نظرات مطالب
معرفی System.Text.Json در NET Core 3.0.
یک نکته‌ی تکمیلی: نوشتن تبدیلگرهای نوع‌ها برای System.Text.Json

System.Text.Json، در حال حاضر از مفهومی به نام type coercion/inference، پشتیبانی نمی‌کند. type coercion یعنی تبدیل یک مقدار، به مقداری دیگر که به صورت مستقیم قابل انتساب به یکدیگر نیستند. برای مثال اگر رشته‌ی "true" را درنظر بگیریم، قابلیت انتساب به یک خاصیت از نوع bool را ندارد. برای یک چنین مواردی در این API جدید، باید تبدیلگر نوشت.
یک مثال:
using System.Collections.Generic;
using System.Text.Json;

namespace JsonTests
{
    public class Product
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public bool IsInStock { get; set; }
    }

    class Program
    {
        static void Main(string[] args)
        {            
         var products = JsonSerializer.Deserialize<List<Product>>("[{\"Id\":1026,\"Name\":\"P1\",\"IsInStock\":\"false\"}]");
        }
    }
}
در این مثال، خاصیت IsInStock از نوع bool است، اما مقداری را که باید از طریق متد Deserialize دریافت کنیم، یک رشته‌ی bool ای است که قابل انتساب به bool نیست. در این حالت اگر برنامه را اجرا کنیم به استثنای زیر خواهیم رسید:
An unhandled exception of type 'System.Text.Json.JsonException' occurred in System.Text.Json.dll
Inner exceptions found, see $exception in variables window for more details.
Innermost exception System.InvalidOperationException : Cannot get the value of a token type 'String' as a boolean.
برای رفع این مشکل، می‌توان تبدیلگر زیر را تدارک دید:
    public class BooleanConverter : JsonConverter<bool>
    {
        public override bool Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
        {
            var value = reader.GetString();
            if (value.Equals("true", StringComparison.OrdinalIgnoreCase)
                 || value.Equals("yes", StringComparison.OrdinalIgnoreCase)
                 || value.Equals("1", StringComparison.Ordinal))
            {
                return true;
            }

            if (value.Equals("false", StringComparison.OrdinalIgnoreCase)
                 || value.Equals("no", StringComparison.OrdinalIgnoreCase)
                 || value.Equals("0", StringComparison.Ordinal))
            {
                return false;
            }

            throw new NotSupportedException($"`{value}` can't be converted to `bool`.");
        }

        public override void Write(Utf8JsonWriter writer, bool value, JsonSerializerOptions options)
        {
            switch (value)
            {
                case true:
                    writer.WriteStringValue("true");
                    break;
                case false:
                    writer.WriteStringValue("false");
                    break;
            }
        }
    }
برای نوشتن یک تبدیلگر bool، کلاس مرتبط، باید <JsonConverter<bool را پیاده سازی کند. کلاس JsonConverter نیز به صورت زیر تعریف شده‌است:
    public abstract class JsonConverter<T> : JsonConverter
    {
        protected internal JsonConverter();

        public override bool CanConvert(Type typeToConvert);
        public abstract T Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options);
        public abstract void Write(Utf8JsonWriter writer, T value, JsonSerializerOptions options);
    }
و پیاده سازی دو متد Read و Write آن الزامی است.
در متد Read آن، مقدار رشته‌ای دریافت شده‌ی از منبع داده، در اختیار ما قرار می‌گیرد. سپس باید بر اساس این مقدار، مقدار متناظری را از نوع T که در اینجا bool است، بازگشت دهیم. برای مثال اگر یکی از مقادیر رشته‌ای true ،yes و 1 را دریافت کردیم، بجای آن true را بازگشت می‌دهیم.

اکنون برای استفاده‌ی از آن خواهیم داشت:
var options = new JsonSerializerOptions();
options.Converters.Add(new BooleanConverter());
var products = JsonSerializer.Deserialize<List<Product>>(
   "[{\"Id\":1026,\"Name\":\"P1\",\"IsInStock\":\"false\"}]",
   options);
و یا روش دیگر انجام اینکار، استفاده از ویژگی JsonConverter، برای معرفی تبدیلگر تهیه شده‌است:
[JsonConverter(typeof(BooleanConverter))]
public bool IsInStock { get; set; }

از این تبدیلگر برای حالت Serialize نیز می‌توان استفاده کرد:
var options  = new JsonSerializerOptions() {WriteIndented = true };
options.Converters.Add(new BooleanConverter());
var data = JsonSerializer.Serialize<List<Product>>(productList, options);
مطالب
اصلاح Urlها در فایل‌های PDF با استفاده از iTextSharp
نحوه ایجاد لینک در فایل‌های PDF به کمک iTextSharp

حداقل دو نوع لینک را در فایل‌های PDF می‌توان ایجاد کرد:
الف) لینک به منابع خارجی؛ مانند یک وب سایت
ب) لینک به صفحه‌ای داخل فایل PDF
در ادامه مثالی را مشاهده خواهید نمود که شامل هر دو نوع لینک است:
        void WriteFile()
        {
            using (var doc = new Document(PageSize.LETTER))
            {
                using (var fs = new FileStream("test.pdf", FileMode.Create))
                {
                    using (var writer = PdfWriter.GetInstance(doc, fs))
                    {
                        doc.Open();
                        var blueFont = FontFactory.GetFont("Arial", 12, Font.NORMAL, BaseColor.BLUE);
                        doc.Add(new Chunk("Go to URL", blueFont).SetAction(new PdfAction("http://www.google.com/", false)));

                        doc.NewPage();
                        doc.Add(new Chunk("Go to Test", blueFont).SetLocalGoto("entry1"));

                        doc.NewPage();
                        doc.Add(new Chunk("Test").SetLocalDestination("entry1"));

                        doc.Close();
                    }
                }
            }
        }
حاصل این مثال، یک فایل PDF است با سه صفحه. در صفحه اول لینکی به سایت Google وجود دارد. در صفحه دوم، لینکی به صفحه سوم تهیه شده است.
در صفحه سوم یک Local Destination تعبیه شده است. در صفحه دوم به کمک یک Local Goto، لینکی به این مقصد داخلی ایجاد خواهد شد.


اصلاح لینک‌ها در فایل‌های PDF

همان مثال فوق را درنظر بگیرید. فرض کنید لینک خارجی ذکر شده در ابتدای فایل را می‌خواهیم به مقصدی که در صفحه دوم ایجاد کرده‌ایم، تغییر دهیم. برای مثال خروجی PDF ایی را درنظر بگیرید که لینک‌های اصلی آن به مقالاتی در یک سایت اشاره می‌کنند. اما همین مقالات اکنون در فایل نهایی خروجی نیز قرار دارند. بهتر است این لینک‌های خارجی را به لینک‌های ارجاع دهنده به مقالات موجود در فایل اصلاح کنیم، تا استفاده از نتیجه حاصل، ساده‌تر گردد.
پیش از اینکه کدهای این قسمت را بررسی کنیم، نیاز است کمی با ساختار سطح پایین فایل‌های PDF آشنا شویم. پس از آن قادر خواهیم بود تا نسبت به اصلاح این لینک‌ها اقدام کنیم.




در تصویر اول نحوه ذخیره شدن named destinationها را در یک فایل PDF مشاهده می‌کنید.
در تصویر دوم، ساختار دو نوع لینک تعریف شده در صفحات، مشخص هستند. یکی بر اساس Uri کار می‌کند و دیگری بر اساس GoTo.
کاری را که در ادامه قصد داریم انجام دهیم، تبدیل حالت Uri به GoTo است. برای مثال، در ادامه می‌خواهیم لینک مثال فوق را ویرایش کرده و آن‌را تبدیل به لینکی نمائیم که به entry1 اشاره می‌کند. کدهای انجام اینکار را در ادامه ملاحظه می‌کنید:
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using iTextSharp.text.pdf;

namespace ReplaceLinks
{
    public class ReplacePdfLinks
    {
        Dictionary<string, PdfObject> _namedDestinations;
        PdfReader _reader;

        public string InputPdf { set; get; }
        public string OutputPdf { set; get; }
        public Func<Uri, string> UriToNamedDestination { set; get; }

        public void Start()
        {
            updatePdfLinks();
            saveChanges();
        }

        private PdfArray getAnnotationsOfCurrentPage(int pageNumber)
        {
            var pageDictionary = _reader.GetPageN(pageNumber);
            var annotations = pageDictionary.GetAsArray(PdfName.ANNOTS);
            return annotations;
        }

        private static bool hasAction(PdfDictionary annotationDictionary)
        {
            return annotationDictionary.Get(PdfName.SUBTYPE).Equals(PdfName.LINK);
        }

        private static bool isUriAction(PdfDictionary annotationAction)
        {
            return annotationAction.Get(PdfName.S).Equals(PdfName.URI);
        }

        private void replaceUriWithLocalDestination(PdfDictionary annotationAction)
        {
            var uri = annotationAction.Get(PdfName.URI) as PdfString;
            if (uri == null)
                return;

            if (string.IsNullOrWhiteSpace(uri.ToString()))
                return;

            var namedDestination = UriToNamedDestination(new Uri(uri.ToString()));
            if (string.IsNullOrWhiteSpace(namedDestination))
                return;

            PdfObject entry;
            if (!_namedDestinations.TryGetValue(namedDestination, out entry))
                return;

            annotationAction.Remove(PdfName.S);
            annotationAction.Remove(PdfName.URI);

            var newLocalDestination = new PdfArray();
            annotationAction.Put(PdfName.S, PdfName.GOTO);
            var xRef = ((PdfArray)entry).First(x => x is PdfIndirectReference);
            newLocalDestination.Add(xRef);
            newLocalDestination.Add(PdfName.FITH);
            annotationAction.Put(PdfName.D, newLocalDestination);
        }

        private void saveChanges()
        {
            using (var fileStream = new FileStream(OutputPdf, FileMode.Create, FileAccess.Write, FileShare.None))
            using (var stamper = new PdfStamper(_reader, fileStream))
            {
                stamper.Close();
            }
        }

        private void updatePdfLinks()
        {
            _reader = new PdfReader(InputPdf);
            _namedDestinations = _reader.GetNamedDestinationFromStrings();

            var pageCount = _reader.NumberOfPages;
            for (var i = 1; i <= pageCount; i++)
            {
                var annotations = getAnnotationsOfCurrentPage(i);
                if (annotations == null || !annotations.Any())
                    continue;

                foreach (var annotation in annotations.ArrayList)
                {
                    var annotationDictionary = (PdfDictionary)PdfReader.GetPdfObject(annotation);

                    if (!hasAction(annotationDictionary))
                        continue;

                    var annotationAction = annotationDictionary.Get(PdfName.A) as PdfDictionary;
                    if (annotationAction == null)
                        continue;

                    if (!isUriAction(annotationAction))
                        continue;

                    replaceUriWithLocalDestination(annotationAction);
                }
            }
        }
    }
}
توضیح این کدها بدون ارجاع به تصاویر ارائه شده میسر نیست. کار از متد updatePdfLinks شروع می‌شود. با استفاده از متد GetNamedDestinationFromStrings به کلیه named destinationهای تعریف شده دسترسی خواهیم داشت (تصویر اول). در ادامه Annotations هر صفحه دریافت می‌شوند. اگر به تصویر دوم دقت کنید، به ازای هر صفحه یک سری Annot وجود دارد. داخل اشیاء Annotations، لینک‌ها قرار می‌گیرند. در ادامه این لینک‌ها استخراج شده و تنها مواردی که دارای Uri هستند بررسی خواهند شد.
کار تغییر ساختار PDF در متد replaceUriWithLocalDestination انجام می‌شود. در اینجا آدرس استخراجی به استفاده کننده ارجاع شده و named destination مناسبی دریافت می‌شود. اگر این «مقصد نام دار» در مجموعه مقاصد نام دار PDF جاری وجود داشت، خواص لینک قبلی مانند Uri آن حذف شده و با GoTo به آدرس این مقصد جدید جایگزین می‌شود.
در آخر، توسط یک PdfStamper، اطلاعات تغییر کرده را در فایلی جدید ثبت خواهیم کرد.

