نظرات مطالب
تزریق وابستگی‌ها در ASP.NET Core - بخش 4 - طول حیات سرویس ها یا Service Lifetime
آقای نصیری یک متن در این مورد دارند که لینکش رو ارسال کردند .
در مورد میان افزار‌ها ، قسمت 7 مقاله هست که به خاطر مشغله‌ی کاری هنوز اون رو ننوشتم ... اگر وقت بود در مورد واکشی سرویس‌ها و مکانیزم‌های واکشی سرویس‌ها هم در ادامه توضیح خواهم داد .

میان افزار / Middle ware‌ها :
این کلاس‌ها فقط و فقط در هنگام تعریف در متد Configure ساخته می‌شوند و  شی ایجاد شده از هر سرویسی که درون سازنده‌ی آن‌ها ثبت بشه ، تا پایان طول حیات برنامه ، در حافظه نگه داشته می‌شود و اصطلاحا Capture می‌شود .
مثلا اگر میان افزاری برای لاگ کردن آخرین فعالیت کاربر بنویسیم و UserRepository را در سازنده تعریف کنیم ، یک نمونه از این Repository تا در طول حیات برنامه در حافظه نگه داشته می‌شود که معمولا باعث  اشغال حافظه ، باز نگه داشتن Connection به پایگاه داده و ایجاد خطا می‌شود . برای جلوگیری از این مشکل ، در میان افزارها ، ما سرویس‌های Transient و Scoped را در خود متد‌های InvokeAsync و یا Invoke ثبت می‌کنیم تا با هر درخواست جدید یک نمونه‌ی جدید از آن‌ها ساخته شود و با پایان درخواست نمونه‌ی ساخته شده به درستی از بین برود .

در مورد Validation :
به صورت معمول ، Validation در هر صفحه به ازای هر درخواست ، از ابتدا انجام می‌شود و بنابراین روش منطقی ثبت و واکشی سرویس‌های Validation به صورت Scoped هست تا خطر به اشتراک گذاشتن وضعیت شی وجود نداشته باشد . توصیه‌ی من ثبت این سرویس به صورت Scoped و یا حتی برای امنیت بیشتر ، ثبت آن به صورت Transient هست تا مطمئن شوید که با هر بار فراخوانی این سرویس در طول یک درخواست ، یک نمونه‌ی جدید ساخته و استفاده می‌شود .

"سرویس‌های Scoped  در محدوده‌ی درخواست، مانند  Singleton عمل می‌کنند و شیء ساخته شده و وضعیت آن در  بین تمامی سرویس‌هایی  که به آن نیاز دارند، مشترک است. بنابراین باید به این نکته در هنگام تعریف سرویس به صورت  Scoped ، توجه داشته باشید."  »
یک مثال می‌زنیم فرض کنید IUserRepository را به عنوان یک سرویس Scoped ثبت کرده ایم ، و دو سرویس IUserAccountManager و IUserFinancialManager به این سرویس وابسته هستند و این سرویس درون سازنده‌ی دو سرویس Manager ثبت شده هست . حالا این دو سرویس خودشان درون UserController ثبت شده اند .

public class UserAccountManager  : IUserAccountManager 
{
     private I,serRepository _userRepository ; 
     // تزریق درون سازنده
}

public class UserFinancialManager  : IUserFinancialManager  
{
     private IUserRepository _userRepository ; 
     // تزریق درون سازنده
}


public class UserController 
{
     IUserFinancialManager  _userFinancialManager ;
     IUserAccountManager  _userAccountManager;

     // تزریق درون سازنده
}

در این حالت ، DI Container به ازای هر درخواست به این کنترلر ، یک نمونه از userRepository می‌سازد و این نمونه را در اختیار UserAccountManager و UserFinancialManager می‌گذارد و در طول درخواست ، هر تغییر وضعیتی درون userRepository بین دو سرویس Manager ، مشترک هست ... این معنای « "سرویس‌های Scoped  در محدوده‌ی درخواست، مانند  Singleton عمل می‌کنند و شیء ساخته شده و وضعیت آن در  بین تمامی سرویس‌هایی  که به آن نیاز دارند، مشترک است.  » می‌باشد ... به عبارت ساده‌تر ،در این مثال هر دو سرویس Manager به یک نمونه از DbContext درون UserRepository دسترسی دارند .

حالا فرض کنید در اینجا IUserRepository را به صورت Transient ثبت کرده باشیم ، در این حالت به ازای هر درخواست به کنترلر مورد بحث ، DI Container برای هر سرویس Manager ، یک نمونه‌ی اختصاصی از IUserRepository می‌سازد و در اختیار آن‌ها قرار می‌دهد و هر سرویس یک نمونه‌ی منحصر به فرد از IUserRepository دارد . به عبارت ساده‌تر ، در این مثال هر سرویس Manager به یک نمونه‌ی اختصاصی از DbContet دسترسی دارد .

