مطالب
OpenCVSharp #15
تشخیص چهره به کمک OpenCV

OpenCV به کمک الگوریتم‌های machine learning (در اینجا Haar feature-based cascade classifiers) و داد‌ه‌های مرتبط با آن‌ها، قادر است اشیاء پیچیده‌ای را در تصاویر پیدا کند. برای پیگیری مثال بحث جاری نیاز است کتابخانه‌ی اصلی OpenCV را دریافت کنید؛ از این جهت که به فایل‌های XML موجود در پوشه‌ی opencv\sources\data\haarcascades آن نیاز داریم. در اینجا از دو فایل haarcascade_eye_tree_eyeglasses.xml و haarcascade_frontalface_alt.xml آن استفاده خواهیم کرد (این دوفایل جهت سهولت کار، به همراه مثال این بحث نیز ارائه شده‌اند).
فایل haarcascade_frontalface_alt.xml اصطلاحا trained data مخصوص یافتن چهره‌ی انسان در تصاویر است و فایل haarcascade_eye_tree_eyeglasses.xml کمک می‌کند تا بتوان در چهره‌ی یافت شده، چشمان شخص را نیز با دقت بالایی تشخیص داد؛ چیزی همانند تصویر ذیل:



مراحل تشخیص چهره توسط OpenCVSharp

ابتدا همانند سایر مثال‌های OpenCV، تصویر مدنظر را به کمک کلاس Mat بارگذاری می‌کنیم:
var srcImage = new Mat(@"..\..\Images\Test.jpg");
Cv2.ImShow("Source", srcImage);
Cv2.WaitKey(1); // do events
 
var grayImage = new Mat();
Cv2.CvtColor(srcImage, grayImage, ColorConversion.BgrToGray);
Cv2.EqualizeHist(grayImage, grayImage);
همچنین در اینجا جهت بالا رفتن سرعت کار و بهبود دقت تشخیص چهره، این تصویر اصلی به یک تصویر سیاه و سفید تبدیل شده‌است و سپس متد Cv2.EqualizeHist بر روی آن فراخوانی گشته‌است. این متد وضوح تصویر را جهت یافتن الگوها بهبود می‌بخشد.
سپس فایل xml یاد شده‌ی در ابتدای بحث را توسط کلاس CascadeClassifier بارگذاری می‌کنیم:
var cascade = new CascadeClassifier(@"..\..\Data\haarcascade_frontalface_alt.xml");
var nestedCascade = new CascadeClassifier(@"..\..\Data\haarcascade_eye_tree_eyeglasses.xml");
 
var faces = cascade.DetectMultiScale(
    image: grayImage,
    scaleFactor: 1.1,
    minNeighbors: 2,
    flags: HaarDetectionType.Zero | HaarDetectionType.ScaleImage,
    minSize: new Size(30, 30)
    );
 
Console.WriteLine("Detected faces: {0}", faces.Length);
پس از بارگذاری فایل‌های XML اطلاعات نحوه‌ی تشخیص چهره و اعضای آن، با فراخوانی متد DetectMultiScale، کار تشخیص چهره و استخراج آن از grayImage انجام خواهد شد. در اینجا minSize، اندازه‌ی حداقل چهره‌ی مدنظر است که قرار هست تشخیص داده شود. نواحی کوچکتر از این اندازه، به عنوان نویز در نظر گرفته خواهند شد و پردازش نمی‌شوند.
خروجی این متد، مستطیل‌ها و نواحی یافت شده‌ی مرتبط با چهره‌های موجود در تصویر هستند. اکنون می‌توان حلقه‌ای را تشکیل داد و این نواحی را برای مثال با مستطیل‌های رنگی، متمایز کرد:
var rnd = new Random();
var count = 1;
foreach (var faceRect in faces)
{
    var detectedFaceImage = new Mat(srcImage, faceRect);
    Cv2.ImShow(string.Format("Face {0}", count), detectedFaceImage);
    Cv2.WaitKey(1); // do events
 
    var color = Scalar.FromRgb(rnd.Next(0, 255), rnd.Next(0, 255), rnd.Next(0, 255));
    Cv2.Rectangle(srcImage, faceRect, color, 3);
  
    count++;
}
 
Cv2.ImShow("Haar Detection", srcImage);
Cv2.WaitKey(1); // do events
در اینجا علاوه بر رسم یک مستطیل، به دور ناحیه‌ی تشخیص داده شده، نحوه‌ی استخراج تصویر آن ناحیه را هم در سطر var detectedFaceImage مشاهده می‌کنید.

همچنین اگر علاقمند باشیم تا در این ناحیه‌ی یافت شده، چشمان شخص را نیز استخراج کنیم، می‌توان به نحو ذیل عمل کرد:
var rnd = new Random();
var count = 1;
foreach (var faceRect in faces)
{
    var detectedFaceImage = new Mat(srcImage, faceRect);
    Cv2.ImShow(string.Format("Face {0}", count), detectedFaceImage);
    Cv2.WaitKey(1); // do events
 
    var color = Scalar.FromRgb(rnd.Next(0, 255), rnd.Next(0, 255), rnd.Next(0, 255));
    Cv2.Rectangle(srcImage, faceRect, color, 3);
 
 
    var detectedFaceGrayImage = new Mat();
    Cv2.CvtColor(detectedFaceImage, detectedFaceGrayImage, ColorConversion.BgrToGray);
    var nestedObjects = nestedCascade.DetectMultiScale(
        image: detectedFaceGrayImage,
        scaleFactor: 1.1,
        minNeighbors: 2,
        flags: HaarDetectionType.Zero | HaarDetectionType.ScaleImage,
        minSize: new Size(30, 30)
        );
 