یک نمونه از استفاده از کلاس فوق به شرح زیر است:
            new ReplacePdfLinks
            {
                InputPdf = @"test.pdf",
                OutputPdf = "mod.pdf",
                UriToNamedDestination = uri =>
                {
                    if (uri.Host.ToLowerInvariant().Contains("google.com"))
                    {
                        return "entry1";
                    }

                    return string.Empty;
                }
            }.Start();
در این مثال، اگر لینکی به آدرس Google.com اشاره کند، ویرایش شده و اینبار به مقصدی داخلی به نام entry1 ختم خواهد شد.

چند نکته تکمیلی
- اگر قصد داشته باشیم تا لینکی را ویرایش کرده اما تنها Uri آن‌را تغییر دهیم، تنها کافی است URI آن‌را به نحو زیر در متد replaceUriWithLocalDestination ویرایش کنیم:
annotationAction.Put(PdfName.URI, new PdfString("http://www.bing.com/"));
- اگر بجای یک مقصد نام دار، تنها قرار است لینک موجود، به صفحه‌ای مشخص اشاره کند، تغییرات متد replaceUriWithLocalDestination به نحو زیر خواهد بود:
newLocalDestination.Add((PdfObject)_reader.GetPageOrigRef(pageNum: 2));
RemovePdfLinks.7z
مطالب
Functional Programming یا برنامه نویسی تابعی - قسمت دوم – مثال‌ها
در قسمت قبلی این مقاله، با مفاهیم تئوری برنامه نویسی تابعی آشنا شدیم. در این مطلب قصد دارم بیشتر وارد کد نویسی شویم و الگوها و ایده‌های پیاده سازی برنامه نویسی تابعی را در #C مورد بررسی قرار دهیم.


Immutable Types

هنگام ایجاد یک Type جدید باید سعی کنیم دیتای داخلی Type را تا حد ممکن Immutable کنیم. حتی اگر نیاز داریم یک شیء را برگردانیم، بهتر است که یک instance جدید را برگردانیم، نه اینکه همان شیء موجود را تغییر دهیم. نتیحه این کار نهایتا به شفافیت بیشتر و Thread-Safe بودن منجر خواهد شد.
مثال:
public class Rectangle
{
    public int Length { get; set; }
    public int Height { get; set; }

    public void Grow(int length, int height)
    {
        Length += length;
        Height += height;
    }
}

Rectangle r = new Rectangle();
r.Length = 5;
r.Height = 10;
r.Grow(10, 10);// r.Length is 15, r.Height is 20, same instance of r
در این مثال، Property های کلاس، از بیرون قابل Set شدن می‌باشند و کسی که این کلاس را فراخوانی میکند، هیچ ایده‌ای را درباره‌ی مقادیر قابل قبول آن‌ها ندارد. بعد از تغییر بهتر است وظیفه‌ی ایجاد آبجکت خروجی به عهده تابع باشد، تا از شرایط ناخواسته جلوگیری شود:
// After
public class ImmutableRectangle
{
    int Length { get; }
    int Height { get; }

    public ImmutableRectangle(int length, int height)
    {
        Length = length;
        Height = height;
    }

    public ImmutableRectangle Grow(int length, int height) =>
          new ImmutableRectangle(Length + length, Height + height);
}

ImmutableRectangle r = new ImmutableRectangle(5, 10);
r = r.Grow(10, 10);// r.Length is 15, r.Height is 20, is a new instance of r
با این تغییر در ساختار کد، کسی که یک شیء از کلاس ImmutableRectangle را ایجاد میکند، باید مقادیر را وارد کند و مقادیر Property ها به صورت فقط خواندنی از بیرون کلاس در دسترس هستند. همچنین در متد Grow، یک شیء جدید از کلاس برگردانده می‌شود که هیچ ارتباطی با کلاس فعلی ندارد.


استفاده از Expression بجای Statement

یکی از موارد با اهمیت در سبک کد نویسی تابعی را در مثال زیر ببینید:
public static void Main()
{
    Console.WriteLine(GetSalutation(DateTime.Now.Hour));
}

// imparitive, mutates state to produce a result
/*public static string GetSalutation(int hour)
{
    string salutation; // placeholder value

    if (hour < 12)
        salutation = "Good Morning";
    else
        salutation = "Good Afternoon";

    return salutation; // return mutated variable
}*/

public static string GetSalutation(int hour) => hour < 12 ? "Good Morning" : "Good Afternoon";
به خط‌های کامنت شده دقت کنید؛ می‌بینیم که یک متغیر، تعریف شده که نگه دارنده‌ای برای خروجی خواهد بود. در واقع به اصطلاح آن را mutate می‌کند؛ در صورتیکه نیازی به آن نیست. ما می‌توانیم این کد را به صورت یک عبارت (Expression) در آوریم که خوانایی بیشتری دارد و کوتاه‌تر است.


استفاده از High-Order Function ها برای ایجاد کارایی بیشتر

در قسمت قبلی درباره توابع HOF صحبت کردیم. به طور خلاصه توابعی که یک تابع را به عنوان ورودی میگیرند و یک تابع را به عنوان خروجی برمی‌گردانند. به مثال زیر توجه کنید:
public static int Count<TSource>(this IEnumerable<TSource> source, Func<TSource, bool> predicate)
{
    int count = 0;

    foreach (TSource element in source)
    {
        checked
        {
            if (predicate(element))
            {
                count++;
            }
        }
    }

    return count;
}
این قطعه کد، مربوط به متد Count کتابخانه‌ی Linq می‌باشد. در واقع این متد تعدادی از چیز‌ها را تحت شرایط خاصی می‌شمارد. ما دو راهکار داریم، برای هر شرایط خاص، پیاده سازی نحوه‌ی شمردن را انجام دهیم و یا یک تابع بنویسیم که شرط شمردن را به عنوان ورودی دریافت کند و تعدادی را برگرداند.


ترکیب توابع

ترکیب توابع به عمل پیوند دادن چند تابع ساده، برای ایجاد توابعی پیچیده گفته می‌شود. دقیقا مانند عملی که در ریاضیات انجام می‌شود. خروجی هر تابع به عنوان ورودی تابع بعدی مورد استفاده قرار میگیرد و در آخر ما خروجی آخرین فراخوانی را به عنوان نتیجه دریافت میکنیم. ما میتوانیم در #C به روش برنامه نویسی تابعی، توابع را با یکدیگر ترکیب کنیم. به مثال زیر توجه کنید:
public static class Extensions
{
    public static Func<T, TReturn2> Compose<T, TReturn1, TReturn2>(this Func<TReturn1, TReturn2> func1, Func<T, TReturn1> func2)
    {
        return x => func1(func2(x));
    }
}

public class Program
{
    public static void Main(string[] args)
    {
        Func<int, int> square = (x) => x * x;
        Func<int, int> negate = x => x * -1;
        Func<int, string> toString = s => s.ToString();
        Func<int, string> squareNegateThenToString = toString.Compose(negate).Compose(square);
        Console.WriteLine(squareNegateThenToString(2));
    }
}
در مثال بالا ما سه تابع جدا داریم که میخواهیم نتیجه‌ی آن‌ها را به صورت پشت سر هم داشته باشیم. ما میتوانستیم هر کدام از این توابع را به صورت تو در تو بنویسیم؛ ولی خوانایی آن به شدت کاهش خواهد یافت. بنابراین ما از یک Extension Method استفاده کردیم.


Chaining / Pipe-Lining و اکستنشن‌ها

یکی از روش‌های مهم در سبک برنامه نویسی تابعی، فراخوانی متد‌ها به صورت زنجیره‌ای و پاس دادن خروجی یک متد به متد بعدی، به عنوان ورودی است. به عنوان مثال کلاس String Builder یک مثال خوب از این نوع پیاده سازی است. کلاس StringBuilder از پترن Fluent Builder استفاده می‌کند. ما می‌توانیم با اکستنشن متد هم به همین نتیجه برسیم. نکته مهم در مورد کلاس StringBuilder این است که این کلاس، شیء string را mutate نمیکند؛ به این معنا که هر متد، تغییری در object ورودی نمی‌دهد و یک خروجی جدید را بر می‌گرداند.
string str = new StringBuilder()
  .Append("Hello ")
  .Append("World ")
  .ToString()
  .TrimEnd()
  .ToUpper();
در این مثال  ما کلاس StringBuilder را توسط یک اکستنشن متد توسعه داده‌ایم:
public static class Extensions
{
    public static StringBuilder AppendWhen(this StringBuilder sb, string value, bool predicate) => predicate ? sb.Append(value) : sb;
}

public class Program
{
    public static void Main(string[] args)
    {
        // Extends the StringBuilder class to accept a predicate
        string htmlButton = new StringBuilder().Append("<button").AppendWhen(" disabled", false).Append(">Click me</button>").ToString();
    }
}


نوع‌های اضافی درست نکنید ، به جای آن از کلمه‌ی کلیدی yield استفاده کنید!

گاهی ما نیاز داریم لیستی از آیتم‌ها را به عنوان خروجی یک متد برگردانیم. اولین انتخاب معمولا ایجاد یک شیء از جنس List یا به طور کلی‌تر Collection و سپس استفاده از آن به عنوان نوع خروجی است:
public static void Main()
{
    int[] a = { 1, 2, 3, 4, 5 };

    foreach (int n in GreaterThan(a, 3))
    {
        Console.WriteLine(n);
    }
}


/*public static IEnumerable<int> GreaterThan(int[] arr, int gt)
{
    List<int> temp = new List<int>();
    foreach (int n in arr)
    {
        if (n > gt) temp.Add(n);
    }
    return temp;
}*/

public static IEnumerable<int> GreaterThan(int[] arr, int gt)
{
    foreach (int n in arr)
    {
        if (n > gt) yield return n;
    }
}
همانطور که مشاهده میکنید در مثال اول، ما از یک لیست موقت استفاده کرد‌ه‌ایم تا آیتم‌ها را نگه دارد. اما میتوانیم از این مورد با استفاده از کلمه کلیدی yield اجتناب کنیم. این الگوی iterate بر روی آبجکت‌ها در برنامه نویسی تابعی، خیلی به چشم میخورد.


برنامه نویسی declarative به جای imperative با استفاده از Linq

در قسمت قبلی به طور کلی درباره برنامه نویسی Imperative صحبت کردیم. در مثال زیر یک نمونه از تبدیل یک متد که با استایل Imperative نوشته شده به declarative را می‌بینید. شما میتوانید ببینید که چقدر کوتاه‌تر و خواناتر شده:
List<int> collection = new List<int> { 1, 2, 3, 4, 5 };

// Imparative style of programming is verbose
List<int> results = new List<int>();

foreach(var num in collection)
{
  if (num % 2 != 0) results.Add(num);
}

// Declarative is terse and beautiful
var results = collection.Where(num => num % 2 != 0);


Immutable Collection

در مورد اهمیت immutable قبلا صحبت کردیم؛ Immutable Collection ها، کالکشن‌هایی هستند که به جز زمانیکه ایجاد می‌شنود، اعضای آن‌ها نمی‌توانند تغییر کنند. زمانیکه یک آیتم به آن اضافه یا کم شود، یک لیست جدید، برگردانده خواهد شد. شما می‌توانید انواع این کالکشن‌ها را در این لینک ببینید.
به نظر میرسد که ایجاد یک کالکشن جدید میتواند سربار اضافی بر روی استفاده از حافظه داشته باشد، اما همیشه الزاما به این صورت نیست. به طور مثال اگر شما f(x)=y را داشته باشید، مقادیر x و y به احتمال زیاد یکسان هستند. در این صورت متغیر x و y، حافظه را به صورت مشترک استفاده می‌کنند. به این دلیل که هیچ کدام از آن‌ها Mutable نیستند. اگر به دنبال جزییات بیشتری هستید این مقاله به صورت خیلی جزیی‌تر در مورد نحوه پیاده سازی این نوع کالکشن‌ها صحبت میکند. اریک لپرت یک سری مقاله در مورد Immutable ها در #C دارد که میتوانید آن هار در اینجا پیدا کنید.