برای تست این موضوع می‌توانید از تکه کد زیر استفاده کنید :

using System;

namespace AspNetCoreDependencyInjection.Services
{
    public interface IUserRepository
    {
        public string GID { get; }
    }

    public class UserRepository : IUserRepository
    {
        public string GID { get; private set; }

        public UserRepository()
        {
            GID = Guid.NewGuid().GetHashCode().ToString("x");
        }
    }

    //---------------------------------------------

    public interface IUserAccountManager
    {
        public string DisplayGuid();
    }

    public class UserAccountManager : IUserAccountManager
    {
        private IUserRepository _userRepository;

        public UserAccountManager(IUserRepository userRepository)
        {
            _userRepository = userRepository;
        }

        public string DisplayGuid()
        {
            return "UserFinancialManager Guid : " + _userRepository.GID;
        }
    }

    //-------------------------------------------------

    public interface IUserFinancialManager
    {
        public string DisplayGuid();
    }

    public class UserFinancialManager : IUserFinancialManager
    {
        private IUserRepository _userRepository;

        public UserFinancialManager(IUserRepository userRepository)
        {
            _userRepository = userRepository;
        }

        public string DisplayGuid()
        {
            return "UserFinancialManager Guid : " + _userRepository.GID;
        }
    }
}

حالا در کنترلر

public class UserController : Controller
    {
       
        private readonly IUserFinancialManager _userFinancialManager;

        private readonly IUserAccountManager _userAccountManager;

        public UserController(IUserFinancialManager userFinancialManager,
            IUserAccountManager userAccountManager)
        {
            _userFinancialManager = userFinancialManager;
            _userAccountManager = userAccountManager;
        }

        public IActionResult Index()
        {
            ViewBag.FinancialManager = _userFinancialManager.DisplayGuid();
            ViewBag.AccountManager = _userAccountManager.DisplayGuid();
            return View();
        }
    }

و نمای ایندکس

@{
ViewData["Title"] = "User";
}

<div class="text-center">
<div class="row">
<div class="col-12">
<p class="alert alert-info text-left">
<b>User Finanacial Manager / UserRepository Guid  : </b><span>@ViewBag.FinancialManager </span> <br />
<b>User Account Manager / UserRepository Guid  : </b><span>@ViewBag.AccountManager</span> <br />
</p>
</div>
</div>
</div>

برای تست یکبار سرویس IUserRepository را به صورت Scoped و بار دیگر به صورت Transient ثبت کنید و با اجرا برنامه Guid‌های ایجاد شده را چک کنید .

 services.AddTransient<IUserRepository, UserRepository>();
 services.AddScoped<IUserAccountManager, UserAccountManager>();
services.AddScoped<IUserFinancialManager, UserFinancialManager>();


// اجرای دوم 
// services.AddScoped<IUserRepository, UserRepository>();
 //services.AddScoped<IUserAccountManager, UserAccountManager>();
//services.AddScoped<IUserFinancialManager, UserFinancialManager>();





مطالب
شروع به کار با EF Core 1.0 - قسمت 15 - نوشتن آزمون‌های واحد
یکی از مشخصات آزمون‌های واحد، عدم خروج از مرزهای IO سیستم، در حین اجرای آن‌ها است و چون درهنگام کار با بانک‌های اطلاعاتی حتما از مرزهای IO سیستم رد خواهیم شد (کار با شبکه، کار با فایل سیستم، برای به روز رسانی و درج اطلاعات)، نوشتن آزمون‌های واحد واقعی، برای برنامه‌هایی که از ORMها استفاده می‌کنند مشکل است. به همین جهت مباحث mocking، تقلید قسمت‌های مختلف ORMها و جایگزین کردن آن‌ها با نمونه‌های درون حافظه‌ای بسیار مرسوم است. برای رفع این مشکلات، تیم EF Core، یک تامین کننده‌ی بانک اطلاعاتی ویژه‌ی «درون حافظه‌ای» را به نام «Entity Framework Core InMemory provider» ارائه داده‌است. به این ترتیب، این محل ذخیره سازی اطلاعات درون حافظه‌ای، مشکل رد شدن از مرزهای IO سیستم را برطرف کرده و عملا نیاز به کار کردن با فریم ورک‌های mocking را منتفی می‌کند (حداقل برای تقلید قسمت‌های مختلف EF Core).
در این قسمت ابتدا نحوه‌ی فعال سازی فریم ورک آزمون‌های واحد مایکروسافت و سپس نحوه‌ی فعال سازی این تامین کننده‌ی بانک اطلاعاتی درون حافظه‌ای را بررسی خواهیم کرد. به علاوه برای سرویس بلاگ‌های قسمت قبل نیز آزمون واحد خواهیم نوشت.