    Console.WriteLine("Nested Objects[{0}]: {1}", count, nestedObjects.Length);
 
    foreach (var nestedObject in nestedObjects)
    {
        var center = new Point
        {
            X = Cv.Round(nestedObject.X + nestedObject.Width * 0.5) + faceRect.Left,
            Y = Cv.Round(nestedObject.Y + nestedObject.Height * 0.5) + faceRect.Top
        };
        var radius = Cv.Round((nestedObject.Width + nestedObject.Height) * 0.25);
        Cv2.Circle(srcImage, center, radius, color, thickness: 3);
    }
 
    count++;
}
 
Cv2.ImShow("Haar Detection", srcImage);
Cv2.WaitKey(1); // do events
کدهای ابتدایی آن همانند توضیحات قبل است. تنها تفاوت آن، استفاده از nestedCascade بارگذاری شده‌ی در ابتدای بحث می‌باشد. این nestedCascade حاوی trained data استخراج چشمان اشخاص، از تصاویر است. پارامتر ورودی آن‌را نیز تصویر سیاه و سفید ناحیه‌ی چهره‌ی یافت شده‌، قرار داده‌ایم تا سرعت تشخیص چشمان شخص، افزایش یابد.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
چگونگی دسترسی به فیلد و خاصیت غیر عمومی
یک از ابتدایی‌ترین مواردی که در یادگیری دات نت آموزش داده می‌شود مباحث مربوط به کپسوله سازی است. برای مثال فیلد‌ها و خواص Private که به صورت خصوصی هستند یا Protected هستند از خارج کلاس قابل دسترسی نیستند. برای دسترسی به این کلاس‌ها باید از خواص یا متدهای عمومی استفاده کرد.
public class Book
    {
        private int code = 10;        

        public int GetCode()
        {
            return code;
        }
    }
یا فیلدها و خواصی که به صورت فقط خواندنی هستند،(RealOnly) امکان تغییر مقدار برای اون‌ها وجود ندارد. برای مثال کد پایین کامپایل نخواهد شد.
public class Book
    {
        private readonly int code = 10;        

        public int GetCode()
        {
            return code = 20;
        }        
    }
اما در دات نت با استفاده از Reflection‌ها می‌تونیم تمام قوانین بالا رو نادیده بگیریم. یعنی می‌تونیم هم به خواص و فیلد‌های غیر عمومی کلاس دسترسی پیدا کنیم و هم می‌تونیم مقدار فیلدهای فقط خواندنی رو تغییر بدیم. به مثال‌های زیر دقت کنید.
#مثال اول
using System.Reflection;

 public class Book
 {
        private int code = 10;
 }

 public class Program
 {
        static void Main( string[] args )
        {
            Book book = new Book();
            var codeField = book.GetType().GetField( "code", BindingFlags.NonPublic | BindingFlags.Instance );
            codeField.SetValue( book, 20 );
            var value = codeField.GetValue( book );
        }
    }
ابتدا یک کلاس که دارای یک متغیر به نام کد است ساخته ایم که مقدار 10 را دارد. فیلد به صورت private  است. بعد از اجرا به راحتی مقدار Code را به دست می‌آوریم.


حتی امکان تغییر مقدار فیلد private هم امکان پذیر است.

#مثال دوم.
در این مثال قصد داریم مقدار یک فیلد، از نوع فقط خواندنی رو تغییر دهیم.
using System.Reflection;

 public class Book
 {
        private readonly int code = 10;
 }

 public class Program
 {
        static void Main( string[] args )
        {
            Book book = new Book();
            var codeField = book.GetType().GetField( "code", BindingFlags.NonPublic | BindingFlags.Instance );
            codeField.SetValue( book, 50);
            var value = codeField.GetValue( book );
        }
    }
بعد از اجرا مقدار متغیر code به 50 تغییر می‌یابد.

مطالب تکمیلی



نظرات مطالب
اعمال توابع تجمعی بر روی چند ستون در Entity framework
چگونه توسط EF Core، چندین کوئری را یکجا به بانک اطلاعاتی ارسال کنیم؟

روشی را که در این مطلب مشاهده کردید، در موارد مشابه دیگری هم قابل استفاده‌است. برای مثال فرض کنید اطلاعات یک مشتری را قرار است به صورت زیر ذخیره کنیم:
public class Customer
{
    public int Id { get; set; }
    public string Name { get; set; } = null!;
    public CustomerType Type { get; set; }
}

public enum CustomerType
{
    Individual,
    Institution,
}

حالت عادی کوئری گرفتن از اطلاعات جدول آن که به همراه صفحه بندی، نمایش تعداد رکوردها و یک کوئری دلخواه دیگر باشد، به صورت زیر است:
void ManyQueriesManyCalls()
{
    using var scope = serviceProvider.CreateScope();
    var context = scope.ServiceProvider.GetRequiredService<CustomerContext>();

    var baseQuery = context.Customers.Select(customer => new
                                                         {
                                                             customer.Name,
                                                             customer.Type,
                                                             customer.Id,
                                                         });
    var total = baseQuery.Count();
    var types = baseQuery.GroupBy(x => x.Type)
                         .Select(x => x.Key).ToList();
    var pageSize = 10;
    var pageIndex = 0;
    var results = baseQuery
                  .OrderBy(x => x.Id)
                  .Skip(pageSize * pageIndex)
                  .Take(pageSize)
                  .ToList();
    Console.WriteLine($"Total:{total}, First Type: {types.First()}, First Item: {results.First().Name}");
}
که سبب می‌شود سه کوئری و سه بار رفت و برگشت را به بانک اطلاعاتی داشته باشیم:
      SELECT COUNT(*)
      FROM [Customers] AS [c]

      SELECT [c].[Type]
      FROM [Customers] AS [c]
      GROUP BY [c].[Type]
  
      SELECT [c].[Name], [c].[Type], [c].[Id]
      FROM [Customers] AS [c]
      ORDER BY [c].[Id]
      OFFSET @__p_0 ROWS FETCH NEXT @__p_1 ROWS ONLY

اگر بخواهیم این سه کوئری را یکبار به سمت بانک اطلاعاتی ارسال کنیم، می‌توان از همان ترفند گروه بندی مطرح شده‌ی در این مثال برای ترکیب کوئری‌ها استفاده کرد:
void ManyQueriesOnCall()
{
    using var scope = serviceProvider.CreateScope();
    var context = scope.ServiceProvider.GetRequiredService<CustomerContext>();
    var baseQuery = context.Customers.Select(customer => new
                                                         {
                                                             customer.Name,
                                                             customer.Type,
                                                             customer.Id,
                                                         });
    var pageSize = 10;
    var pageIndex = 0;
    var allTogether = baseQuery
                      .GroupBy(x => 1)
                      .Select(bq => new
                                    {
                                        Total = baseQuery.Count(),
                                        Types = baseQuery.GroupBy(x => x.Type)
                                                         .Select(x => x.Key)
                                                         .ToList(),
                                        Results = baseQuery
                                                  .OrderBy(x => x.Id)
                                                  .Skip(pageSize * pageIndex)
                                                  .Take(pageSize)
                                                  .ToList(),
                                    })
                      .FirstOrDefault();