 

Thread-Safe Collections

اگر ما در حال نوشتن یک برنامه‌ی Concurrent / async باشیم، یکی از مشکلاتی که ممکن است گریبانگیر ما شود، race condition است. این حالت زمانی اتفاق می‌افتد که دو ترد به صورت همزمان تلاش میکنند از یک resource استفاده کنند و یا آن را تغییر دهند. برای حل این مشکل میتوانیم آبجکت‌هایی را که با آن‌ها سر و کار داریم، به صورت immutable تعریف کنیم. از دات نت فریمورک نسخه 4 به بعد  Concurrent Collection‌ها معرفی شدند. برخی از نوع‌های کاربردی آن‌ها را در لیست پایین می‌بینیم:
Collection
توضیحات
 ConcurrentDictionary 
  پیاده سازی thread safe از دیکشنری key-value 
 ConcurrentQueue 
  پیاده سازی thread safe از صف (اولین ورودی ، اولین خروجی) 
 ConcurrentStack 
  پیاده سازی thread safe از پشته (آخرین ورودی ، اولین خروجی) 
 ConcurrentBag 
  پیاده سازی thread safe از لیست نامرتب 

این کلاس‌ها در واقع همه مشکلات ما را حل نخواهند کرد؛ اما بهتر است که در ذهن خود داشته باشیم که بتوانیم به موقع و در جای درست از آن‌ها استفاده کنیم.

در این قسمت از مقاله سعی شد با روش‌های خیلی ساده، با مفاهیم اولیه برنامه نویسی تابعی درگیر شویم. در ادامه مثال‌های بیشتری از الگوهایی که میتوانند به ما کمک کنند، خواهیم داشت.   
مطالب
آشنایی با NHibernate - قسمت ششم

آشنایی با Automapping در فریم ورک Fluent NHibernate

اگر قسمت‌های قبل را دنبال کرده باشید، احتمالا به پروسه طولانی ساخت نگاشت‌ها توجه کرده‌اید. با کمک فریم ورک Fluent NHibernate می‌توان پروسه نگاشت domain model خود را به data model متناظر آن به صورت خودکار نیز انجام داد و قسمت عمده‌ای از کار به این صورت حذف خواهد شد. (این مورد یکی از تفاوت‌های مهم NHibernate با نمونه‌های مشابهی است که مایکروسافت تا تاریخ نگارش این مقاله ارائه داده است. برای مثال در نگار‌ش‌های فعلی LINQ to SQL یا Entity framework ، اول دیتابیس مطرح است و بعد ساخت کد از روی آن، در حالیکه در اینجا ابتدا کد و طراحی سیستم مطرح است و بعد نگاشت آن به سیستم داده‌ای و دیتابیس)

امروز قصد داریم یک سیستم ساده ثبت خبر را از صفر با NHibernate پیاده سازی کنیم و همچنین مروری داشته باشیم بر قسمت‌های قبلی.

مطابق کلاس دیاگرام فوق، این سیستم از سه کلاس خبر، کاربر ثبت کننده‌ی خبر و گروه خبری مربوطه تشکیل شده است.

ابتدا یک پروژه کنسول جدید را به نام NHSample2 آغاز کنید. سپس ارجاعاتی را به اسمبلی‌های زیر به آن اضافه نمائید:
FluentNHibernate.dll
NHibernate.dll
NHibernate.ByteCode.Castle.dll
NHibernate.Linq.dll
و ارجاعی به اسمبلی استاندارد System.Data.Services.dll دات نت فریم ورک سه و نیم

سپس پوشه‌ای را به نام Domain به این پروژه اضافه نمائید (کلیک راست روی نام پروژه در VS.Net و سپس مراجعه به منوی Add->New folder). در این پوشه تعاریف موجودیت‌های برنامه را قرار خواهیم داد. سه کلاس جدید Category ، User و News را در این پوشه ایجاد نمائید. محتویات این سه کلاس به شرح زیر هستند:

namespace NHSample2.Domain
{
public class User
{
public virtual int Id { get; set; }
public virtual string UserName { get; set; }
public virtual string Password { get; set; }
}
}


namespace NHSample2.Domain
{
public class Category
{
public virtual int Id { get; set; }
public virtual string CategoryName { get; set; }
}
}


using System;

namespace NHSample2.Domain
{
public class News
{
public virtual Guid Id { get; set; }
public virtual string Subject { get; set; }
public virtual string NewsText { get; set; }
public virtual DateTime DateEntered { get; set; }
public virtual Category Category { get; set; }
public virtual User User { get; set; }
}
}
همانطور که در قسمت‌های قبل نیز ذکر شد، تمام خواص پابلیک کلاس‌های Domain ما به صورت virtual تعریف شده‌اند تا lazy loading را در NHibernate فعال سازیم. در حالت lazy loading ، اطلاعات تنها زمانیکه به آن‌ها نیاز باشد بارگذاری خواهند شد. این مورد در حالتیکه نیاز به نمایش اطلاعات تنها یک شیء وجود داشته باشد بسیار مطلوب می‌باشد، یا هنگام ثبت و به روز رسانی اطلاعات نیز یکی از بهترین روش‌ها است. اما زمانیکه با لیستی از اطلاعات سروکار داشته باشیم باعث کاهش افت کارآیی خواهد شد زیرا برای مثال نمایش آن‌ها سبب خواهد شد که 100 ها کوئری دیگر جهت دریافت اطلاعات هر رکورد در حال نمایش اجرا شود (مفهوم دسترسی به اطلاعات تنها در صورت نیاز به آن‌ها). Lazy loading و eager loading (همانند مثال‌های قبلی) هر دو در NHibernate به سادگی قابل تنظیم هستند (برای مثال LINQ to SQL به صورت پیش فرض همواره lazy load است و تا این تاریخ راه استانداردی برای امکان تغییر و تنظیم این مورد پیش بینی نشده است).

اکنون کلاس جدید Config را به برنامه اضافه نمائید:

using FluentNHibernate.Automapping;
using FluentNHibernate.Cfg;
using FluentNHibernate.Cfg.Db;
using NHibernate;
using NHibernate.Cfg;
using NHibernate.Tool.hbm2ddl;

namespace NHSample2
{
class Config
{
public static Configuration GenerateMapping(IPersistenceConfigurer dbType)
{
var cfg = dbType.ConfigureProperties(new Configuration());

new AutoPersistenceModel()
.Where(x => x.Namespace.EndsWith("Domain"))
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly).Configure(cfg);

return cfg;
}

public static void GenerateDbScript(Configuration config, string filePath)
{
bool script = true;//فقط اسکریپت دیتابیس تولید گردد
bool export = false;//نیازی نیست بر روی دیتابیس هم اجرا شود
new SchemaExport(config).SetOutputFile(filePath).Create(script, export);
}

public static void BuildDbSchema(Configuration config)
{
bool script = false;//آیا خروجی در کنسول هم نمایش داده شود
bool export = true;//آیا بر روی دیتابیس هم اجرا شود
bool drop = false;//آیا اطلاعات موجود دراپ شوند
new SchemaExport(config).Execute(script, export, drop);
}

public static void CreateSQL2008DbPlusScript(string connectionString, string filePath)
{
Configuration cfg =
GenerateMapping(
MsSqlConfiguration
.MsSql2008
.ConnectionString(connectionString)
.ShowSql()
);
GenerateDbScript(cfg, filePath);
BuildDbSchema(cfg);
}

public static ISessionFactory CreateSessionFactory(IPersistenceConfigurer dbType)
{
return
Fluently.Configure().Database(dbType)
.Mappings(m => m.AutoMappings
.Add(
new AutoPersistenceModel()
.Where(x => x.Namespace.EndsWith("Domain"))
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly))
)
.BuildSessionFactory();
}
}
}

در متد GenerateMapping از قابلیت Automapping موجود در فریم ورک Fluent Nhibernate استفاده شده است (بدون نوشتن حتی یک سطر جهت تعریف این نگاشت‌ها). این متد نوع دیتابیس مورد نظر را جهت ساخت تنظیمات خود دریافت می‌کند. سپس با کمک کلاس AutoPersistenceModel این فریم ورک، به صورت خودکار از اسمبلی برنامه نگاشت‌های لازم را به کلاس‌های موجود در پوشه Domain ما اضافه می‌کند (مرسوم است که این پوشه در یک پروژه Class library مجزا تعریف شود که در این برنامه جهت سهولت کار در خود برنامه قرار گرفته است). قسمت Where ذکر شده به این جهت معرفی گردیده است تا Fluent Nhibernate برای تمامی کلاس‌های موجود در اسمبلی جاری، سعی در تعریف نگاشت‌های لازم نکند. این نگاشت‌ها تنها به کلاس‌های موجود در پوشه دومین ما محدود شده‌اند.
سه متد بعدی آن، جهت ایجاد اسکریپت دیتابیس از روی این نگاشت‌های تعریف شده و سپس اجرای این اسکریپت بر روی دیتابیس جاری معرفی شده، تهیه شده‌اند. برای مثال CreateSQL2008DbPlusScript یک مثال ساده از استفاده دو متد قبلی جهت ایجاد اسکریپت و دیتابیس متناظر اس کیوال سرور 2008 بر اساس نگاشت‌های برنامه است.
با متد CreateSessionFactory در قسمت‌های قبل آشنا شده‌اید. تنها تفاوت آن در این قسمت، استفاده از کلاس AutoPersistenceModel جهت تولید خودکار نگاشت‌ها است.

در ادامه دیتابیس متناظر با موجودیت‌های برنامه را ایجاد خواهیم کرد:

using System;

namespace NHSample2
{
class Program
{
static void Main(string[] args)
{
Config.CreateSQL2008DbPlusScript(
"Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true",
"db.sql");

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}

پس از اجرای برنامه، ابتدا فایل اسکریپت دیتابیس به نام db.sql در پوشه اجرایی برنامه تشکیل خواهد شد و سپس این اسکریپت به صورت خودکار بر روی دیتابیس معرفی شده اجرا می‌گردد. دیتابیس دیاگرام حاصل را در شکل زیر می‌توانید ملاحظه نمائید:



همچنین اسکریپت تولید شده آن، صرفنظر از عبارات drop اولیه، به صورت زیر است:

create table [Category] (
Id INT IDENTITY NOT NULL,
CategoryName NVARCHAR(255) null,
primary key (Id)
)

create table [User] (
Id INT IDENTITY NOT NULL,
UserName NVARCHAR(255) null,
Password NVARCHAR(255) null,
primary key (Id)
)

create table [News] (
Id UNIQUEIDENTIFIER not null,
Subject NVARCHAR(255) null,
NewsText NVARCHAR(255) null,
DateEntered DATETIME null,
Category_id INT null,
User_id INT null,
primary key (Id)
)

alter table [News]
add constraint FKE660F9E1C9CF79
foreign key (Category_id)
references [Category]

alter table [News]
add constraint FKE660F95C1A3C92
foreign key (User_id)

references [User]

اکنون یک سری گروه خبری، کاربر و خبر را به دیتابیس خواهیم افزود:

using System;
using FluentNHibernate.Cfg.Db;
using NHibernate;
using NHSample2.Domain;

namespace NHSample2
{
class Program
{
static void Main(string[] args)
{
using (ISessionFactory sessionFactory = Config.CreateSessionFactory(
MsSqlConfiguration
.MsSql2008
.ConnectionString("Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true")
.ShowSql()
))
{
using (ISession session = sessionFactory.OpenSession())
{
using (ITransaction transaction = session.BeginTransaction())
{
//با توجه به کلیدهای خارجی تعریف شده ابتدا باید گروه‌ها را اضافه کرد
Category ca = new Category() { CategoryName = "Sport" };
session.Save(ca);
Category ca2 = new Category() { CategoryName = "IT" };
session.Save(ca2);
Category ca3 = new Category() { CategoryName = "Business" };
session.Save(ca3);

//سپس یک کاربر را به دیتابیس اضافه می‌کنیم
User u = new User() { Password = "123$5@1", UserName = "VahidNasiri" };
session.Save(u);

//اکنون می‌توان یک خبر جدید را ثبت کرد

News news = new News()
{
Category = ca,
User = u,
DateEntered = DateTime.Now,
Id = Guid.NewGuid(),
NewsText = "متن خبر جدید",
Subject = "عنوانی دلخواه"
};
session.Save(news);

transaction.Commit(); //پایان تراکنش
}
}
}

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}
جهت بررسی انجام عملیات ثبت هم می‌توان به دیتابیس مراجعه کرد، برای مثال:



و یا می‌توان از LINQ استفاده کرد:
برای مثال کاربر VahidNasiri تعریف شده را یافته، اطلاعات آن‌را نمایش دهید؛ سپس نام او را به Vahid ویرایش کرده و دیتابیس را به روز کنید.