نحوه‌ی فعالسازی فریم ورک MSTest در یک پروژه‌ی Class library از نوع NET Core.


تنها نکته‌ی مهم فعالسازی MSTest در یک پروژه‌ی Class library جدید که برای نوشتن آزمون‌های واحد مورد استفاده قرار خواهیم داد، تنظیمات فایل project.json آن است که در ذیل آمده است:
{
    "version": "1.0.0-*",
 
    "testRunner": "mstest",
    "dependencies": {
        "Microsoft.NETCore.App": {
            "type": "platform",
            "version": "1.0.0"
        },
        "dotnet-test-mstest": "1.1.1-preview",
        "MSTest.TestFramework": "1.0.1-preview",
        "NETStandard.Library": "1.6.0",
        "Microsoft.EntityFrameworkCore": "1.0.0",
        "Microsoft.EntityFrameworkCore.InMemory": "1.0.0",
        "Core1RtmEmptyTest.DataLayer": "1.0.0-*",
        "Core1RtmEmptyTest.Entities": "1.0.0-*",
        "Core1RtmEmptyTest.Services": "1.0.0-*",
        "Core1RtmEmptyTest.ViewModels": "1.0.0-*"
    },
 
    "frameworks": {
        "netcoreapp1.0": {
            "imports": [
                "dnxcore50",
                "portable-net45+win8"
            ]
        }
    }
}
- در اینجا قید testRunner الزامی است؛ در غیراینصورت آزمون‌های واحد شما شناسایی نخواهند شد. همچنین بسته‌های dotnet-test-mstest و MSTest.TestFramework نیز باید اضافه شوند.
- به علاوه در اینجا ارجاعاتی را به اسمبلی‌های موجودیت‌ها، Services و DataLayer که در قسمت «شروع به کار با EF Core 1.0 - قسمت 14 - لایه بندی و تزریق وابستگی‌ها» بررسی شدند نیز ملاحظه می‌کنید.
- همچنین وابستگی جدید Microsoft.EntityFrameworkCore.InMemory نیز در اینجا قابل ملاحظه است. این وابستگی را تنها به پروژه‌ی آزمون‌های واحد خود اضافه می‌کنیم. از این جهت که تنظیمات آن صرفا در این قسمت جدید قید می‌شوند و نه در سایر قسمت‌های برنامه.

 پس از آن، کار با این فریم ورک، همانند سایر نگارش‌های دات نت خواهد بود:
using Microsoft.VisualStudio.TestTools.UnitTesting;
 
namespace EFCore.MsTests
{
    [TestClass]
    public class CoreTests
    {
        [TestMethod]
        public void Test1()
        {
            Assert.IsTrue(true);
        }
    }
}
ابتدا کلاس مدنظر، با ویژگی TestClass مزین می‌شود. سپس متد آزمون واحد نوشته شده نیز باید به صورت public void و مزین شده‌ی با ویژگی TestMethod، ارائه شود.
پس از نوشتن اولین آزمون واحد، یکبار پروژه را build کرده و سپس از منوی Test، گزینه‌ی Windows را انتخاب کرده و در اینجا گزینه‌ی Test Explorer را انتخاب کنید. اندکی صبر کنید تا آزمون‌های واحد شما شناسایی شوند و سپس گزینه‌ی Run All را انتخاب کنید:



تغییرات Context برنامه جهت استفاده‌ی از تامین کننده‌ی داخل حافظه‌ای

در مورد نحوه‌ی تعریف و افزودن وابستگی‌های EF Core در مطلب «شروع به کار با EF Core 1.0 - قسمت 1 - برپایی تنظیمات اولیه» پیشتر بحث شد و همچنین در مطلب «شروع به کار با EF Core 1.0 - قسمت 3 - انتقال مهاجرت‌ها به یک اسمبلی دیگر»، اطلاعات Context برنامه را به اسمبلی دیگری منتقل کردیم.
اگر از روش بازنویسی متد OnConfiguring برای تنظیم تامین کننده‌ی بانک اطلاعاتی مورد نظر استفاده می‌کنید، متد OnConfiguring کلاس Context برنامه چنین شکلی را پیدا می‌کند:
public class ApplicationDbContext : DbContext, IUnitOfWork
{
    private readonly IConfigurationRoot _configuration;
 
    public ApplicationDbContext(IConfigurationRoot configuration)
    {
        _configuration = configuration;
    }
 
    public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options) : base(options)
    {
    } 
 
    protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
    {
        if (!optionsBuilder.IsConfigured)
        {
            optionsBuilder.UseSqlServer(
                _configuration["ConnectionStrings:ApplicationDbContextConnection"]
                , serverDbContextOptionsBuilder =>
                {
                    var minutes = (int)TimeSpan.FromMinutes(3).TotalSeconds;
                    serverDbContextOptionsBuilder.CommandTimeout(minutes);
                });
        }
    }
در اینجا دو تغییر جدید قابل ملاحظه هستند:
الف) اضافه شدن سازنده‌ی دومی که <DbContextOptions<ApplicationDbContext را دریافت می‌کند. از آن در سمت کدهای آزمون واحد برنامه جهت ثبت ()options.UseInMemoryDatabase استفاده می‌شود.
ب) به متد OnConfiguring، بررسی optionsBuilder.IsConfigured هم اضافه شده‌است. چون در سمت کدهای آزمون واحد، تامین کننده‌ی بانک اطلاعاتی درون حافظه‌ای اضافه می‌شود، مقدار optionsBuilder.IsConfigured به true تنظیم خواهد شد و دیگر از تامین کننده‌ی SQL Server استفاده نمی‌شود.

اگر از متد OnConfiguring به این شکل استفاده نمی‌کنید، تنها ذکر سازنده‌ی دوم ضروری است. از این جهت که در آزمون‌های واحد، از تنظیمات متد ConfigureServices کلاس آغازین برنامه استفاده نخواهد شد.


نوشتن آزمون‌های واحد مخصوص EF Core

پس از برپایی پیشنیازهای نوشتن آزمون‌ها واحد، شامل تنظیمات فریم ورک MSTest و همچنین افزودن وابستگی‌های مرتبط با فایل project.json ایی که در ابتدای بحث عنوان شد و اصلاح سازنده و متد OnConfiguring کلاس Context برنامه جهت آماده سازی آن‌ها برای پذیرش تامین کننده‌های دیگر، اکنون یک نمونه از آزمون‌های واحد درون حافظه‌ای EF Core، چنین شکلی را خواهد داشت:
using System;
using System.Linq;
using Core1RtmEmptyTest.DataLayer;
using Core1RtmEmptyTest.Entities;
using Core1RtmEmptyTest.Services;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.VisualStudio.TestTools.UnitTesting;
 
namespace Core1RtmEmptyTest.MsTests
{
    [TestClass]
    public class CoreTests
    {
        private readonly IServiceProvider _serviceProvider;
 
        public CoreTests()
        {
            var services = new ServiceCollection();
            services.AddEntityFrameworkInMemoryDatabase()
                        .AddDbContext<ApplicationDbContext>(options => options.UseInMemoryDatabase());
 
            services.AddScoped<IUnitOfWork, ApplicationDbContext>();
            services.AddScoped<IBlogService, BlogService>();
 
            _serviceProvider = services.BuildServiceProvider();
        }
 
        [TestMethod]
        public void Find_searches_url()
        {
            // Insert seed data into the database using one instance of the context
            using (var serviceScope = _serviceProvider.GetRequiredService<IServiceScopeFactory>().CreateScope())
            {
                using (var context = serviceScope.ServiceProvider.GetRequiredService<IUnitOfWork>())
                {
                    context.Set<Blog>().Add(new Blog { Url = "http://sample.com/cats" });
                    context.Set<Blog>().Add(new Blog { Url = "http://sample.com/catfish" });
                    context.Set<Blog>().Add(new Blog { Url = "http://sample.com/dogs" });
                    context.SaveAllChanges();
                }
            }
 
            // Use a separate instance of the context to verify correct data was saved to database
            using (var serviceScope = _serviceProvider.GetRequiredService<IServiceScopeFactory>().CreateScope())
            {
                using (var context = serviceScope.ServiceProvider.GetRequiredService<IUnitOfWork>())
                {
                    Assert.AreEqual(3, context.Set<Blog>().Count());
                    Assert.AreEqual("http://sample.com/cats", context.Set<Blog>().First().Url);
                }
            }
 