    Console.WriteLine($"Total:{allTogether.Total}, First Type: {allTogether.Types.First()}, First Item: {allTogether.Results.First().Name}");
}
که اینبار فقط یک کوئری outer apply دار را تولید می‌کند و فقط یکبار، رفت و برگشت به بانک اطلاعاتی را شاهد خواهیم بود:
      SELECT [t0].[Key], [t1].[Type], [t2].[Name], [t2].[Type], [t2].[Id]
      FROM (
          SELECT TOP(1) [t].[Key]
          FROM (
              SELECT 1 AS [Key]
              FROM [Customers] AS [c]
          ) AS [t]
          GROUP BY [t].[Key]
      ) AS [t0]
      OUTER APPLY (
          SELECT [c0].[Type]
          FROM [Customers] AS [c0]
          GROUP BY [c0].[Type]
      ) AS [t1]
      OUTER APPLY (
          SELECT [c1].[Name], [c1].[Type], [c1].[Id]
          FROM [Customers] AS [c1]
          ORDER BY [c1].[Id]
          OFFSET @__p_1 ROWS FETCH NEXT @__pageSize_2 ROWS ONLY
      ) AS [t2]
      ORDER BY [t0].[Key], [t1].[Type], [t2].[Id]

کدهای این مثال را از اینجا می‌توانید دریافت کنید: EF7ManyQueriesOneCall.zip
مطالب
کنترل عمومی فایل‌های آپلودی در ASP.NET MVC
در مطلب «محدود کردن کاربر‌ها به آپلود فایل‌هایی خاص در ASP.NET MVC» تصمیم گیری بر اساس یک لیست سفید صورت می‌گیرد. برای مثال کاربران فقط قرار است تصویرهایی از نوع png یا jpg را ارسال کنند. اکنون نیاز است حالت کلی‌تری را درنظر بگیریم که کاربر قرار است هر نوع فایل دلخواهی را ارسال کند. در اینجا نباید امکان آپلود هر نوع فایلی، خصوصا فایل‌های اجرایی ASP.NET یا هر نوع موتور اجرایی دیگری که ممکن است روی سرور نصب باشد (مثلا PHP)، وجود داشته باشد. برای این منظور فیلتر دیگری به نام AllowUploadSafeFiles طراحی شده است که سورس آن‌را در ذیل مشاهده می‌کنید:
using System;
using System.Linq;
using System.Collections.Generic;
using System.IO;
using System.Web.Mvc;

namespace SecurityModule
{
    [AttributeUsage(AttributeTargets.Method, AllowMultiple = false)]
    public sealed class AllowUploadSafeFilesAttribute : ActionFilterAttribute
    {
        static readonly IList<string> ExtToFilter = new List<string> { 
            ".aspx", ".asax", ".asp", ".ashx", ".asmx", ".axd", ".master", ".svc", ".php" ,        
            ".php3" , ".php4", ".ph3", ".ph4", ".php4", ".ph5", ".sphp", ".cfm", ".ps", ".stm",
            ".htaccess", ".htpasswd", ".php5", ".phtml", ".cgi", ".pl", ".plx", ".py", ".rb", ".sh", ".jsp",
            ".cshtml", ".vbhtml", ".swf" , ".xap", ".asptxt"
        };

        static readonly IList<string> NameToFilter = new List<string> { 
           "web.config" , "htaccess" , "htpasswd", "web~1.con"
        };

        static bool canUpload(string fileName)
        {
            if (string.IsNullOrWhiteSpace(fileName))
                return false;

            fileName = fileName.ToLowerInvariant();
            var name = Path.GetFileName(fileName);
            var ext = Path.GetExtension(fileName);

            if (string.IsNullOrWhiteSpace(name))
                throw new InvalidOperationException("Uploaded file should have a name.");

            return !ExtToFilter.Contains(ext) &&
                   !NameToFilter.Contains(name) &&
                   !NameToFilter.Contains(ext) &&
                   //for "file.asp;.jpg" files
                   ExtToFilter.All(item => !name.Contains(item));
        }

        public override void OnActionExecuting(ActionExecutingContext filterContext)
        {
            var files = filterContext.HttpContext.Request.Files;
            foreach (string file in files)
            {
                var postedFile = files[file];
                if (postedFile == null || postedFile.ContentLength == 0) continue;

                if (!canUpload(postedFile.FileName))
                    throw new InvalidOperationException(string.Format("You are not allowed to upload {0} file.", Path.GetFileName(postedFile.FileName)));
            }

            base.OnActionExecuting(filterContext);
        }
    }
}
در این فیلتر، یک سری پسوند خطرناک مانند aspx، asp و امثال آن فیلتر می‌شوند و اجازه آپلود نخواهند یافت. همچنین فایل‌هایی مانند web.config یا نام داسی آن معادل web~1.con نیز فرصت آپلود نخواهد یافت.
استفاده از این فیلتر سفارشی به نحو زیر است:
[AllowUploadSafeFiles]
public ActionResult UploadFile(HttpPostedFileBase file)
مطالب دوره‌ها
آشنایی با AOP IL Weaving
IL Weaving در AOP به معنای اتصال Aspects تعریف شده، پس از کامپایل برنامه به فایل‌های باینری نهایی است. اینکار با ویرایش اسمبلی‌ها در سطح IL یا کد میانی صورت می‌گیرد. بنابراین در این حالت دیگر یک محصور کننده و پروکسی، در این بین جهت مزین سازی اشیاء، در زمان اجرای برنامه تشکیل نمی‌شود. بلکه فراخوانی Aspects به معنای فراخوانی واقعی قطعه کدهایی است که به اسمبلی‌های برنامه پس از کامپایل آن‌ها تزریق شده‌اند.
در دنیای دات نت، ابزارهای چندی امکان انجام IL Weaving را فراهم ساخته‌اند که تعدادی از آن‌ها به قرار ذیل هستند:
- PostSharp
- LOOM.NET
- Wicca
و ...

در بین این‌ها، PostSharp معروفترین فریم ورک AOP بوده و در ادامه از آن استفاده خواهیم کرد.


پیشنیاز ادامه بحث

ابتدا یک پروژه کنسول جدید را آغاز کرده و سپس در خط فرمان پاور شل نوگت در VS.NET دستور ذیل را اجرا کنید:
 PM> Install-Package PostSharp
به این ترتیب ارجاعی به PostSharp به پروژه جاری اضافه خواهد شد. البته حجم آن نسبتا بالا است؛ نزدیک به 20 مگ به همراه ابزارهای تزریق کد همراه با آن. مجوز استفاده از آن نیز تجاری و مدت دار است.