برای اینکه کوئری‌های LINQ ما شبیه به LINQ to SQL شوند، کلاس NewsContext را به صورت ذیل تشکیل می‌دهیم. این کلاس از کلاس پایه NHibernateContext مشتق شده و سپس به ازای تمام موجودیت‌های برنامه، یک متد از نوع IOrderedQueryable را تشکیل خواهیم داد.

using System.Linq;
using NHibernate;
using NHibernate.Linq;
using NHSample2.Domain;

namespace NHSample2
{
class NewsContext : NHibernateContext
{
public NewsContext(ISession session)
: base(session)
{ }

public IOrderedQueryable<News> News
{
get { return Session.Linq<News>(); }
}

public IOrderedQueryable<Category> Categories
{
get { return Session.Linq<Category>(); }
}

public IOrderedQueryable<User> Users
{
get { return Session.Linq<User>(); }
}
}
}
اکنون جهت یافتن کاربر و به روز رسانی اطلاعات او در دیتابیس خواهیم داشت:

using System;
using FluentNHibernate.Cfg.Db;
using NHibernate;
using System.Linq;
using NHSample2.Domain;

namespace NHSample2
{
class Program
{
static void Main(string[] args)
{
using (ISessionFactory sessionFactory = Config.CreateSessionFactory(
MsSqlConfiguration
.MsSql2008
.ConnectionString("Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true")
.ShowSql()
))
{
using (ISession session = sessionFactory.OpenSession())
{
using (ITransaction transaction = session.BeginTransaction())
{
using (NewsContext db = new NewsContext(session))
{
var query = from x in db.Users
where x.UserName == "VahidNasiri"
select x;

//اگر چیزی یافت شد
if (query.Any())
{
User vahid = query.First();
//نمایش اطلاعات کاربر
Console.WriteLine("Id: {0}, UserName: {0}", vahid.Id, vahid.UserName);
//به روز رسانی نام کاربر
vahid.UserName = "Vahid";
session.Update(vahid);

transaction.Commit(); //پایان تراکنش
}
}
}
}
}

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}
مباحث تکمیلی AutoMapping

اگر به اسکریپت دیتابیس تولید شده دقت کرده باشید، عملیات AutoMapping یک سری پیش فرض‌هایی را اعمال کرده است. برای مثال فیلد Id را از نوع identity و به صورت کلید تعریف کرده، یا رشته‌ها را به صورت nvarchar با طول 255 ایجاد نموده است. امکان سفارشی سازی این موارد نیز وجود دارد.

مثال:

using FluentNHibernate.Conventions.Helpers;

public static Configuration GenerateMapping(IPersistenceConfigurer dbType)
{
var cfg = dbType.ConfigureProperties(new Configuration());

new AutoPersistenceModel()
.Conventions.Add()
.Where(x => x.Namespace.EndsWith("Domain"))
.Conventions.Add(
PrimaryKey.Name.Is(x => "ID"),
DefaultLazy.Always(),
ForeignKey.EndsWith("ID"),
Table.Is(t => "tbl" + t.EntityType.Name)
)
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly)
.Configure(cfg);

return cfg;
}

تابع GenerateMapping معرفی شده را اینجا با قسمت Conventions.Add تکمیل کرده‌ایم. به این صورت دقیقا مشخص شده است که فیلدهایی با نام ID باید primary key در نظر گرفته شوند، همواره lazy loading صورت گیرد و نام کلید خارجی به ID ختم شود. همچنین نام جداول با tbl شروع گردد.
روش دیگری نیز برای معرفی این قرار دادها و پیش فرض‌ها وجود دارد. فرض کنید می‌خواهیم طول رشته پیش فرض را از 255 به 500 تغییر دهیم. برای اینکار باید اینترفیس IPropertyConvention را پیاده سازی کرد:

using FluentNHibernate.Conventions;
using FluentNHibernate.Conventions.Instances;

namespace NHSample2.Conventions
{
class MyStringLengthConvention : IPropertyConvention
{
public void Apply(IPropertyInstance instance)
{
instance.Length(500);
}
}
}
سپس نحوه‌ی معرفی آن به صورت زیر خواهد بود:

public static Configuration GenerateMapping(IPersistenceConfigurer dbType)
{
var cfg = dbType.ConfigureProperties(new Configuration());

new AutoPersistenceModel()
.Conventions.Add()
.Where(x => x.Namespace.EndsWith("Domain"))
.Conventions.Add<MyStringLengthConvention>()
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly)
.Configure(cfg);

return cfg;
}

نکته:
اگر برای یافتن اطلاعات بیشتر در این مورد در وب جستجو کنید، اکثر مثال‌هایی را که مشاهده خواهید کرد بر اساس نگارش بتای fluent NHibernate هستند و هیچکدام با نگارش نهایی این فریم ورک کار نمی‌کنند. در نگارش رسمی نهایی ارائه شده، تغییرات بسیاری صورت گرفته که آن‌ها را در این آدرس می‌توان مشاهده کرد.

دریافت سورس برنامه قسمت ششم


ادامه دارد ...

مطالب
بررسی روش مشاهده خروجی SQL حاصل از کوئری‌های Entity framework Core
هنوز تا Entity framework Core 1.1، مفهوم interceptors موجود در EF 6.x پیاده سازی نشده‌است. اما شبیه به مفاهیم «ارتقاء به ASP.NET Core 1.0 - قسمت 17 - بررسی فریم ورک Logging»، در EF Core نیز زیرساختی جهت مشاهده‌ی SQL نهایی تولیدی وجود دارد.


ایجاد یک ثبت کننده‌ی وقایع EF Core

مرحله‌ی اول مشاهده‌ی خروجی‌های نهایی EF Core، پیاده سازی اینترفیس ILoggerProvider است که در آن قرار است وهله‌ی از نوع ILogger بازگشت داده شود. به همین جهت یک کلاس تو در توی خصوصی را در اینجا مشاهده می‌کنید که اینترفیس ILogger را نیز پیاده سازی کرده‌است:
using System;
using Microsoft.Extensions.Logging;

namespace Tests
{
    public class MyLoggerProvider : ILoggerProvider
    {
        public ILogger CreateLogger(string categoryName)
        {
            return new MyLogger();
        }

        public void Dispose()
        { }

        private class MyLogger : ILogger
        {
            public bool IsEnabled(LogLevel logLevel)
            {
                return true;
            }

            public void Log<TState>(
                        LogLevel logLevel, 
                        EventId eventId, 
                        TState state, 
                        Exception exception, 
                        Func<TState, Exception, string> formatter)
            {
                //File.AppendAllText(@"C:\temp\log.txt", formatter(state, exception));
                Console.WriteLine("");
                Console.WriteLine(formatter(state, exception));
            }

            public IDisposable BeginScope<TState>(TState state)
            {
                return null;
            }
        }
    }
}
در اینجا خروجی‌هایی نهایی توسط Console.WriteLine نمایش داده شده‌اند و مناسب برنامه‌های کنسول هستند و یا می‌توان برای مثال توسط File.AppendAllText، اطلاعات رسیده را در یک فایل نیز ذخیره کرد.
در متد Log:
- پارامتر logLevel، سطح اهمیت اطلاعات رسیده را به همراه دارد. برای مثال اطلاعات است یا خطا؟
برای مثال شاید نیاز به ذخیره سازی اطلاعاتی با سطح‌های بحرانی، خطا و یا اخطار در یک بانک اطلاعاتی وجود داشته باشد:
   if (logLevel == LogLevel.Critical || logLevel == LogLevel.Error || logLevel == LogLevel.Warning)
- eventId: نوع رخداد رسیده را مشخص می‌کند.
- state: می‌تواند هر نوع شیءایی، حاوی اطلاعات وضعیت رخداد رسیده باشد.
- exception: بیانگر استثنای احتمالی رخ داده است.
- formatter: کار آن تولید یک رشته‌ی قابل خواندن، توسط اطلاعات حالت و استثناء است.


معرفی Logger تهیه شده به برنامه

پس از تهیه‌ی Logger فوق، جهت معرفی آن به یک برنامه‌ی کنسول، می‌توان به صورت ذیل عمل کرد:
using (var db = new MyContext())
{
   var loggerFactory = (ILoggerFactory)db.GetInfrastructure().GetService(typeof(ILoggerFactory));
   loggerFactory.AddProvider(new MyLoggerProvider());
 }
این ثبت تنها باید یکبار در آغاز برنامه انجام شود و پس از آن تمام وهله‌ی دیگر Context از آن استفاده خواهند کرد.

در برنامه‌های ASP.NET Core، کار معرفی MyLoggerProvider در متد Configure کلاس آغازین برنامه انجام می‌شود:
public void Configure(ILoggerFactory loggerFactory)
{
   loggerFactory.AddProvider(new MyLoggerProvider());


اختصاصی سازی ثبت وقایع رسیده

کلاس MyLoggerProvider، هر نوع اطلاعات داخلی EF Core را نیز لاگ می‌کند. اگر هدف صرفا بررسی خروجی SQL نهایی تولیدی است، می‌توان در متد ذیل:
public ILogger CreateLogger(string categoryName)
بر اساس categoryName رسیده، یا new MyLogger را بازگشت داده و یا یک NullLogger.Instance را که کاری را انجام نمی‌دهد. به این ترتیب می‌توان کار فیلتر کردن اطلاعات رسیده را انجام داد.
برای این منظور، ابتدای Logger تهیه شده چنین شکلی را پیدا می‌کند:
using Microsoft.EntityFrameworkCore.Storage.Internal;
using Microsoft.Extensions.Logging.Abstractions;
using Microsoft.Extensions.Logging;
using System.Linq;
using System;
 
namespace Tests
{
    public class MyLoggerProvider : ILoggerProvider
    {
        private static readonly string[] _categories =
            {
                typeof(RelationalCommandBuilderFactory).FullName,
                typeof(SqlServerConnection).FullName
            };
        public ILogger CreateLogger(string categoryName)
        {
            if (_categories.Contains(categoryName))
            {
                return new MyLogger();
            }
 
            return NullLogger.Instance;
        }
مطالب
OpenCVSharp #9
تغییر اندازه، و چرخش تصاویر

