrandTotal();
}
}
}

using System.Collections.Generic;

namespace Refactoring.Day3.ExtractMethodObject.After
{
public class ReceiptCalculator
{
Receipt _receipt;

public ReceiptCalculator(Receipt receipt)
{
_receipt = receipt;
}

public decimal CalculateGrandTotal()
{
decimal subTotal = CalculateSubTotal();
subTotal = CalculateDiscounts(subTotal);
subTotal = CalculateTax(subTotal);
return subTotal;
}

private decimal CalculateTax(decimal subTotal)
{
decimal tax = subTotal * _receipt.Tax;
subTotal += tax;
return subTotal;
}

private decimal CalculateDiscounts(decimal subTotal)
{
if (_receipt.Discounts.Count > 0)
{
foreach (decimal discount in _receipt.Discounts)
subTotal -= discount;
}
return subTotal;
}

private decimal CalculateSubTotal()
{
decimal subTotal = 0m;
foreach (decimal itemTotal in _receipt.ItemTotals)
subTotal += itemTotal;
return subTotal;
}
}
}

بهبودهای حاصل شده نسبت به نگارش قبلی آن:
در این مثال کل عملیات محاسباتی به یک کلاس دیگر منتقل شده است. کلاس ReceiptCalculator شیء‌ایی از نوع Receipt را در سازنده خود دریافت کرده و سپس محاسبات لازم را بر روی آن انجام می‌دهد. همچنین فیلدهای محلی آن تبدیل به خواصی عمومی و قابل تغییر شده‌اند. در نگارش قبلی، تخفیف‌ها و مالیات و نحوه‌ی محاسبات به صورت محلی و در همان کلاس تعریف شده بودند. به عبارت دیگر با کدی سروکار داشتیم که قابلیت استفاده مجدد نداشت. نمی‌توانست نوع‌های مختلفی از Receipt را بپذیرد. نمی‌شد از آن در برنامه‌ای دیگر هم استفاده کرد. تازه شروع کرده بودیم به جدا سازی منطق‌های قسمت‌های مختلف محاسبات یک متد اولیه طولانی. همچنین اکنون کلاس ReceiptCalculator تنها عهده دار انجام یک عملیات مشخص است.
البته اگر به کلاس ReceiptCalculator قسمت سوم و کلاس Receipt قسمت دوم دقت کنیم، شاید آنچنان تفاوتی را نتوان حس کرد. اما واقعیت این است که کلاس Receipt قسمت دوم، تنها یک پیش نمایش مختصری از صدها متد موجود در آن است.


مطالب
آشنایی با جنریک‌ها #3
متدهای جنریک
متدهای جنریک، دارای پارامترهایی از نوع جنریک هستند و بوسیله‌ی آنها می‌توانیم نوع‌های (type) متفاوتی را به متد ارسال نمائیم. در واقع از متد، یک نمونه پیاده سازی کرده‌ایم، در حالیکه این متد را برای انواع دیگر هم می‌توانیم فراخوانی کنیم.

تعریف ساده دیگر
جنریک متدها اجازه می‌دهند متدهایی با نوع هایی که در زمان فراخوانی مشخص کرده ایم، داشته باشیم. 

نحوه تعریف یک متد جنریک بشکل زیر است:
return-type method-name<type-parameters>(parameters)
قسمت مهم syntax بالا، type-parameters  است. در آن قسمت می‌توانید یک یا چند نوع که بوسیله کاما از هم جدا می‌شوند را تعریف کنید. این typeها در return-value و نوع برخی یا همه پارامترهای ورودی جنریک متد، قابل استفاده هستند. به کد زیر توجه کنید:
public T1 PrintValue<T1, T2>(T1 param1, T2 param2)
{
    Console.WriteLine("values are: parameter 1 = " + param1 + " and parameter 2 = " + param2);

    return param1;
}
در کد بالا، دو پارامتر ورودی بترتیب از نوع T1 و T2 و پارامتر خروجی (return-type) از نوع T1 تعریف کرده‌ایم.