مراحل ایجاد یک Aspect برای پروسه IL Code Weaving

ابتدا یک کلاس پایه مشتق شده از کلاسی ویژه موجود در یکی از فریم ورک‌های AOP باید تعریف شود. مرحله بعد، کار اتصال این Aspect می‌باشد که توسط پردازشگر ثانویه IL Code Weaving انجام می‌شود.
در ادامه قصد داریم همان مثال LoggingInterceptor قسمت دوم این سری را با استفاده از IL Code Weaving پیاده سازی کنیم.
using System;

namespace AOP03
{
    public class MyType
    {
        public void DoSomething(string data, int i)
        {
            Console.WriteLine("DoSomething({0}, {1});", data, i);
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            new MyType().DoSomething("Test", 1);
        }
    }
}
کدهای برنامه همانند قبل است. اما اینبار بجای استفاده از Interceptors، با ارث بری از کلاس OnMethodBoundaryAspect کتابخانه PostSharp شروع خواهیم کرد:
using System;
using PostSharp.Aspects;

namespace AOP03
{
    [Serializable]
    public class LoggingAspect : OnMethodBoundaryAspect
    {
        public override void OnEntry(MethodExecutionArgs args)
        {
            Console.WriteLine("On Entry");
        }

        public override void OnExit(MethodExecutionArgs args)
        {
            Console.WriteLine("On Exit");
        }

        public override void OnSuccess(MethodExecutionArgs args)
        {
            Console.WriteLine("On Success");
        }

        public override void OnException(MethodExecutionArgs args)
        {
            Console.WriteLine("On Exception");
        }
    }
}
نیاز است این کلاس توسط ویژگی Serializable مزین شود تا توسط PostSharp قابل استفاده گردد. همانطور که ملاحظه می‌کنید، مراحل مختلف اجرای یک Aspcet در اینجا با override متدهای کلاس پایه OnMethodBoundaryAspect پیاده سازی شده‌اند. این مراحل را پیشتر در زمان استفاده از Interceptors توسط try/finally/catch بررسی کرده بودیم.
اکنون اگر برنامه را اجرا کنیم، اتفاق خاصی رخ نداده و همان خروجی معمول متد DoSomething در کنسول نمایش داده خواهد شد. بنابراین در مرحله بعد نیاز است تا این Aspect را به کدهای برنامه متصل کنیم.
کلاس OnMethodBoundaryAspect در کتابخانه PostSharp، از کلاس MulticastAttribute مشتق می‌شود. بنابراین LoggingAspect ایی را که ایجاد کرده‌ایم نیز می‌توان به صورت یک ویژگی به متد‌های مورد نظر خود افزود:
    public class MyType
    {
        [LoggingAspect]
        public void DoSomething(string data, int i)
        {
            Console.WriteLine("DoSomething({0}, {1});", data, i);
        }
    }
اکنون اگر برنامه را اجرا کنیم، با خروجی زیر مواجه خواهیم شد:
 On Entry
DoSomething(Test, 1);
On Success
On Exit
برای اینکه بتوان عملیات رخ داده را بهتر توضیح داد می‌تواند از یک دی‌کامپایلر مانند برنامه معروف Reflector استفاده کرد:
public void DoSomething(string data, int i)
{
    <>z__Aspects.a0.OnEntry(null);
    try
    {
        Console.WriteLine("DoSomething({0}, {1});", data, i);
        <>z__Aspects.a0.OnSuccess(null);
    }
    catch (Exception)
    {
        <>z__Aspects.a0.OnException(null);
        throw;
    }
    finally
    {
        <>z__Aspects.a0.OnExit(null);
    }
}
این کدی است که به صورت پویا توسط PostSharp به اسمبلی نهایی فایل اجرایی برنامه تزریق شده است.

خوب! این یک روش اتصال Aspects به برنامه است. اما اگر همانند Interceptors بخواهیم Aspect تعریف شده را سراسری اعمال کنیم چکار باید کرد (بدون نیاز به قرار دادن ویژگی بر روی تک تک متدها)؟
برای اینکار ابتدا نیاز است میدان عملکرد Aspect تعریف شده را توسط ویژگی MulticastAttributeUsage محدود کنیم تا برای مثال به خواص اعمال نشوند:
 [Serializable]
[MulticastAttributeUsage(MulticastTargets.Method, TargetMemberAttributes = MulticastAttributes.Instance)]
public class LoggingAspect : OnMethodBoundaryAspect
سپس فایل AssemblyInfo.cs استاندارد پروژه را گشوده و سطر زیر را به آن اضافه کنید:
 [assembly: LoggingAspect(AttributeTargetTypes = "AOP03.*")]
توسط AttributeTargetTypes می‌توان اعمال این Aspect را به یک فضای نام خاص نیز محدود کرد.

مزیت روش IL Code Weaving نسبت به Interceptors، کارآیی و سرعت بالاتر است. از این جهت که کدهایی که قرار است اجرا شوند، پیشتر در اسمبلی برنامه قرار گرفته‌اند و نیازی نیست تا در زمان اجرا، کدی به برنامه به صورت پویا تزریق گردد.
مطالب
متد جدید Order در دات نت 7
دات نت 7 به همراه دو متد جدید Order و OrderDescending است که مرتب سازی مجموعه‌های ساده را انجام می‌دهند.


روش متداول مرتب سازی مجموعه‌های ساده تا پیش از دات نت 7

فرض کنید لیستی از اعداد را داریم:
var numbers = new List<int> { -7, 1, 5, -6 };
تا پیش از دات نت 7 با استفاده از متدهای OrderBy و OrderByDescending موجود به همراه LINQ، امکان مرتب سازی صعودی و نزولی این لیست وجود دارد:
var sortedNumbers1 = numbers.OrderBy(n => n);
var sortedNumbers2 = numbers.OrderByDescending(n => n);
که در اینجا ذکر پارامتر keySelector ضروری است:
public static IOrderedEnumerable<TSource> OrderBy<TSource,TKey>(
   [NotNull] this IEnumerable<TSource> source,
   [NotNull] Func<TSource,TKey> keySelector)
هرچند می‌شد طراحی آن ساده‌تر باشد و حداقل برای مجموعه‌های ساده، نیازی به ذکر آن نباشد.