در OpenCV با استفاده از مفهومی به نام affine transform، امکان تغییر اندازه و همچنین چرخش تصاویر میسر می‌شود. در اینجا، تصویر در یک ماتریس دو در سه ضرب می‌شود تا انتقالات یاد شده، انجام شوند.
private static void rotateImage(double angle, double scale, Mat src, Mat dst)
{
    var imageCenter = new Point2f(src.Cols / 2f, src.Rows / 2f);
    var rotationMat = Cv2.GetRotationMatrix2D(imageCenter, angle, scale);
    Cv2.WarpAffine(src, dst, rotationMat, src.Size());
}
متد فوق کار چرخش تصویر مبدا (src) را به تصویر مقصد (dst) انجام می‌دهد. این عملیات توسط متد WarpAffine مدیریت شده و مهم‌ترین پارامتر آن، پارامتر سوم آن است که ماتریس تعریف کننده‌ی انتقالات تعریف شده توسط متد GetRotationMatrix2D است. در اینجا مرکز مشخص شده، زاویه و مقیاس، نحوه‌ی چرخش را تعریف می‌کنند.
برای مشاهده‌ی بهتر تاثیر پارامترهای مختلف در اینجا، به مثال ذیل دقت کنید:
using OpenCvSharp;
using OpenCvSharp.CPlusPlus;
 
namespace OpenCVSharpSample09
{
    class Program
    {
        static void Main(string[] args)
        {
            using (var src = new Mat(@"..\..\Images\Penguin.Png", LoadMode.AnyDepth | LoadMode.AnyColor))
            using (var dst = new Mat())
            {
                src.CopyTo(dst);
 
                using (var window = new Window("Resize/Rotate/Blur",
                                                image: dst, flags: WindowMode.AutoSize))
                {
                    var angle = 0.0;
                    var scale = 0.7;
 
                    var angleTrackbar = window.CreateTrackbar(
                        name: "Angle", value: 0, max: 180,
                        callback: pos =>
                        {
                            angle = pos;
                            rotateImage(angle, scale, src, dst);
                            window.Image = dst;
                        });
 
                    var scaleTrackbar = window.CreateTrackbar(
                        name: "Scale", value: 1, max: 10,
                        callback: pos =>
                        {
                            scale = pos / 10f;
                            rotateImage(angle, scale, src, dst);
                            window.Image = dst;
                        }); 
 
                    angleTrackbar.Callback.DynamicInvoke(0);
                    scaleTrackbar.Callback.DynamicInvoke(1);
 
                    Cv2.WaitKey();
                }
            }
        }
 
        private static void rotateImage(double angle, double scale, Mat src, Mat dst)
        {
            var imageCenter = new Point2f(src.Cols / 2f, src.Rows / 2f);
            var rotationMat = Cv2.GetRotationMatrix2D(imageCenter, angle, scale);
            Cv2.WarpAffine(src, dst, rotationMat, src.Size());
        }
    }
}
با این خروجی:


در این مثال، مانند مطلب قسمت قبل، ابتدا یک پنجره‌ی سازگار با C++ API ایجاد شده و سپس دو tracker به آن اضافه شده‌اند. این trackers کار دریافت ورودی اطلاعات را از کاربر به عهده دارند (دریافت مقادیر زاویه‌ی چرخش و مقیاس) و مقادیر دریافتی از آن‌ها، در نهایت به متد rotateImage ارسال می‌شوند. این متد کار چرخش و تغییر مقیاس تصویر اصلی را انجام داده و نتیجه را به تصویر dst کپی می‌کند. در آخر تصویر dst در پنجره به روز شده و نمایش داده می‌شود.


تغییر اندازه‌ی تصاویر

اگر صرفا قصد تغییر اندازه‌ی تصاویر را دارید (بدون چرخش آن‌ها)، متد ویژه‌ای به نام Resize برای این منظور تدارک دیده شده‌است:
var resizeTrackbar = window.CreateTrackbar(
    name: "Resize", value: 1, max: 100,
    callback: pos =>
    {
        Cv2.Resize(src, dst,
            new Size(src.Width + pos, src.Height + pos),
            interpolation: Interpolation.Cubic);
        window.Image = dst;
    });
در اینجا یک tracker دیگر به پنجره‌ی اصلی اضافه شده و توسط آن کار تعیین تغییر اندازه‌ی تصویر انجام می‌شود. نکته‌ی مهم این متد، امکان تعیین الگوریتم تغییر اندازه است که برای مثال در اینجا از Interpolation.Cubic استفاده شده‌است (احتمالا با این نام‌ها در برنامه‌های معروف کار با تصاویر، مانند فتوشاپ آشنایی دارید).

اگر می‌خواهید مقادیر پارامترهای چرخشی تصویر نیز در اینجا اعمال شوند، می‌توان به نحو ذیل عمل کرد:
var resizeTrackbar = window.CreateTrackbar(
    name: "Resize", value: 1, max: 100,
    callback: pos =>
    {
        rotateImage(angle, scale, src, dst);
        Cv2.Resize(dst, dst,
            new Size(src.Width + pos, src.Height + pos),
            interpolation: Interpolation.Cubic);
        window.Image = dst;
    });
در این کد ابتدا تصویر اصلی چرخش یافته و سپس در متد Resize از این تصویر چرخش یافته، به عنوان src استفاده می‌شود (هر دو پارامتر متد Resize به dst تنظیم شده‌اند).



مات کردن تصاویر

در OpenCV با استفاده از متدهای GaussianBlur و یا medianBlur ، می‌توان تصاویر را  مات کرد که نمونه‌ای از آن‌را در ادامه ملاحظه می‌کنید:
var blurTrackbar = window.CreateTrackbar(
   name: "Blur", value: 1, max: 100,
   callback: pos =>
   {
       if (pos % 2 == 0) pos++;
 
       rotateImage(angle, scale, src, dst);
       Cv2.GaussianBlur(dst, dst, new Size(pos, pos), sigmaX: 0);
       window.Image = dst;
   });
در اینجا ابتدا تصویر اصلی به متد چرخش تصویر ارسال شده و نتیجه‌ی آن در متد GaussianBlur استفاده خواهد شد. اندازه‌ی مشخص شده‌ی در این متد باید توسط اعداد فرد تعیین گردد. پارامتر sigmaX به معنای standard deviation در جهت x است و اگر صفر تعیین شود، برای محاسبه‌ی آن از پارامتر اندازه‌ی تعیین شده کمک گرفته خواهد شد.



کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
امکان تعریف ساده‌تر کلاس‌های Immutable در C# 9.0 با معرفی نوع جدید record
در مطلب معرفی خواص init-only، با روش معرفی خواص immutable آشنا شدیم. نوع جدیدی که به C# 9.0 به نام record اضافه شده‌است، قسمتی از آن بر اساس همان خواص init-only کار می‌کند. به همین جهت مطالعه‌ی آن مطلب، پیش از ادامه‌ی بحث جاری، ضروری است.


چرا در C# 9.0 تا این اندازه بر روی سادگی ایجاد اشیاء Immutable تمرکز شده‌است؟

به شیءای Immutable گفته می‌شود که پس از وهله سازی ابتدایی آن، وضعیت آن دیگر قابل تغییر نباشد. همچنین به کلاسی Immutable گفته می‌شود که تمام وهله‌های ساخته شده‌ی از آن نیز Immutable باشند. نمونه‌ی یک چنین شیءای را از نگارش 1 دات نت در حال استفاده هستیم: رشته‌ها. رشته‌ها در دات نت غیرقابل تغییر هستند و هرگونه تغییری بر روی آن‌ها، سبب ایجاد یک رشته‌ی جدید (یک شیء جدید) می‌شود. نوع جدید record نیز به همین صورت عمل می‌کند.

مزایای وجود Immutability:

- اشیاء Immutable یا غیرقابل تغییر، thread-safe هستند که در نتیجه، برنامه نویسی همزمان و موازی را بسیار ساده می‌کنند؛ چون چندین thread می‌توانند با شیءای کار کنند که دسترسی به آن، تنها read-only است.
- اشیاء Immutable از اثرات جانبی، مانند تغییرات آن‌ها در متدهای مختلف در امان هستند. می‌توانید آن‌ها را به هر متدی ارسال کنید و مطمئن باشید که پس از پایان کار، این شیء تغییری نکرده‌است.
- کار با اشیاء Immutable، امکان بهینه سازی حافظه را میسر می‌کنند. برای مثال NET runtime.، هش رشته‌های تعریف شده‌ی در برنامه را در پشت صحنه نگهداری می‌کند تا مطمئن شود که تخصیص حافظه‌ی اضافی، برای رشته‌های تکراری صورت نمی‌گیرد. نمونه‌ی دیگر آن نمایش حرف "a" در یک ادیتور یا نمایشگر است. زمانیکه یک شیء Immutable حاوی اطلاعات حرف "a"، ایجاد شود، به سادگی می‌توان این تک وهله را جهت نمایش هزاران حرف "a" مورد استفاده‌ی مجدد قرار داد، بدون اینکه نگران مصرف حافظه‌ی بالای برنامه باشیم.
- کار با اشیاء Immutable به باگ‌های کمتری ختم می‌شود؛ چون همواره امکان تغییر حالت درونی یک شیء، توسط قسمت‌های مختلف برنامه، می‌تواند به باگ‌های ناخواسته‌ای منتهی شوند.
- Hash list‌ها که در جهت بهبود کارآیی برنامه‌ها بسیار مورد استفاده قرار می‌گیرند، بر اساس کلیدهایی Immutable قابل تشکیل هستند.


روش تعریف نوع‌های جدید record

کلاس ساده‌ی زیر را در نظر بگیرید:
public class User
{
   public string Name { set; get; }
}
برای تبدیل آن به یک نوع جدید record فقط کافی است واژه‌ی کلیدی class آن‌را با record جایگزین کنیم (به آن nominal record هم می‌گویند):
public record User
{
   public string Name { set; get; }
}
نحوه‌ی کار با آن و وهله سازی آن نیز دقیقا مانند کلاس‌ها است:
var user = new User();
user.Name = "User 1";
و ... در اینجا امکان انتساب مقداری به خاصیت Name وجود دارد؛ یعنی این خاصیت به صورت پیش‌فرض Immutable نیست.

روش تعریف دومی نیز در اینجا میسر است (به آن positional record هم می‌گویند):
public record User(string Name);
با این‌کار، به صورت خودکار یک record جدید تشکیل می‌شود که به همراه خاصیت Name است؛ چیزی شبیه به record قبلی که تعریف کردیم (به همین جهت نیاز است نام آن‌را شروع شده‌ی با حروف بزرگ درنظر بگیریم). با این تفاوت که این record، اینبار دارای سازنده است و همچنین خاصیت Name آن از نوع init-only است. در این حالت است که کل record به صورت immutable معرفی می‌شود؛ وگرنه روش تعریف یک خاصیت معمولی که از نوع init-only نیست (مانند مثال اول)، سبب بروز Immutability نخواهد شد.

برای کار با رکورد دومی که تعریف کردیم باید سازند‌ه‌ی این record را مقدار دهی کرد:
var user = new User("User 1");
// Error: Init-only property or indexer 'User.Name' can only be assigned
// in an object initializer, or on 'this' or 'base' in an instance constructor
// or an 'init' accessor. [CS9Features]csharp(CS8852)
user.Name = "User 1";
و همانطور که ملاحظه می‌کنید، چون خاصیت Name از نوع init-only است و در سازنده‌ی record تعریف شده مقدار دهی شده‌است، دیگر نمی‌توان آن‌را مقدار دهی مجدد کرد. همچنین در اینجا امکان استفاده‌ی از object initializers مانند new User { Name = "User 1" } نیز وجود ندارد؛ چون به همراه یک سازنده‌ی به صورت خودکار تولید شده‌است که خاصیتی init-only را مقدار دهی کرده‌است.