            // Use a clean instance of the context to run the test
            using (var serviceScope = _serviceProvider.GetRequiredService<IServiceScopeFactory>().CreateScope())
            {
                var blogService = serviceScope.ServiceProvider.GetRequiredService<IBlogService>();
                var results = blogService.GetPagedBlogsAsNoTracking(pageNumber: 0, recordsPerPage: 10);
                Assert.AreEqual(3, results.Count);
            }
        }
    }
}
توضیحات:
همانطور که در قسمت «تغییرات Context برنامه جهت استفاده‌ی از تامین کننده‌ی داخل حافظه‌ای» فوق عنوان شد، در حین انجام آزمون‌های واحد، دیگر به کلاس آغازین برنامه و تنظیمات آن مراجعه نمی‌شود. بنابراین باید شبیه به عملکرد متد ConfigureServices آن‌را در اینجا پیاده سازی کرد. نمونه‌ای از انجام اینکار را در سازنده‌ی کلاس انجام آزمون‌های واحد مشاهده می‌کنید:
        private readonly IServiceProvider _serviceProvider;
 
        public CoreTests()
        {
            var services = new ServiceCollection();
            services.AddEntityFrameworkInMemoryDatabase()
                        .AddDbContext<ApplicationDbContext>(options => options.UseInMemoryDatabase());
 
            services.AddScoped<IUnitOfWork, ApplicationDbContext>();
            services.AddScoped<IBlogService, BlogService>();
 
            _serviceProvider = services.BuildServiceProvider();
        }
در اینجا است که توسط متد AddEntityFrameworkInMemoryDatabase، کار افزودن تامین کننده‌ی بانک اطلاعاتی درون حافظه‌ای انجام شده و سپس Context برنامه نیز از آن مطلع می‌شود (علت افزودن سازنده‌ی دومی که <DbContextOptions<ApplicationDbContext را دریافت می‌کند).
سپس همانند قبل، باید تمام سرویس‌های مدنظر تنظیم شوند تا بتوان از آن‌ها استفاده کرد.

نکته‌ی مهم دیگری را که باید به آن دقت داشت، ایجاد scope و سپس دسترسی به سرویس‌ها از طریق این Scope است. از این جهت که چون خارج از طول عمر یک درخواست وب قرار داریم، دیگر Scopeها برای ما به صورت خودکار ایجاد و تخریب نمی‌شوند و باید همان‌کاری را که ASP.NET Core در پشت صحنه انجام می‌دهد، به صورت دستی پیاده سازی کنیم:
            using (var serviceScope = _serviceProvider.GetRequiredService<IServiceScopeFactory>().CreateScope())
            {
                using (var context = serviceScope.ServiceProvider.GetRequiredService<IUnitOfWork>())
                {
اگر اینکار صورت نگیرد، چون Scope ایی ایجاد و تخریب نمی‌شود، کار کردن با متد serviceProvider.GetRequiredService_ اشتباه بوده و همیشه یک وهله از Context را باز می‌گرداند که مدنظر ما نیست. شبیه به این نکته را در قسمت «مقدار دهی اولیه‌ی جداول بانک‌های اطلاعاتی در EF Core» پیشتر ملاحظه کرده‌اید.


یک نکته‌ی تکمیلی

EF Core به همراه تامین کننده‌ی بانک اطلاعاتی SQLite نیز هست. یکی از نکات ویژه‌ی بانک اطلاعاتی SQLite، امکان تنظیم پارامتری است در رشته‌ی اتصالی آن، که آن‌را نیز تبدیل به یک «بانک اطلاعاتی درون حافظه‌ای» می‌کند. این روش سال‌ها است که جهت انجام آزمون‌های واحد ORMها مورد استفاده قرار می‌گیرد. بنابراین می‌توان آن‌را به عنوان جایگزینی برای مطلب جاری نیز درنظر گرفت.
 var connectionStringBuilder = new SqliteConnectionStringBuilder { DataSource = ":memory:" };
var connectionString = connectionStringBuilder.ToString();
var connection = new SqliteConnection(connectionString);
services.AddEntityFrameworkSqlite().AddDbContext<CmsDbContext>(options => options.UseSqlite(connection));
اهمیت آن در اینجا است که تامین کننده‌ی بانک اطلاعاتی درون حافظه‌ای EF، قیود را اعمال نمی‌کند ؛ اما بانک اطلاعاتی درون حافظه‌ای SQLite واقعا همانند یک بانک اطلاعاتی رابطه‌ای کامل عمل می‌کند.
مطالب
Globalization در ASP.NET MVC - قسمت دوم

به‌روزرسانی فایلهای Resource در زمان اجرا

یکی از ویژگیهای مهمی که در پیاده سازی محصول با استفاده از فایلهای Resource باید به آن توجه داشت، امکان بروز رسانی محتوای این فایلها در زمان اجراست. از آنجاکه احتمال اینکه کاربران سیستم خواهان تغییر این مقادیر باشند بسیار زیاد است، بنابراین درنظر گرفتن چنین ویژگی‌ای برای محصول نهایی میتواند بسیار تعیین کننده باشد. متاسفانه پیاده سازی چنین امکانی درباره فایلهای Resource چندان آسان نیست. زیرا این فایلها همانطور که در قسمت قبل توضیح داده شد پس از کامپایل به صورت اسمبلی‌های ستلایت (Satellite Assembly) درآمده و دیگر امکان تغییر محتوای آنها بصورت مستقیم و به آسانی وجود ندارد.