روش جدید مرتب سازی مجموعه‌های ساده در دات نت 7

دات نت 7 به همراه دو متد جدید Order و OrderDescending است که دیگر نیازی به ذکر پارامتر keySelector ذکر شده را ندارند:
var sortedNumbers3 = numbers.Order();
var sortedNumbers4 = numbers.OrderDescending();
و امضای آن‌ها به صورت زیر است:
public static IOrderedEnumerable<T> Order<T>(this IEnumerable<T> source)
public static IOrderedEnumerable<T> OrderDescending<T>(this IEnumerable<T> source)
که در حقیقت دو متد الحاقی جدید قابل اعمال بر روی انواع و اقسام IEnumerableها هستند.


در مورد سایر مجموعه‌های پیچیده چطور؟

فرض کنید کلاس User را:
public class User
{
   public string Name { set; get; }
   public int Age { set; get; }
}
 به همراه لیستی از آن تعریف کرده‌ایم:
List<User> users = new()
                           {
                               new User { Name = "User 1", Age = 34 },
                               new User { Name = "User 2", Age = 24 },
                           };
سؤال: آیا اگر متد Order را بر روی این لیست فراخوانی کنیم:
var orderedUsers = users.Order();
برای مثال این مجموعه بر اساس نام و سن مرتب خواهد شد؟ که پاسخ آن خیر است و همچنین استثنائی را صادر می‌کند بر این مبنا که باید کلاس User، اینترفیس IComparable را پیاده سازی کند تا بتوان آن‌ها را مقایسه کرد؛ برای مثال چیزی شبیه به تغییرات زیر:
public class User : IComparable<User>
{
    public string Name { set; get; }
    public int Age { set; get; }

    public int CompareTo(User? other)
    {
        if (ReferenceEquals(this, other))
        {
            return 0;
        }

        if (ReferenceEquals(null, other))
        {
            return 1;
        }

        var nameComparison = string.Compare(Name, other.Name, StringComparison.Ordinal);
        if (nameComparison != 0)
        {
            return nameComparison;
        }

        return Age.CompareTo(other.Age);
    }
}
که در یک چنین مواردی شاید بهتر باشد از همان متد OrderBy پیشین استفاده کرد که الزامی به پیاده سازی اینترفیس IComparable را ندارد:
var orderedUsers2 = users.OrderBy(user => user.Name).ThenBy(user => user.Age);
نظرات مطالب
چگونگی دسترسی به فیلد و خاصیت غیر عمومی
آیا می‌توان به کمک رفلکشن به خصوصیتی که مثلا Set ندارد مقدار دهی کرد. بعنوان مثال
class Program
{
  static void Main(string[] args)
  {
      Book book = new Book();
      var codeprop = book.GetType().GetProperty("Code", BindingFlags.Public | BindingFlags.Instance);
      codeprop.SetValue(book, 20, null);
      var value = codeprop.GetValue(book, null);
  }
}

public class Book
{
  public int code;
  public int Code
  {
      get { return code; }
  }
}
مطالب دوره‌ها
آشنایی با AOP Interceptors
در حین استفاده از Interceptors، کار مداخله و تحت نظر قرار دادن قسمت‌های مختلف کدها، توسط کامپوننت‌های خارجی صورت خواهد گرفت. این کامپوننت‌های خارجی، به صورت پویا، تزئین کننده‌هایی را جهت محصور سازی قسمت‌های مختلف کدهای شما تولید می‌کنند. این‌ها، بسته به توانایی‌هایی که دارند، در زمان اجرا و یا حتی در زمان کامپایل نیز قابل تنظیم می‌باشند.


ابزارهایی جهت تولید AOP Interceptors

متداول‌ترین کامپوننت‌های خارجی که جهت تولید AOP Interceptors مورد استفاده قرار می‌گیرند، همان IOC Containers معروف هستند مانند StructureMap، Ninject، MS Unity و غیره.
سایر ابزارهای تولید AOP Interceptors، از روش تولید Dynamic proxies بهره می‌گیرند. به این ترتیب مزین کننده‌هایی پویا، در زمان اجرا، کدهای شما را محصور خواهند کرد. (نمونه‌ای از آن‌را شاید در حین کار با ORMهای مختلف دیده باشید).


نگاهی به فرآیند Interception

زمانیکه از یک IOC Container در کدهای خود استفاده می‌کنید، مراحلی چند رخ خواهند داد:
الف) کد فراخوان، از IOC Container، یک شیء مشخص را درخواست می‌کند. عموما اینکار با درخواست یک اینترفیس صورت می‌گیرد؛ هرچند محدودیتی نیز وجود نداشته و امکان درخواست یک کلاس از نوعی مشخص نیز وجود دارد.
ب) در ادامه IOC Container به لیست اشیاء قابل ارائه توسط خود نگاه کرده و در صورت وجود، وهله سازی شیء درخواست شده را انجام و نهایتا شیء مطلوب را بازگشت خواهد داد.
ج) سپس، کد فراخوان، وهله دریافتی را مورد پردازش قرار داده و شروع به استفاده از متدها و خواص آن خواهد نمود.

اکنون با اضافه کردن Interception به این پروسه، چند مرحله دیگر نیز در این بین به آن اضافه خواهند شد:
الف) در اینجا نیز در ابتدا کد فراخوان، درخواست وهله‌ای را بر اساس اینترفیسی خاص به IOC Container ارائه می‌دهد.
ب) IOC Container نیز سعی در وهله سازی درخواست رسیده بر اساس تنظیمات اولیه خود می‌کند.
ج) اما در این حالت IOC Container تشخیص می‌دهد، نوعی که باید بازگشت دهد، علاوه بر وهله سازی، نیاز به مزین سازی توسط  Aspects و پیاده سازی Interceptors را نیز دارد. بنابراین نوع مورد انتظار را در صورت وجود، به یک Dynamic Proxy، بجای بازگشت مستقیم به فراخوان ارائه می‌دهد.
د) در  ادامه Dynamic Proxy، نوع مورد انتظار را توسط Interceptors محصور کرده و به فراخوان بازگشت می‌دهد.
ه) اکنون فراخوان، در حین استفاده از امکانات شیء وهله سازی شده، به صورت خودکار مراحل مختلف اجرای یک Aspect را که در قسمت قبل بررسی شدند، سبب خواهد شد.