نوع جدید record چه اطلاعاتی را به صورت خودکار تولید می‌کند؟

روش دوم تعریف recordها اگر در نظر بگیریم:
public record User(string Name);
و در این حالت برنامه را کامپایل کنیم، به کدهای زیر که حاصل از دی‌کامپایل است، می‌رسیم:
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Text;
using CS9Features;

public class User : IEquatable<User>
{
 protected virtual Type EqualityContract
 {
  [System.Runtime.CompilerServices.NullableContext(1)]
  [CompilerGenerated]
  get
  {
   return typeof(User);
  }
 }

 public string Name
 {
  get;
  set/*init*/;
 }

 public User(string Name)
 {
  this.Name = Name;
  base..ctor();
 }

 public override string ToString()
 {
  StringBuilder stringBuilder = new StringBuilder();
  stringBuilder.Append("User");
  stringBuilder.Append(" { ");
  if (PrintMembers(stringBuilder))
  {
   stringBuilder.Append(" ");
  }
  stringBuilder.Append("}");
  return stringBuilder.ToString();
 }

 protected virtual bool PrintMembers(StringBuilder builder)
 {
  builder.Append("Name");
  builder.Append(" = ");
  builder.Append((object?)Name);
  return true;
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator !=(User? r1, User? r2)
 {
  return !(r1 == r2);
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator ==(User? r1, User? r2)
 {
  return (object)r1 == r2 || (r1?.Equals(r2) ?? false);
 }

 public override int GetHashCode()
 {
  return EqualityComparer<Type>.Default.GetHashCode(EqualityContract) * -1521134295 + EqualityComparer<string>.Default.GetHashCode(Name);
 }

 public override bool Equals(object? obj)
 {
  return Equals(obj as User);
 }

 public virtual bool Equals(User? other)
 {
  return (object)other != null && EqualityContract == other!.EqualityContract && EqualityComparer<string>.Default.Equals(Name, other!.Name);
 }

 public virtual User <Clone>$()
 {
  return new User(this);
 }

 protected User(User original)
 {
  Name = original.Name;
 }

 public void Deconstruct(out string Name)
 {
  Name = this.Name;
 }
}
این خروجی به صورت خودکار تولید شده‌ی توسط کامپایلر، چنین نکاتی را به همراه دارد:
- record‌ها هنوز هم در اصل همان class‌های استاندارد #C هستند (یعنی در اصل reference type هستند).
- این کلاس به همراه یک سازنده و یک خاصیت init-only است (بر اساس تعاریف ما).
- متد ToString آن بازنویسی شده‌است تا اگر آن‌را بر روی شیء حاصل، فراخوانی کردیم، به صورت خودکار نمایش زیبایی را از محتوای آن ارائه دهد.
- این کلاس از نوع  <IEquatable<User است که امکان مقایسه‌ی اشیاء record را به سادگی میسر می‌کند. برای این منظور متدهای GetHashCode و Equals آن به صورت خودکار بازنویسی و تکمیل شده‌اند (یعنی مقایسه‌ی آن شبیه به value-type است).
- این کلاس امکان clone کردن اطلاعات جاری را مهیا می‌کند.
- همچنین به همراه یک متد Deconstruct هم هست که جهت انتساب خواص تعریف شده‌ی در آن، به یک tuple مفید است.

بنابراین یک رکورد به همراه قابلیت‌هایی است که سال‌ها در زبان #C وجود داشته‌اند و شاید ما به سادگی حاضر به تشکیل و تکمیل آن‌ها نمی‌شدیم؛ اما اکنون کامپایلر زحمت کدنویسی خودکار آن‌ها را متقبل می‌شود!


ساخت یک وهله‌ی جدید از یک record با clone کردن آن

اگر به کدهای حاصل از دی‌کامپایل فوق دقت کنید، یک قسمت جدید clone هم با syntax خاصی در آن ظاهر شده‌است:
public virtual User <Clone>$()
{
  return new User(this);
}
زمانیکه یک شیء Immutable است، دیگر نمی‌توان مقادیر خواص آن‌را در ادامه تغییر داد. اما اگر نیاز به اینکار وجود داشت، باید چکار کنیم؟ در C# 9.0 برای ایجاد وهله‌ی جدید معادلی از یک record، واژه‌ی کلیدی جدیدی را به نام with، اضافه کرده‌اند. برای نمونه اگر record زیر را در نظر بگیریم که دارای دو خاصیت نام و سن است:
public record User(string Name, int Age);
وهله سازی متداول آن به صورت زیر خواهد بود:
var user1 = new User("User 1", 21);
اما اگر خواستیم خاصیت سن آن‌را تغییر دهیم، می‌توان با استفاده از واژه‌ی کلیدی with، به صورت زیر عمل کرد:
var user2 = user1 with { Age = 31 };
کاری که در اصل در اینجا انجام می‌شود، ابتدا clone کردن شیء user1 است (یعنی دقیقا یک وهله‌ی جدید از user1 را با تمام اطلاعات قبلی آن در اختیار ما قرار می‌دهد که این وهله، ارجاعی را به شیء قبلی ندارد و از آن منقطع است). بنابراین نام user2، دقیقا همان "User 1" است که پیشتر تنظیم کردیم؛ با این تفاوت که اینبار مقدار سن آن متفاوت است. با استفاده از cloning، هنوز شیء user1 که immutable است، دست نخورده باقی مانده‌است و توسط with می‌توان خواص آن‌را تغییر داد و حاصل کار، یک شیء کاملا جدید است که مکان آن در حافظه، با مکان شیء user1 در حافظه، یکی نیست.


مقایسه‌ی نوع‌های record

در کدهای حاصل از دی‌کامپایل فوق، قسمت عمده‌ای از آن به تکمیل اینترفیس <IEquatable<User پرداخته شده بود. به همین جهت اکنون دو رکورد با مقادیر خواص یکسانی را ایجاد می‌کنیم:
var user1 = new User("User 1", 21);
var user2 = new User("User 1", 21);
سپس یکبار آن‌ها را از طریق عملگر == و بار دیگر به کمک متد Equals، مقایسه می‌کنیم:
Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
خروجی هر دو حالت، True است:
user1.Equals(user2) -> True
user1 == user2 -> True
این مورد، یکی از مهم‌ترین تفاوت‌های recordها با classها هستند.
- زمانیکه عملگر == را بر روی شیء user1 و user2 اعمال می‌کنیم، اگر User، از نوع کلاس معمولی باشد، حاصل آن false خواهد بود؛ چون این دو، به یک مکان از حافظه اشاره نمی‌کنند، حتی با اینکه مقادیر خواص هر دو شیء یکی است.
- اما اگر به قطعه کد دی‌کامپایل شده دقت کنید، در یک رکورد که هر چند در اصل یک کلاس است، حتی عملگر == نیز بازنویسی شده‌است تا در پشت صحنه همان متد Equals را فراخوانی کند و این متد با توجه به پیاده سازی اینترفیس <IEquatable<User، اینبار دقیقا مقادیر خواص رکورد را یک به یک مقایسه کرده و نتیجه‌ی حاصل را باز می‌گرداند:
public virtual bool Equals(User? other)
{
   return (object)other != null &&
 EqualityContract == other!.EqualityContract &&
 EqualityComparer<string>.Default.Equals(Name, other!.Name) && 
EqualityComparer<int>.Default.Equals(Age, other!.Age);
}
این متدی است که به صورت خودکار توسط کامپایلر جهت مقایسه‌ی مقادیر خواص رکورد جدید تعریف شده، تشکیل شده‌است. به عبارتی recordها از لحاظ مقایسه، شبیه به value objects عمل می‌کنند؛ هرچند در اصل یک کلاس هستند.

یک نکته: بازنویسی عملگر == در SDK نگارش rc2 فعلی رخ‌داده‌است و در نگارش‌های قبلی preview، اینگونه نبود.


امکان ارث‌بری در recordها

دو رکورد زیر را در نظر بگیرید که اولی به همراه Name است و نمونه‌ی مشتق شده‌ی از آن، خاصیت init-only سن را نیز به همراه دارد:
    public record User
    {
        public string Name { get; init; }

        public User(string name)
        {
            Name = name;
        }
    }

    public record UserWithAge : User
    {
        public int Age { get; init; }

        public UserWithAge(string name, int age) : base(name)
        {
            Age = age;
        }
    }
در اینجا روش دیگر تعریف recordها را ملاحظه می‌کنید که شبیه به کلاس‌ها است و خواص آن init-only هستند. در این حالت اگر مقایسه‌ی زیر را انجام دهیم:
var user1 = new User("User 1");
var user2 = new UserWithAge("User 1", 21);

Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
به خروجی زیر خواهیم رسید:
user1.Equals(user2) -> False
user1 == user2 -> False
علت آن را هم پیشتر بررسی کردیم. تساوی رکوردها بر اساس مقایسه‌ی مقدار تک تک خواص آن‌ها صورت می‌گیرد و چون user1 به همراه سن نیست، مقایسه‌ی این دو، false را بر می‌گرداند.

امکان تعریف ارث‌بری رکوردها به صورت زیر نیز وجود دارد و الزاما نیازی به روش تعریف کلاس مانند آن‌ها، مانند مثال فوق نیست:
public abstract record Food(int Calories);
public record Milk(int C, double FatPercentage) : Food(C);


رکوردها متد ToString را بازنویسی می‌کنند

در مثال قبلی اگر یک ToString را بر روی اشیاء تشکیل شده فراخوانی کنیم:
Console.WriteLine(user1.ToString());
Console.WriteLine(user2.ToString());
به این خروجی‌ها می‌رسیم:
User { Name = User 1 }
UserWithAge { Name = User 1, Age = 21 }
که حاصل بازنویسی خودکار متد ToString در پشت صحنه است.


امکان استفاده‌ی از Deconstruct در رکوردها

دو روش برای تعریف رکوردها وجود دارند؛ یکی شبیه به تعریف کلاس‌ها است و دیگری تعریف یک سطری، که positional record نیز نامیده می‌شود:
public record Person(string Name, int Age);
 فقط در حالت تعریف یک سطری positional record فوق است که خروجی خودکار نهایی تولیدی، به همراه public void Deconstruct نیز خواهد بود:
public void Deconstruct(out string Name, out int Age)
{
  Name = this.Name;
  Age = this.Age;
}
در این حالت می‌توان از tuples نیز برای کار با آن استفاده کرد:
var (name, age) = new Person("User 1", 21);
واژه‌ی «positional» نیز دقیقا به همین قابلیت اشاره می‌کند که بر اساس موقعیت خواص تعریف شده‌ی در رکورد، امکان Deconstruct آن‌ها به متغیرهای یک tuple وجود دارد. حالت تعریف کلاس مانند رکوردها، nominal نام دارد.


امکان استفاده‌ی از نوع‌های record در ASP.NET Core 5x

سیستم model binding در ASP.NET Core 5x، از نوع‌های record نیز پشتیبانی می‌کند؛ یک مثال:
 public record Person([Required] string Name, [Range(0, 150)] int Age);

 public class PersonController
 {
   public IActionResult Index() => View();

   [HttpPost]
   public IActionResult Index(Person person)
   {
    // ...
   }
 }


پرسش و پاسخ

آیا نوع‌های record به صورت value type معرفی می‌شوند؟
پاسخ: خیر. رکوردها در اصل reference type هستند؛ اما از لحاظ مقایسه، شبیه به value types عمل می‌کنند.

آیا می‌توان در یک کلاس، خاصیتی از نوع رکورد را تعریف کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان در رکوردها، از struct و یا کلاس‌ها جهت تعریف خواص استفاده کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان از واژه‌ی کلیدی with با کلاس‌ها و یا structها استفاده کرد؟
پاسخ: خیر. این واژه‌ی کلیدی در C# 9.0 مختص به رکوردها است.

آیا رکوردها به صورت پیش‌فرض Immutable هستند؟
پاسخ: اگر آن‌ها را به صورت positional records تعریف کنید، بله. چون در این حالت خواص تشکیل شده‌ی توسط آن‌ها از نوع init-only هستند. در غیراینصورت، می‌توان خواص غیر init-only را نیز به تعریف رکوردها اضافه کرد.
مطالب دوره‌ها
مدیریت نگاشت ConnectionIdها در SignalR به کاربران واقعی سیستم
SignalR تنها از Context.ConnectionId خود با خبر است و بس. کاربران واقعی سیستم، پس از اعتبارسنجی می‌توانند با چندین و چند ConnectionId به سیستم متصل شوند؛ برای مثال گشودن چندین مرورگر یا باز کردن برگه‌های مختلف یک مرورگر و یا حتی استفاده از سایر کلاینت‌هایی که SignalR قابلیت کار کردن با آن‌ها را دارد. بنابراین باید بتوان بین ConnectionIdها و کاربران واقعی سیستم، تناظری را برقرار کرد و همچنین نباید تصور کرد که الزاما یک کاربر مساوی است با یک ConnectionId.