نکته: البته نحوه پیاده سازی این فایلها در اسمبلی نهایی (و در حالت کلی نحوه استفاده از هر فایلی در اسمبلی نهایی) در ویژوال استودیو توسط خاصیت Build Action تعیین میشود. برای کسب اطلاعات بیشتر راجع به این خاصیت به اینجا رجوع کنید.

یکی از روشهای نسبتا من‌درآوردی که برای ویرایش و به روزرسانی کلیدهای Resource وجود دارد بدین صورت است:
- ابتدا باید اصل فایلهای Resource به همراه پروژه پابلیش شود. بهترین مکان برای نگهداری این فایلها فولدر App_Data است. زیرا محتویات این فولدر توسط سیستم FCN (همان File Change Notification) در ASP.NET رصد نمیشود.
نکته: علت این حساسیت این است که FCN در ASP.NET تقریبا تمام محتویات فولدر سایت در سرور (فولدر App_Data یکی از معدود استثناهاست) را تحت نظر دارد و رفتار پیشفرض این است که با هر تغییری در این محتویات، AppDomain سایت Unload میشود که پس از اولین درخواست دوباره Load میشود. این اتفاق موجب از دست دادن تمام سشن‌ها و محتوای کش‌ها و ... میشود (اطلاعات بیشتر و کاملتر درباره نحوه رفتار FCN در اینجا).
- سپس با استفاده یک مقدار کدنویسی امکاناتی برای ویرایش محتوای این فایلها فراهم شود. ازآنجا که محتوای این فایلها به صورت XML ذخیره میشود بنابراین براحتی میتوان با امکانات موجود این ویژگی را پیاده سازی کرد. اما در فضای نام System.Windows.Forms کلاسهایی وجود دارد که مخصوص کار با این فایلها طراحی شده اند که کار نمایش و ویرایش محتوای فایلهای Resource را ساده‌تر میکند. به این کلاسها در قسمت قبلی اشاره کوتاهی شده بود.
- پس از ویرایش و به روزرسانی محتوای این فایلها باید کاری کنیم تا برنامه از این محتوای تغییر یافته به عنوان منبع جدید بهره بگیرد. اگر از این فایلهای Rsource به صورت embed استفاده شده باشد در هنگام build پروژه محتوای این فایلها به صورت Satellite Assembly در کنار کتابخانه‌های دیگر تولید میشود. اسمبلی مربوط به هر زبان هم در فولدری با عنوان زبان مربوطه ذخیره میشود. مسیر و نام فایل این اسمبلی‌ها مثلا به صورت زیر است:
bin\fa\Resources.resources.dll
بنابراین در این روش برای استفاده از محتوای به روز رسانی شده باید عملیات Build این کتابخانه دوباره انجام شود و کتابخانه‌های جدیدی تولید شود. راه حل اولی که به ذهن میرسد این است که از ابزارهای پایه و اصلی برای تولید این کتابخانه‌ها استفاده شود. این ابزارها (همانطور که در قسمت قبل نیز توضیح داده شد) عبارتند از Resource Generator و Assembly Linker. اما استفاده از این ابزارها و پیاده سازی روش مربوطه سختتر از آن است که به نظر می‌آید. خوشبختانه درون مجموعه عظیم دات نت ابزار مناسبتری برای این کار نیز وجود دارد که کار تولید کتابخانه‌های موردنظر را به سادگی انجام میدهد. این ابزار با عنوان Microsoft Build شناخته میشود که در اینجا توضیح داده شده است. 