نحوه ایجاد Interceptors

برای ایجاد یک Interceptor دو مرحله باید انجام شود:
الف) پیاده سازی یک اینترفیس
ب) اتصال آن به کدهای اصلی برنامه

در ادامه قصد داریم از یک IOC Container معروف به نام StructureMap در یک برنامه کنسول استفاده کنیم. برای دریافت آن نیاز است دستور پاورشل ذیل را در کنسول نوگت ویژوال استودیو فراخوانی کنید:
 PM> Install-Package structuremap
پس از آن یک برنامه کنسول جدید را ایجاد کنید. (هدف از استفاده از این نوع پروژه خاص، توضیح جزئیات یک فناوری، بدون درگیر شدن با لایه UI است)
البته باید دقت داشت که برای استفاده از StructureMap نیاز است به خواص پروژه مراجعه و سپس حالت Client profile را به Full profile تغییر داد تا برنامه قابل کامپایل باشد.
using System;
using StructureMap;

namespace AOP00
{
    public interface IMyType
    {
        void DoSomething(string data, int i);
    }

    public class MyType : IMyType
    {
        public void DoSomething(string data, int i)
        {
            Console.WriteLine("DoSomething({0}, {1});", data, i);
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            ObjectFactory.Initialize(x =>
            {
                x.For<IMyType>().Use<MyType>();
            });

            var myType = ObjectFactory.GetInstance<IMyType>();
            myType.DoSomething("Test", 1);
        }
    }
}
اکنون کدهای این برنامه را به نحو فوق تغییر دهید.
در اینجا یک اینترفیس نمونه و پیاده سازی آن‌را ملاحظه می‌کنید. همچنین نحوه آغاز تنظیمات StructureMap و نحوه دریافت یک وهله متناظر با IMyType نیز بیان شده‌اند.
نکته‌ی مهمی که در اینجا باید به آن دقت داشت، وضعیت شیء myType حین فراخوانی متد myType.DoSomething است. شیء myType در اینجا، دقیقا یک وهله‌ی متداول از کلاس myType است و هیچگونه دخل و تصرفی در نحوه اجرای آن صورت نگرفته است.
خوب! تا اینجای کار را احتمالا پیشتر نیز دیده بودید. در ادامه قصد داریم یک Interceptor را طراحی و مراحل چهارگانه اجرای یک Aspect را در اینجا بررسی کنیم.

در ادامه نیاز خواهیم داشت تا یک Dynamic proxy را نیز مورد استفاده قرار دهیم؛ از این جهت که StructureMap تنها دارای Interceptorهای وهله سازی اطلاعات است و نه Method Interceptor. برای دسترسی به Method Interceptors نیاز به یک Dynamic proxy نیز می‌باشد. در اینجا از Castle.Core استفاده خواهیم کرد:
 PM> Install-Package Castle.Core
برای دریافت آن تنها کافی است دستور پاور شل فوق را در خط فرمان کنسول پاورشل نوگت در VS.NET اجرا کنید.
سپس کلاس ذیل را به پروژه جاری اضافه کنید:
using System;
using Castle.DynamicProxy;

namespace AOP00
{
    public class LoggingInterceptor : IInterceptor
    {
        public void Intercept(IInvocation invocation)
        {
            try
            {
                Console.WriteLine("Logging On Start.");

                invocation.Proceed(); //فراخوانی متد اصلی در اینجا صورت می‌گیرد

                Console.WriteLine("Logging On Success.");
            }
            catch (Exception ex)
            {
                Console.WriteLine("Logging On Error.");
                throw;
            }
            finally
            {
                Console.WriteLine("Logging On Exit.");
            }
        }
    }
}
در کلاس فوق کار Method Interception توسط امکانات Castle.Core انجام شده است. این کلاس باید اینترفیس IInterceptor را پیاده سازی کند. در این متد سطر invocation.Proceed دقیقا معادل فراخوانی متد مورد نظر است. مراحل چهارگانه شروع، پایان، خطا و موفقیت نیز توسط try/catch/finally پیاده سازی شده‌اند.

اکنون برای معرفی این کلاس به برنامه کافی است سطرهای ذیل را اندکی ویرایش کنیم:
        static void Main(string[] args)
        {
            ObjectFactory.Initialize(x =>
            {
                var dynamicProxy = new ProxyGenerator();
                x.For<IMyType>().Use<MyType>();
                x.For<IMyType>().EnrichAllWith(myTypeInterface => dynamicProxy.CreateInterfaceProxyWithTarget(myTypeInterface, new LoggingInterceptor()));
            });

            var myType = ObjectFactory.GetInstance<IMyType>();
            myType.DoSomething("Test", 1);
        }
در اینجا تنها سطر EnrichAllWith آن جدید است. ابتدا یک پروکسی پویا تولید شده است. سپس این پروکسی پویا کار دخالت و تحت نظر قرار دادن اجرای متدهای اینترفیس IMyType را عهده دار خواهد شد.
برای مثال اکنون با فراخوانی متد myType.DoSomething، ابتدا کنترل برنامه به پروکسی پویای تشکیل شده توسط Castle.Core منتقل می‌شود. در اینجا هنوز هم متد DoSomething فراخوانی نشده است. ابتدا وارد بدنه متد public void Intercept خواهیم شد. سپس سطر invocation.Proceed، فراخوانی واقعی متد DoSomething اصلی را انجام می‌دهد. در ادامه باز هم فرصت داریم تا مراحل موفقیت، خطا یا خروج را لاگ کنیم.
تنها زمانیکه کار متد public void Intercept به پایان می‌رسد، سطر پس از فراخوانی متد  myType.DoSomething اجرا خواهد شد.
در این حالت اگر برنامه را اجرا کنیم، چنین خروجی را نمایش می‌دهد:
 Logging On Start.
DoSomething(Test, 1);
Logging On Success.
Logging On Exit.
بنابراین در اینجا نحوه دخالت و تحت نظر قرار دادن اجرای متدهای یک کلاس عمومی خاص را ملاحظه می‌کنید. برای اینکه کنترل کامل را در دست بگیریم، کلاس پروکسی پویا وارد عمل شده و اینجا است که این کلاس پروکسی تصمیم می‌گیرد چه زمانی باید فراخوانی واقعی متد مورد نظر انجام شود.
برای اینکه فراخوانی قسمت On Error را نیز ملاحظه کنید، یک استثنای عمدی را در متد DoSomething قرار داده و مجددا برنامه را اجرا کنید.
مطالب
از سرگیری مجدد، لغو درخواست و سعی مجدد دریافت فایل‌های حجیم توسط HttpClient
پس از آشنایی با «نکات دریافت فایل‌های حجیم توسط HttpClient»، در ادامه می‌توان سه قابلیت مهم از سرگیری مجدد، لغو درخواست و سعی مجدد دریافت فایل‌های حجیم را با HttpClient، همانند برنامه‌های download manager نیز پیاده سازی کرد.