اعتبار سنجی کاربران در SignalR

تمام مباحث عنوان شده در مورد نحوه‌ی کار با Forms Authentication استاندارد یک برنامه وب، در SignalR نیز قابل دسترسی است. پس از اینکه کاربری به سایت وارد شد (با استفاده از روش‌های متداول؛ مانند یک صفحه‌ی لاگین)، اطلاعات او در یک Hub نیز قابل استفاده است. برای مثال می‌توان به خاصیت this.Context.User.Identity.IsAuthenticated دسترسی داشت.
به علاوه در این حالت برای محدود کردن دسترسی کاربران اعتبار سنجی نشده به یک هاب فقط کافی است فیلتر Authorize را به هاب اعمال کنیم. باید دقت داشت که این فیلتر در فضای نام Microsoft.AspNet.SignalR تعریف شده است.
[Authorize]
public class ChatHub : Hub
{
  //...
}


نگاشت اتصالات، به کاربران واقعی سیستم

public class User
    {
        public int Id { set; get; }
        public string Name { get; set; }
        // سایر خواص کاربر
        

        public HashSet<string> ConnectionIds { get; set; }
    }
با توجه به توضیحات ابتدای بحث، هر کاربر با چندین ConnectionId می‌تواند به سیستم متصل شود. بنابراین کلاس کاربران، دارای یک خاصیت اضافی که نیازی هم نیست تا به بانک اطلاعاتی نگاشت شود، به نام ConnectionIds همانند کلاس فوق خواهد بود.
سپس باید لیست اتصالات کاربر را در هربار اتصال و قطع اتصال او به روز کرد:
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR;

namespace SignalR05.Common
{
    public class User
    {
        public int Id { set; get; }
        public string Name { get; set; }
        // سایر خواص کاربر


        public HashSet<string> ConnectionIds { get; set; }
    }

    public class ChatHubHub : Hub
    {
        private static readonly ConcurrentDictionary<string, User> Users = new ConcurrentDictionary<string, User>();

        public override Task OnConnected()
        {
            connect();
            return base.OnConnected();
        }

        private void connect()
        {
            var userName = Context.User.Identity.Name;
            var connectionId = Context.ConnectionId;

            var user = Users.GetOrAdd(userName,
                _ => new User
                {
                    Name = userName,
                    ConnectionIds = new HashSet<string>()
                });
            lock (user.ConnectionIds)
            {
                user.ConnectionIds.Add(connectionId);
            }
        }

        public override Task OnReconnected()
        {
            connect();
            return base.OnReconnected();
        }

        public override Task OnDisconnected()
        {
            var userName = Context.User.Identity.Name;
            var connectionId = Context.ConnectionId;

            User user;
            Users.TryGetValue(userName, out user);
            if (user != null)
            {
                lock (user.ConnectionIds)
                {
                    user.ConnectionIds.RemoveWhere(cid => cid.Equals(connectionId));

                    if (!user.ConnectionIds.Any())
                    {
                        User removedUser;
                        Users.TryRemove(userName, out removedUser);

                        ///Clients.Others.userDisconnected(userName);
                    }
                }
            }

            return base.OnDisconnected();
        }
    }
}
در این مثال با بازنویسی متدهای اتصال، اتصال مجدد و قطع اتصال یک کاربر، توانسته‌ایم:
الف) نگاشتی را بین یک Id اتصال و یک User واقعی سیستم برقرار کنیم.
ب) لیست اتصالات یک کاربر را نیز در اختیار داشته و در زمان قطع اتصال یکی از برگه‌های مرورگر او، تنها یکی از این Idهای اتصال را از لیست حذف خواهیم کرد.

اگر این لیست دیگر Id متصلی نداشت، با فراخوانی متد فرضی Clients.Others.userDisconnected، می‌توان به سایر کاربران مثلا یک Chat، خروج کامل این کاربر را اطلاع رسانی کرد.
با داشتن لیست اتصالات یک کاربر، می‌توان به سایر کاربران اطلاع داد که مثلا کاربر جدیدی به Chat room وارد شده است:
  Clients.AllExcept(user.ConnectionIds.ToArray()).userConnected(userName);
AllExcept در اینجا یعنی سایر کاربران منهای کاربرانی که Id اتصالات آن‌ها ذکر می‌شود. چون این Idها تمامی متعلق به یک کاربر هستند، فراخوانی فوق به معنای اطلاع رسانی به همه، منهای کاربر جاری متصل است.
مطالب دوره‌ها
کوئری نویسی مقدماتی در RavenDB
با شروع کوئری نویسی مقدماتی در RavenDB، در قسمت اول این مباحث، توسط فراخوانی متد Load یک سشن، آشنا شدید. در ادامه مباحث تکمیلی آن‌را مرور خواهیم کرد.

امکان استفاده از LINQ در RavenDB

RavenDB از LINQ جهت کوئری نویسی پشتیبانی می‌کند. برای استفاده از آن، در ادامه مطلب اول، ابتدا سرور RavenDB را اجرا نموده و سپس برنامه کنسول را به نحو ذیل تغییر دهید:
using System;
using System.Linq;
using Raven.Client.Document;
using RavenDBSample01.Models;

namespace RavenDBSample01
{
    class Program
    {
        static void Main(string[] args)
        {
            using (var store = new DocumentStore
            {
                Url = "http://localhost:8080"
            }.Initialize())
            {
                using (var session = store.OpenSession())
                {
                    var questions = session.Query<Question>().Where(x => x.Title.StartsWith("Raven"));
                    foreach (var question in questions)
                    {
                        Console.WriteLine(question.Title);
                    }
                }
            }
        }
    }
}
در RavenDB برای دسترسی به امکانات LINQ، کار با متد Query یک سشن آغاز می‌شود و پس از آن، امکان استفاده از متدهای متداول LINQ مانند مثال فوق وجود خواهد داشت. البته بدیهی است مباحثی مانند JOIN و امثال آن در یک بانک اطلاعاتی NoSQL پشتیبانی نمی‌شود. ضمنا باید درنظر داشت که مبحث safe by default در اینجا نیز اعمال می‌شود. برای مثال اگر به کنسول سرور RavenDB که در حال اجرا است مراجعه کنید، یک چنین خروجی را حین اجرای مثال فوق می‌توان مشاهده کرد که در آن pageSize پیش فرضی اعمال شده است:
Available commands: cls, reset, gc, q
Request #   1: GET     -   179 ms - <system>   - 404 - /docs/Raven/Replication/Destinations
Request #   2: GET     - 3,818 ms - <system>   - 200 - /indexes/dynamic/Questions?&query=Title%3ARaven*&pageSize=128
        Query: Title:Raven*
        Time: 3,494 ms
        Index: Auto/Questions/ByTitle
        Results: 2 returned out of 2 total.
یعنی در عمل کوئری‌را که اجرا کرده است، شبیه به کوئری ذیل می‌باشد و یک Take پیش فرض بر روی آن اعمال شده است:
var questions = session.Query<Question>().Where(x => x.Title.StartsWith("Raven")).Take(128);
علت این مساله نیز به تصمیم نویسنده اصلی آن بر می‌گردد؛ ایشان پیش از شروع به تهیه RavenDB، کار تهیه انواع و اقسام پروفایلرهای مهم ORMهای معروف مانند NHibernate و Entity framework را انجام داده است و در این حین، یکی از مهم‌ترین مشکلاتی را که با آن‌ها در کدهای متداول برنامه نویس‌ها یافته است، unbounded queries است. کوئری‌هایی که حد و مرزی برای بازگشت اطلاعات قائل نمی‌شوند. داشتن این نوع کوئری‌ها با تعداد بالای کاربر، یعنی مصرف بیش از حد RAM بر روی سرور، به همراه بار پردازشی بیش از حد و غیر ضروری. چون عملا حتی اگر 10 هزار رکورد بازگشت داده شوند، عموم برنامه نویس‌ها حداکثر 100 رکورد آن‌را در یک صفحه نمایش می‌دهند و نه تمام رکوردها را.


ارتباط Lucene.NET و RavenDB

کل LINQ API تهیه شده در RavenDB یک محصور کننده امکانات Lucene.NET است. اگر پیشتر با Lucene.NET کار کرده باشید، در خروجی حالت دیباگ کنسول سرور فوق، سطر «Query: Title:Raven*» آشنا به نظر خواهد رسید. دقیقا کوئری LINQ نوشته شده به یک کوئری با Syntax مخصوص Lucene.NET ترجمه شده‌است. برای نمونه اگر علاقمند باشید که مستقیما کوئری‌های خاص لوسین را در RavenDB اجرا کنید، از Syntax ذیل می‌توان استفاده کرد:
var questions = session.Advanced.LuceneQuery<Question>().Where("Title:Raven*").ToList();
و یا اگر علاقمند به حفظ کردن Syntax خاص لوسین نیستید، یک سری متد الحاقی خاص نیز در اینجا برای LuceneQuery تدارک دیده شده است. برای مثال کوئری رشته‌ای فوق، معادل کوئری strongly typed ذیل است:
var questions = session.Advanced.LuceneQuery<Question>().WhereStartsWith(x => x.Title, "Raven").ToList();

استفاده مجدد از کوئری‌ها در RavenDB

در RavenDB، متد Query به صورت immutable تعریف شده است و متد LuceneQuery حالت mutable دارد (ترکیبات آن نیز یک وهله است).
یک مثال:
var query = session.Query<User>().Where(x => x.Name.StartsWith("A"));
var ageQuery = query.Where(x => x.Age > 21);
var eyeQuery = query.Where(x => x.EyeColor == "blue");
در اینجا از کوئری ابتدایی، در دو کوئری مجزا استفاده مجدد شده است. ترجمه خروجی سه کوئری فوق به نحو زیر است:
query - Name:A*
ageQuery - (Name:A*) AND (Age_Range:{Ix21 TO NULL})
eyeQuery - (Name:A*) AND (EyeColor:blue)
به این معنا که زمانیکه به eyeQuery رسیدیم، نتیجه ageQuery با آن ترکیب نمی‌شود؛ چون متد Query از نوع immutable است.
در ادامه اگر همین سه کوئری فوق را با فرمت LuceneQuery تهیه کنیم، به عبارات ذیل خواهیم رسید:
var luceneQuery = session.Advanced.LuceneQuery<User>().WhereStartsWith(x => x.Name, "A");
var ageLuceneQuery = luceneQuery.WhereGreaterThan(x => x.Age, 21);
var eyeLuceneQuery = luceneQuery.WhereEquals(x => x.EyeColor, "blue");
در خروجی‌های این سه کوئری، مورد سوم مهم است:
luceneQuery - Name:A* 
ageLuceneQuery - Name:A* Age_Range:{Ix21 TO NULL}
eyeLuceneQuery - Name:A* Age_Range:{Ix21 TO NULL} EyeColor:blue
همانطور که مشاهده می‌کنید، کوئری سوم، عبارت کوئری دوم را نیز به همراه دارد؛ این مورد دقیقا مفهوم اشیاء mutable یا تک وهله‌ای است مانند LuceneQuery در اینجا.