اعمال محدودیت بر روی جنریک متدها
در زمان تعریف یک جنریک کلاس یا جنریک متد، امکان اعمال محدودیت بر روی typeهایی را که قرار است به آن‌ها ارسال شود، داریم. یعنی می‌توانیم تعیین کنیم جنریک متد چه typeهایی را در زمان ایجاد یک وهله‌ی از آن بپذیرد یا نپذیرد. اگر نوعی که به جنریک متد ارسال می‌کنیم جزء محدودیت‌های جنریک باشد با خطای کامپایلر روبرو خواهیم شد. این محدودیت‌ها با کلمه کلیدی where اعمال می‌شوند.
public void MyMethod< T >()
       where T : struct
{
  ...
}

محدودیت‌های قابل اعمال بر روی جنریک ها
  • struct: نوع آرگومان ارسالی باید value-type باشد؛ بجز مقادیر غیر NULL.
class C<T> where T : struct {} // value type
  • class: نوع آرگومان ارسالی باید reference-type (کلاس، اینترفیس، عامل، آرایه) باشد.
class D<T> where T : class {} // reference type
  • ()new: آرگومان ارسالی باید یک سازنده عمومی بدون پارامتر باشد. وقتی این محدوده کننده را با سایر محدود کننده‌ها به صورت همزمان استفاده می‌کنید، این محدوده کننده باید در آخر ذکر شود.
class H<T> where T : new() {} // no parameter constructor
public void MyMethod< T >()
       where T : IComparable, MyBaseClass, new ()
{
  ...
}
  • <base class name>: نوع آرگومان ارسالی باید از کلاس ذکر شده یا کلاس مشتق شده آن باشد.
class B {}
class E<T> where T : B {} // be/derive from base class
  • <interface name>: نوع آرگومان ارسالی باید اینترفیس ذکر شده یا پیاده ساز آن اینترفیس باشد.
interface I {}
class G<T> where T : I {} // be/implement interface
  • U: نوع آرگومان ارسالی باید از نوع یا مشتق شده U باشد.
class F<T, U> where T : U {} // be/derive from U
توجه: در مثال‌های بالا، محدوده کننده‌ها را برای جنریک کلاس‌ها اعمال کردیم که روش تعریف این محدودیت‌ها برای جنریک متدها هم یکسان است.

اعمال چندین محدودیت همزمان
برای اعمال چندین محدودیت همزمان بر روی یک آرگومان فقط کافی است محدودیت‌ها را پشت سرهم نوشته و آنها را بوسیله کاما از یکدیگر جدا نمایید.
interface I {}
class J<T>
  where T : class, I
در کلاس J بالا، برای آرگومان محدودیت class و اینترفیس I را اعمال کرده‌ایم.
این روش قابل تعمیم است:
interface I {}
class J<T, U>
  where T : class, I
  where U : I, new() {}
در کلاس J، آرگومان T با محدودیت‌های class و اینترفیس I و آرگومان U با محدودیت اینترفیس I و ()new تعریف شده است و البته تعداد آرگومان‌ها قابل گسترش است.
حال سوال این است: چرا از محدود کننده‌ها استفاده می‌کنیم؟
کد زیر را در نظر بگیرید:
//this method returns if both the parameters are equal 
public static bool Equals< T > (T t1, Tt2) 
{ 
  return (t1 == t2); 
}
متد بالا برای مقایسه دو نوع یکسان استفاده می‌شود. در مثال بالا در صورتیکه دو مقدار از نوع int با هم مقایسه نماییم جنریک متد بدرستی کار خواهد کرد ولی اگر بخواهیم دو مقدار از نوع string را مقایسه کنیم با خطای کامپایلر مواجه خواهیم شد. عمل مقایسه دو مقدار از نوع string که مقادیر در heap نگهداری می‌شوند بسادگی مقایسه دو مقدار int نیست. چون همانطور که می‌دانید int یک value-type و string یک reference-type است و برای مقایسه دو reference-type با استفاده از عملگر ==  تمهیداتی باید در نظر گرفته شود.
برای حل مشکل بالا 2 راه حل وجود دارد:
  1. Runtime casting
  2. استفاده از محدود کننده‌ها
casting در زمان اجرا، بعضی اوقات شاید مناسب باشد. در این مورد، CLR نوع‌ها را در زمان اجرا بدلیل کارکرد صحیح بصورت اتوماتیک cast خواهد کرد اما مطمئناً این روش همیشه مناسب نیست مخصوصاً زمانی که نوع‌های مورد استفاده در حال تحریف رفتار طبیعی عملگرها باشند (مانند آخرین نمونه بالا).