خواندن محتویات یک فایل resx.
همانطور که در بالا توضیح داده شد برای راحتی کار میتوان از کلاس زیر که در فایل System.Windows.Forms.dll قرار دارد استفاده کرد:
System.Resources.ResXResourceReader
این کلاس چندین کانستراکتور دارد که مسیر فایل resx. یا استریم مربوطه به همراه چند گزینه دیگر را به عنوان ورودی میگیرد. این کلاس یک Enumator دارد که یک شی از نوع IDictionaryEnumerator برمیگرداند. هر عضو این enumerator از نوع object است. برای استفاده از این اعضا ابتدا باید آنرا به نوع DictionaryEntry تبدیل کرد. مثلا بصورت زیر:
private void TestResXResourceReader()
{
  using (var reader = new ResXResourceReader("Resource1.fa.resx"))
  {
    foreach (var item in reader)
    {
      var resource = (DictionaryEntry)item;
      Console.WriteLine("{0}: {1}", resource.Key, resource.Value);
    }
  }
}
همانطور که ملاحظه میکنید استفاده از این کلاس بسیار ساده است. ازآنجاکه DictionaryEntry یک struct است، به عنوان یک راه حل مناسبتر بهتر است ابتدا کلاسی به صورت زیر تعریف شود:
public class ResXResourceEntry
{
  public string Key { get; set; }
  public string Value { get; set; }
  public ResXResourceEntry() { }
  public ResXResourceEntry(object key, object value)
  {
    Key = key.ToString();
    Value = value.ToString();
  }
  public ResXResourceEntry(DictionaryEntry dictionaryEntry)
  {
    Key = dictionaryEntry.Key.ToString();
    Value = dictionaryEntry.Value != null ? dictionaryEntry.Value.ToString() : string.Empty;
  }
  public DictionaryEntry ToDictionaryEntry()
  {
    return new DictionaryEntry(Key, Value);
  }
}
سپس با استفاده از این کلاس خواهیم داشت:
private static List<ResXResourceEntry> Read(string filePath)
{
  using (var reader = new ResXResourceReader(filePath))
  {
    return reader.Cast<object>().Cast<DictionaryEntry>().Select(de => new ResXResourceEntry(de)).ToList();
  }
}
حال این متد برای استفاده‌های آتی آماده است.

نوشتن در فایل resx.
برای نوشتن در یک فایل resx. میتوان از کلاس ResXResourceWriter استفاده کرد. این کلاس نیز در کتابخانه System.Windows.Forms در فایل System.Windows.Forms.dll قرار دارد:
System.Resources.ResXResourceWriter
متاسفانه در این کلاس امکان افزودن یا ویرایش یک کلید به تنهایی وجود ندارد. بنابراین برای ویرایش یا اضافه کردن حتی یک کلید کل فایل باید دوباره تولید شود. برای استفاده از این کلاس نیز میتوان به شکل زیر عمل کرد:
private static void Write(IEnumerable<ResXResourceEntry> resources, string filePath)
{
  using (var writer = new ResXResourceWriter(filePath))
  {
    foreach (var resource in resources)
    {
      writer.AddResource(resource.Key, resource.Value);
    }
  }
}
در متد فوق از همان کلاس ResXResourceEntry که در قسمت قبل معرفی شد، استفاده شده است. از متد زیر نیز میتوان برای حالت کلی حذف یا ویرایش استفاده کرد:
private static void AddOrUpdate(ResXResourceEntry resource, string filePath)
{
  var list = Read(filePath);
  var entry = list.SingleOrDefault(l => l.Key == resource.Key);
  if (entry == null)
  {
    list.Add(resource);
  }
  else
  {
    entry.Value = resource.Value;
  }
  Write(list, filePath);
}
در این متد از متدهای Read و Write که در بالا نشان داده شده‌اند استفاده شده است.

حذف یک کلید در فایل resx.
برای اینکار میتوان از متد زیر استفاده کرد:
private static void Remove(string key, string filePath)
{
  var list = Read(filePath);
  list.RemoveAll(l => l.Key == key); 
  Write(list, filePath);
}
در این متد، از متد Write که در قسمت معرفی شد، استفاده شده است.

راه حل نهایی
قبل از بکارگیری روشهای معرفی شده در این مطلب بهتر است ابتدا یکسری قرارداد بصورت زیر تعریف شوند:
- طبق راهنماییهای موجود در قسمت قبل یک پروژه جداگانه با عنوان Resources برای نگهداری فایلهای resx. ایجاد شود.
- همواره آخرین نسخه از محتویات موردنیاز از پروژه Resources باید درون فولدری با عنوان Resources در پوشه App_Data قرار داشته باشد.
- آخرین نسخه تولیدی از محتویات موردنیاز پروژه Resource در فولدری با عنوان Defaults در مسیر App_Data\Resources برای فراهم کردن امکان "بازگرداندن به تنظیمات اولیه" وجود داشته باشد.
برای فراهم کردن این موارد بهترین راه حل استفاده از تنظیمات Post-build event command line است. اطلاعات بیشتر درباره Build Eventها در اینجا.