And و Or شدن کوئری‌های ترکیبی در RavenDB
در مثال استفاده مجدد از کوئری‌ها، زمانیکه از Where استفاده شد، بین عبارات حاصل AND قرار گرفته است. این مورد را به نحو ذیل می‌توان تنظیم کرد و مثلا به OR تغییر داد:
session.Advanced.LuceneQuery<User>().UsingDefaultOperator(QueryOperator.And);

صفحه بندی اطلاعات در RavenDB

در ابتدای بحث عنوان شد که کوئری LINQ اجرا شده در RavenDB، یک Take مخفی و پیش فرض تنظیم شده به 128 آیتم را دارد. اکنون سؤال این خواهد بود که چگونه می‌توان اطلاعات را به صورت صفحه بندی شده، بر اساس شماره صفحه خاصی نمایش داد.
using System;
using System.Linq;
using Raven.Client.Document;
using RavenDBSample01.Models;

namespace RavenDBSample01
{
    class Program
    {
        static void Main(string[] args)
        {
            using (var store = new DocumentStore
            {
                Url = "http://localhost:8080"
            }.Initialize())
            {
                using (var session = store.OpenSession())
                {
                    int pageNumber = 0;
                    int resultsPerPage = 2;

                    var questions = session.Query<Question>()
                                           .Where(x => x.Title.StartsWith("Raven"))
                                           .Skip(pageNumber * resultsPerPage)
                                           .Take(resultsPerPage);
                    foreach (var question in questions)
                    {
                        Console.WriteLine(question.Title);
                    }
                }
            }
        }
    }
}
برای انجام صفحه بندی در RavenDB، کافی است از متدهای Skip و Take بر اساس محاسباتی که مشاهده می‌کنید، استفاده گردد.


دریافت اطلاعات آماری کوئری اجرا شده

در RavenDB امکان دریافت یک سری اطلاعات آماری از کوئری اجرا شده نیز وجود دارد؛ برای مثال یک کوئری چند ثانیه طول کشیده است، چه تعدادی رکورد را بازگشت داده است و امثال آن. برای پیاده سازی آن، نیاز است از متد الحاقی Statistics به نحو ذیل استفاده کرد:
using System;
using System.Linq;
using Raven.Client.Document;
using RavenDBSample01.Models;
using Raven.Client;

namespace RavenDBSample01
{
    class Program
    {
        static void Main(string[] args)
        {
            using (var store = new DocumentStore
            {
                Url = "http://localhost:8080"
            }.Initialize())
            {
                using (var session = store.OpenSession())
                {
                    int pageNumber = 0;
                    int resultsPerPage = 2;
                    RavenQueryStatistics stats;
                    var questions = session.Query<Question>()
                                           .Statistics(out stats)
                                           .Where(x => x.Title.StartsWith("Raven"))
                                           .Skip(pageNumber * resultsPerPage)
                                           .Take(resultsPerPage);
                    foreach (var question in questions)
                    {
                        Console.WriteLine(question.Title);
                    }

                    Console.WriteLine("TotalResults: {0}", stats.TotalResults);
                }
            }
        }
    }
}
متد الحاقی Statistics پس از متد Query که نقطه آغازین نوشتن کوئری‌های LINQ است، فراخوانی شده و یک پارامتر out از نوع RavenQueryStatistics تعریف شده در فضای نام Raven.Client را دریافت می‌کند. پس از پایان کوئری می‌توان از این خروجی جهت نمایش اطلاعات آماری کوئری استفاده کرد.


امکانات ویژه فضای نام Raven.Client.Linq

یک سری متد الحاقی خاص جهت تهیه ساده‌تر کوئری‌های LINQ در فضای نام Raven.Client.Linq قرار دارند که پس از تعریف آن قابل دسترسی خواهند بود:
var list = session.Query<Question>().Where(q => q.By.In<string>(arrayOfUsers))).ToArray()
برای مثال در اینجا متد الحاقی جدید In را مشاهده می‌کنید که شبیه به کوئری SQL ذیل در دنیای بانک‌های اطلاعاتی رابطه‌ای عمل می‌کند:
 SELECT * FROM tbl WHERE data IN (1, 2, 3)

اتصال به RavenDB با استفاده از برنامه معروف LINQPad

اگر علاقمند باشید که کوئری‌های خود را در محیط برنامه معروف LINQPad نیز آزمایش کنید، درایور مخصوص RavenDB آن‌را از آدرس ذیل می‌توانید دریافت نمائید:
مطالب دوره‌ها
تبدیل روش‌های قدیمی کدنویسی غیرهمزمان به async سی شارپ 5
در قسمت اول این سری، با مدل برنامه نویسی Event based asynchronous pattern ارائه شده از دات نت 2 و همچنین APM یا Asynchronous programming model موجود از نگارش یک دات نت، آشنا شدیم (به آن الگوی IAsyncResult هم گفته می‌شود). نکته‌ی مهم این الگوها، استفاده‌ی گسترده از آن‌ها در کدهای کلاس‌های مختلف دات نت فریم ورک است و برای بسیاری از آن‌ها هنوز async API سازگار با نگارش مبتنی بر Taskهای سی‌شارپ 5 ارائه نشده‌است. هرچند دات نت 4.5 سعی کرده‌است این خلاء را پوشش دهد، برای مثال متد الحاقی DownloadStringTaskAsync را به کلاس WebClient اضافه کرده‌است و امثال آن، اما هنوز بسیاری از کلاس‌های دیگر دات نتی هستند که معادل Task based API ایی برای آن‌ها طراحی نشده‌است. در ادامه قصد داریم بررسی کنیم چگونه می‌توان این الگوهای مختلف قدیمی برنامه نویسی غیرهمزمان را با استفاده از روش‌های جدیدتر ارائه شده بکار برد.



نگاشت APM به یک Task

در قسمت اول، نمونه مثالی را از APM، که در آن کار با BeginGetResponse آغاز شده و سپس در callback نهایی توسط EndGetResponse، نتیجه‌ی عملیات به دست می‌آید، مشاهده کردید. در ادامه می‌خواهیم یک محصور کننده‌ی جدید را برای این نوع API قدیمی تهیه کنیم، تا آن‌را به صورت یک Task ارائه دهد.
    public static class ApmWrapper
    {
        public static Task<int> ReadAsync(this Stream stream, byte[] data, int offset, int count)
        {
            return Task<int>.Factory.FromAsync(stream.BeginRead, stream.EndRead, data, offset, count, null);
        }
    }
همانطور که در این مثال مشاهده می‌کنید، یک چنین سناریوهایی در TPL یا کتابخانه‌ی Task parallel library پیش بینی شده‌اند. در اینجا یک محصور کننده برای متدهای BeginRead و EndRead کلاس Stream دات نت ارائه شده‌است. به عمد نیز به صورت یک متد الحاقی تهیه شده‌است تا در حین استفاده از آن اینطور به نظر برسد که واقعا کلاس Stream دارای یک چنین متد Async ایی است. مابقی کار توسط متد Task.Factory.FromAsync انجام می‌شود. متد FromAsync دارای امضاهای متعددی است تا اکثر حالات APM را پوشش دهد.
در مثال فوق BeginRead و EndRead استفاده شده از نوع delegate هستند. چون خروجی EndRead از نوع int است، خروجی متد نیز از نوع Task of int تعیین شده‌است. همچنین سه پارامتر ابتدایی BeginRead ، دقیقا data، offset و count هستند. دو پارامتر آخر آن callback و state نام دارند. پارامتر callback توسط متد FromAsync فراهم می‌شود و state نیز در اینجا null درنظر گرفته شده‌است.
یک مثال استفاده از آن‌را در ادامه مشاهده می‌کنید:
using System;
using System.IO;
using System.Threading.Tasks;

namespace Async06
{
    public static class ApmWrapper
    {
        public static Task<int> ReadAsync(this Stream stream, byte[] data, int offset, int count)
        {
            return Task<int>.Factory.FromAsync(stream.BeginRead, stream.EndRead, data, offset, count, null);
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            using (var stream = File.OpenRead(@"..\..\program.cs"))
            {
                var data = new byte[10000];
                var task = stream.ReadAsync(data, 0, data.Length);
                Console.WriteLine("Read bytes: {0}", task.Result);
            }
        }
    }
}
File.OpenRead، خروجی از نوع استریم دارد. سپس متد الحاقی ReadAsync بر روی آن فراخوانی شده‌است و نهایتا تعداد بایت خوانده شده نمایش داده می‌شود.
البته همانطور که پیشتر نیز عنوان شد، استفاده از خاصیت Result، اجرای کد را بجای غیرهمزمان بودن، به حالت همزمان تبدیل می‌کند.
در اینجا چون خروجی متد ReadAsync یک Task است، می‌توان از متد ContinueWith نیز بر روی آن جهت دریافت نتیجه استفاده کرد:
using (var stream = File.OpenRead(@"..\..\program.cs"))
{
    var data = new byte[10000];
    var task = stream.ReadAsync(data, 0, data.Length);
    task.ContinueWith(t => Console.WriteLine("Read bytes: {0}", t.Result)).Wait();
}


یک نکته
پروژه‌ی سورس بازی به نام Async Generator در GitHub، سعی کرده‌است برای ساده سازی نوشتن محصور کننده‌های مبتنی بر Task روش APM، یک Code generator تولید کند. فایل‌های آن‌را از آدرس ذیل می‌توانید دریافت کنید:

نگاشت EAP به یک Task

نمونه‌ای از Event based asynchronous pattern یا EAP را در قسمت اول، زمانیکه روال رخدادگردان webClient.DownloadStringCompleted را بررسی کردیم، مشاهده نمودید. کار کردن با آن نسبت به APM بسیار ساده‌تر است و نتیجه‌ی نهایی عملیات غیرهمزمان را در یک روال رخدادگران، در اختیار استفاده کننده قرار می‌دهد. همچنین در روش EAP، اطلاعات در همان Synchronization Context ایی که عملیات شروع شده‌است، بازگشت داده می‌شود. به این ترتیب اگر آغاز کار در ترد UI باشد، نتیجه نیز در همان ترد دریافت خواهد شد. به این ترتیب دیگر نگران دسترسی به مقدار آن در کارهای UI نخواهیم بود؛ اما در APM چنین ضمانتی وجود ندارد.
متاسفانه TPL همانند روش FromAsync معرفی شده در ابتدای بحث، راه حل توکاری را برای محصور سازی متدهای روش EAP ارائه نداده‌است. اما با استفاده از امکانات TaskCompletionSource آن می‌توان چنین کاری را انجام داد. در ادامه سعی خواهیم کرد همان متد الحاقی توکار DownloadStringTaskAsync ارائه شده در دات نت 4.5 را از صفر بازنویسی کنیم.
    public static class WebClientExtensions
    {
        public static Task<string> DownloadTextTaskAsync(this WebClient web, string url)
        {
            var tcs = new TaskCompletionSource<string>();

            DownloadStringCompletedEventHandler handler = null;
            handler = (sender, args) =>
            {
                web.DownloadStringCompleted -= handler;

                if (args.Cancelled)
                {
                    tcs.SetCanceled();
                }
                else if(args.Error!=null)
                {
                    tcs.SetException(args.Error);
                }
                else
                {
                    tcs.SetResult(args.Result);
                }
            };

            web.DownloadStringCompleted += handler;
            web.DownloadStringAsync(new Uri(url));

            return tcs.Task;
        }
    }
روش انجام کار را در اینجا ملاحظه می‌کنید. ابتدا باید تعاریف delaget مرتبط با رخدادگردان Completed اضافه شوند. یکبار += را ملاحظه می‌کنید و بار دوم -= را. مورد دوم جهت آزاد سازی منابع و جلوگیری از نشتی حافظه‌ی ‌روال رخدادگردان هنوز متصل، ضروری است.
سپس از TaskCompletionSource برای تبدیل این عملیات به یک Task کمک می‌گیریم. اگر args.Cancelled مساوی true باشد، یعنی عملیات دریافت فایل لغو شده‌است. بنابراین متد SetCanceled منبع Task ایجاد شده را فراخوانی خواهیم کرد. این مورد استثنایی را در کدهای فراخوان سبب می‌شود. به همین دلیل بررسی خطا با یک if else پس از آن انجام شده‌است. برای بازگشت خطای دریافت شده از متد SetException و برای بازگشت نتیجه‌ی واقعی دریافتی، از متد SetResult می‌توان استفاده کرد.
به این ترتیب متد الحاقی غیرهمزمان جدیدی را به نام DownloadTextTaskAsync برای محصور سازی متد EAP ایی به نام DownloadStringAsync و همچنین رخدادگران آن تهیه کردیم.