از سرگیری مجدد درخواست ارسالی توسط HttpClient

یک نمونه از سرگیری مجدد درخواست را در مطلب «اضافه کردن قابلیت از سرگیری مجدد (resume) به HttpWebRequest» پیشتر در این سایت مطالعه کرده‌اید. اصول کلی آن نیز در اینجا صادق است. HTTP 1.1 از مفهوم range headers‌، برای دریافت پاسخ‌های جزئی پشتیبانی می‌کند. به این ترتیب در صورت پیاده سازی چنین قابلیتی در برنامه‌ی سمت سرور، می‌توان دریافت بازه‌ای از بایت‌ها را بجای دریافت فایل از ابتدا، از سرور درخواست کرد. به یک چنین قابلیتی Resume و یا از سرگیری مجدد گرفته می‌شود و درحین دریافت فایل‌های حجیم بسیار حائز اهمیت است.
var fileInfo = new FileInfo(outputFilePath);
long resumeOffset = 0;
if (fileInfo.Exists)
{
    resumeOffset = fileInfo.Length;
}
if (resumeOffset > 0)
{
    _client.DefaultRequestHeaders.Range = new RangeHeaderValue(resumeOffset, null);
}
در اینجا نحوه‌ی تنظیم یک RangeHeader را مشاهده می‌کنید. ابتدا نیاز است بررسی کنیم آیا فایل دریافتی از پیش موجود است؟ آیا قسمتی از این درخواست پیشتر دریافت شده و محتوای آن هم اکنون به صورت ذخیره شده وجود دارد؟ اگر بله، درخواست دریافت این فایل را بر اساس اندازه‌ی دریافتی فعلی آن، به سرور ارائه می‌کنیم.

یک نکته: تمام وب سرورها و یا برنامه‌های وب از یک چنین قابلیتی پشتیبانی نمی‌کنند.
روش تشخیص آن نیز به صورت زیر است:
var response = await client.GetAsync(url, HttpCompletionOption.ResponseHeadersRead);
if (response.Headers.AcceptRanges == null && resumeOffset > 0)
{
    // resume not supported, starting over
}
پس از خواندن هدر درخواست، اگر خاصیت AcceptRanges آن نال بود، یعنی قابلیت از سرگیری مجدد را ندارد. در این حالت باید فایل موجود فعلی را حذف و یا از نو (FileMode.CreateNew) بازنویسی کرد (بجای حالت FileMode.Append).


لغو درخواست ارسالی توسط HttpClient

پس از شروع غیرهمزمان client.GetAsync می‌توان متد CancelPendingRequests آن‌را فراخوانی کرد تا کلیه درخواست‌های مرتبط با این client لغو شوند. اما این متد صرفا برای حالت پیش‌فرض client.GetAsync که دریافت هدر + محتوا است کار می‌کند (یعنی حالت HttpCompletionOption.ResponseContentRead). اگر همانند نکات بررسی شده‌ی در مطلب «دریافت فایل‌های حجیم توسط HttpClient» صرفا درخواست خواندن هدر را بدهیم (HttpCompletionOption.ResponseHeadersRead)، چون کنترل ادامه‌ی بحث را خودمان بر عهده گرفته‌ایم، لغو آن نیز به عهده‌ی خودمان است و متد CancelPendingRequests بر روی آن تاثیر نخواهد داشت.
این نکته در مورد تنظیم خاصیت TimeOut نیز صادق است. این خاصیت فقط زمانیکه دریافت کل هدر + محتوا توسط متد GetAsync مدیریت شوند، تاثیر گذار است.
بنابراین درحالتیکه نیاز به کنترل بیشتر است، هرچند فراخوانی متد CancelPendingRequests ضرری ندارد، اما الزاما سبب قطع کل درخواست نمی‌شود و باید این لغو را به صورت ذیل پیاده سازی کرد:
ابتدا یک منبع توکن لغو عملیات را به صورت ذیل ایجاد می‌کنیم:
private readonly CancellationTokenSource _cts = new CancellationTokenSource();
سپس، متد لغو برنامه، تنها کافی است متد Cancel این cts را فراخوانی کند؛ تا عملیات دریافت فایل خاتمه یابد.
پس از این فراخوانی (()cts.Cancel)، نحوه‌ی واکنش به آن به صورت ذیل خواهد بود:
var result = await client.GetAsync(url, HttpCompletionOption.ResponseHeadersRead, _cts.Token);
using(var stream = await result.Content.ReadAsStreamAsync())
{
   byte[] buffer = new byte[80000];
   int bytesRead;
   while((bytesRead = await stream.ReadAsync(buffer, 0, buffer.Length)) > 0 &&
         !_cts.IsCancellationRequested)
   {
      outputStream.Write(buffer, 0, bytesRead);
   }
}
در اینجا از cts.Token به عنوان پارامتر سوم متد GetAsync استفاده شده‌است. همچنین قسمت ثبت اطلاعات دریافتی، در استریم خروجی نیز به صورت یک حلقه درآمده‌است تا بتوان خاصیت IsCancellationRequested این توکن لغو را بررسی کرد و نسبت به آن واکنش نشان داد.


سعی مجدد درخواست ارسالی توسط HttpClient

یک روش پیاده سازی سعی مجدد درخواست شکست خورده، توسط کتابخانه‌ی Polly است. روش دیگر آن نیز به صورت ذیل است:
public async Task DownloadFileAsync(string url, string outputFilePath, int maxRequestAutoRetries)
{
            var exceptions = new List<Exception>();

            do
            {
                --maxRequestAutoRetries;
                try
                {
                    await doDownloadFileAsync(url, outputFilePath);
                }
                catch (TaskCanceledException ex)
                {
                    exceptions.Add(ex);
                }
                catch (HttpRequestException ex)
                {
                    exceptions.Add(ex);
                }
                catch (Exception ex) when (isNetworkError(ex))
                {
                    exceptions.Add(ex);
                }

                // Wait a bit and try again later
               if (exceptions.Any())  await Task.Delay(2000, _cts.Token);
            } while (maxRequestAutoRetries > 0 &&
                     !_cts.IsCancellationRequested);

            var uniqueExceptions = exceptions.Distinct().ToList();
            if (uniqueExceptions.Any())
            {
                if (uniqueExceptions.Count() == 1)
                    throw uniqueExceptions.First();
                throw new AggregateException("Could not process the request.", uniqueExceptions);
            }
}

private static bool isNetworkError(Exception ex)
{
    if (ex is SocketException || ex is WebException)
        return true;
    if (ex.InnerException != null)
        return isNetworkError(ex.InnerException);
    return false;
}
در اینجا متد doDownloadFileAsync، پیاده سازی همان متدی است که در قسمت «لغو درخواست ارسالی توسط HttpClient» در مورد آن بحث شد. این قسمت دریافت فایل را در یک حلقه که حداقل یکبار اجرا می‌شود، قرار می‌دهیم. متد GetAsync استثناءهایی مانند TaskCanceledException (در حین TimeOut و یا فراخوانی متد CancelPendingRequests که البته همانطور که توضیح داده شد، بر روی روش کنترل Response تاثیری ندارند)، HttpRequestException پس از فراخوانی متد response.EnsureSuccessStatusCode (جهت اطمینان حاصل کردن از دریافت پاسخی بدون مشکل از طرف سرور) و یا SocketException و WebException را درصورت بروز مشکلی در شبکه، صادر می‌کند. نیازی به بررسی سایر استثناءها در اینجا نیست.
اگر یکی از این استثناءهای یاد شده رخ‌دادند، اندکی صبر کرده و مجددا درخواست را از ابتدا صادر می‌کنیم.
در پایان این سعی‌های مجدد، اگر استثنایی ثبت شده بود و همچنین عملیات نیز با موفقیت به پایان نرسیده بود، آن‌را به فراخوان صادر می‌کنیم.
مطالب
C# 12.0 - Experimental Attribute
گاهی از اوقات ممکن است یک ویژگی تکمیل نشده، سر از نگارش‌های release درآورد؛ چون نیاز به دریافت بازخوردی در این مورد وجود دارد و یا اینکه قرار است در طی چند مرحله تکمیل شود. برای اینکه یک چنین مساله‌ای خصوصا از طرف نویسندگان کتابخانه‌ها و فریم‌ورک‌ها مشخص شود، ویژگی جدید System.Diagnostics.CodeAnalysis.ExperimentalAttribute به دات‌نت 8 اضافه شده‌است.
در این حالت اگر کدی، شروع به استفاده‌ی از یک چنین عضو‌های آزمایشی کند، یک خطای زمان کامپایل رخ می‌دهد؛ مگر اینکه آن قطعه کد نیز دقیقا با همین ویژگی مزین شود. در اینجا می‌توان نوع‌ها، اسمبلی‌ها و حتی اعضای آن‌ها را آزمایشی تعریف کرد. اگر کل یک نوع را به صورت آزمایشی معرفی کنیم، تمام اعضای آن هم آزمایشی خواهند بود.


بررسی ویژگی Experimental با یک مثال

در ادامه نحوه‌ی اعمال ویژگی Experimental را به همراه یک diagnosticId که به کل یک کلاس اعمال شده‌است، مشاهده می‌کنید. از این diagnosticId در حین تولید متن خطاها و یا برای شناسایی آن‌ها، استفاده می‌شود:
using System.Diagnostics.CodeAnalysis;

namespace CS8Tests;

[Experimental(diagnosticId: "Test001")]
public class ExperimentalAttributeDemo
{
    public void Print()
    {
        Console.WriteLine("Hello Experimental Attribute");
    }
}
پس از این تعریف، اگر در قسمت دیگری از برنامه بخواهیم از این کلاس استفاده کنیم:
var experimentalAttributeDemo = new ExperimentalAttributeDemo();
با خطای زیر مواجه خواهیم شد:
error Test001: 'CS8Tests.ExperimentalAttributeDemo' is for evaluation purposes only
and is subject to change or removal in future updates. Suppress this diagnostic to proceed.
برای مواجه شدن با یک چنین خطایی، می‌توان دو روش زیر را در پیش گرفت:
الف) غیرفعال کردن سراسری گزارش این نوع خطاها در فایل csproj. برنامه:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>

    <NoWarn>Test001</NoWarn>
  </PropertyGroup>
</Project>
در اینجا اضافه شدن NoWarn را بر اساس diagnosticId ویژگی آزمایشی تعریف شده، مشاهده می‌کنید. این تنظیم سراسری است و به تمام قسمت‌های پروژه‌ی جاری اعمال می‌شود. اضافه کردن آن هم فقط یکبار صورت می‌گیرد.

ب) غیرفعال کردن موضعی آن، صرفا در محل استفاده
برای غیرفعال کردن محلی این بررسی، تنها کافی است با استفاده از pragma warning# یکبار آن‌را غیرفعال کرده و پس از پایان کار، مجددا آن‌را فعال کنیم:
#pragma warning disable Test001
var demo = new ExperimentalAttributeDemo();
#pragma warning restore Test001
همانطور که مشاهده می‌کنید، این فعال و غیرفعال کردن هم بر اساس diagnosticId صورت می‌گیرد. بدیهی است این تنظیم سراسری نبوده و درصورت بکارگیری این قطعه کد در قسمت‌های دیگر برنامه، باید مجددا تکرار شود.

و اگر این مثال را کمی پیچیده‌تر کنیم، به حالت زیر می‌رسیم:
using System.Diagnostics.CodeAnalysis;

namespace CS8Tests;

[Experimental(diagnosticId: "Test001")]
public class ExperimentalAttributeDemo
{
    [Experimental(diagnosticId: "Test002")]
    public void Print()
    {
        Console.WriteLine("Hello Experimental Attribute");
    }
}
در اینجا دو ویژگی آزمایشی، با دو diagnosticId متفاوت تعریف شده‌اند. در این حالت اگر سعی کنیم قطعه کد زیر را کامپایل کنیم:
var demo = new ExperimentalAttributeDemo();
demo.Print();
به ازای هر ویژگی آزمایشی تعریف شده، یک خطای کامپایلر جداگانه را دریافت می‌کنیم. به همین جهت برای رفع این خطاها، یا باید از روش غیرفعال سازی سراسری آن‌ها پیش‌رفت:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>

    <NoWarn>Test001,Test002</NoWarn>
  </PropertyGroup>
</Project>
 و یا می‌توان به صورت محلی زیر عمل کرد:
#pragma warning disable Test001,Test002
var demo = new ExperimentalAttributeDemo();
demo.Print();
#pragma warning restore Test001,Test002
در اینجا ذکر هر دو diagnosticId، ضروری است.