برای اینکار من از دستور xcopy استفاده کردم که نسخه توسعه یافته دستور copy است. دستورات استفاده شده در این قسمت عبارتند از:
xcopy $(ProjectDir)*.* $(SolutionDir)MvcApplication1\App_Data\Resources /e /y /i /exclude:$(ProjectDir)excludes.txt
xcopy $(ProjectDir)*.* $(SolutionDir)MvcApplication1\App_Data\Resources\Defaults /e /y /i /exclude:$(ProjectDir)excludes.txt
xcopy $(ProjectDir)$(OutDir)*.* $(SolutionDir)MvcApplication1\App_Data\Resources\Defaults\bin /e /y /i 
در دستورات فوق آرگومان e/ برای کپی تمام فولدرها و زیرفولدرها، y/ برای تایید تمام کانفیرم ها، و i/ برای ایجاد خودکار فولدرهای موردنیاز استفاده میشود. آرگومان exclude/ نیز همانطور که از نامش پیداست برای خارج کردن فایلها و فولدرهای موردنظر از لیست کپی استفاده میشود. این آرگومان مسیر یک فایل متنی حاوی لیست این فایلها را دریافت میکند. در تصویر زیر یک نمونه از این فایل و مسیر و محتوای مناسب آن را مشاهده میکنید:

با استفاده از این فایل excludes.txt فولدرهای bin و obj و نیز فایلهای با پسوند user. و vspscc. (مربوط به TFS) و نیز خود فایل excludes.txt از لیست کپی دستور xcopy حذف میشوند و بنابراین کپی نمیشوند. درصورت نیاز میتوانید گزینه‌های دیگری نیز به این فایل اضافه کنید.
همانطور که در اینجا اشاره شده است، در تنظیمات Post-build event command line یکسری متغیرهای ازپیش تعریف شده (Macro) وجود دارند که از برخی از آنها در دستوارت فوق استفاده شده است:
(ProjectDir)$ : مسیر کامل و مطلق پروژه جاری به همراه یک کاراکتر \ در انتها
(SolutionDir)$ : مسیر کامل و مطلق سولوشن به همراه یک کاراکتر \ در انتها
(OutDir)$ : مسیر نسبی فولدر Output پروژه جاری به همراه یک کاراکتر \ در انتها

نکته: این دستورات باید در Post-Build Event پروژه Resources افزوده شوند.

با استفاده از این تنظیمات مطمئن میشویم که پس از هر Build آخرین نسخه از فایلهای موردنیاز در مسیرهای تعیین شده کپی میشوند. درنهایت با استفاده از کلاس ResXResourceManager که در زیر آورده شده است، کل عملیات را ساماندهی میکنیم:
public class ResXResourceManager
{
  private static readonly object Lock = new object();
  public string ResourcesPath { get; private set; }
  public ResXResourceManager(string resourcesPath)
  {
    ResourcesPath = resourcesPath;
  }
  public IEnumerable<ResXResourceEntry> GetAllResources(string resourceCategory)
  {
    var resourceFilePath = GetResourceFilePath(resourceCategory);
    return Read(resourceFilePath);
  }
  public void AddOrUpdateResource(ResXResourceEntry resource, string resourceCategory)
  {
    var resourceFilePath = GetResourceFilePath(resourceCategory);
    AddOrUpdate(resource, resourceFilePath);
  }
  public void DeleteResource(string key, string resourceCategory)
  {
    var resourceFilePath = GetResourceFilePath(resourceCategory);
    Remove(key, resourceFilePath);
  }
  private string GetResourceFilePath(string resourceCategory)
  {
    var extension = Thread.CurrentThread.CurrentUICulture.TwoLetterISOLanguageName == "en" ? ".resx" : ".fa.resx";
    var resourceFilePath = Path.Combine(ResourcesPath, resourceCategory.Replace(".", "\\") + extension);
    return resourceFilePath;
  }
  private static void AddOrUpdate(ResXResourceEntry resource, string filePath)
  {
    var list = Read(filePath);
    var entry = list.SingleOrDefault(l => l.Key == resource.Key);
    if (entry == null)
    {
      list.Add(resource);
    }
    else
    {
      entry.Value = resource.Value;
    }
    Write(list, filePath);
  }
  private static void Remove(string key, string filePath)
  {
    var list = Read(filePath);
    list.RemoveAll(l => l.Key == key); 
    Write(list, filePath);
  }
  private static List<ResXResourceEntry> Read(string filePath)
  {
    lock (Lock)
    {
      using (var reader = new ResXResourceReader(filePath))
      {
        var list = reader.Cast<object>().Cast<DictionaryEntry>().ToList();
        return list.Select(l => new ResXResourceEntry(l)).ToList();
      }
    }
  }
  private static void Write(IEnumerable<ResXResourceEntry> resources, string filePath)
  {
    lock (Lock)
    {
      using (var writer = new ResXResourceWriter(filePath))
      {
        foreach (var resource in resources)
        {
          writer.AddResource(resource.Key, resource.Value);
        }
      }
    }
  }
}
در این کلاس تغییراتی در متدهای معرفی شده در قسمتهای بالا برای مدیریت دسترسی همزمان با استفاده از بلاک lock ایجاد شده است.
با استفاده از کلاس BuildManager عملیات تولید کتابخانه‌ها مدیریت میشود. (در مورد نحوه استفاده از MSBuild در اینجا توضیحات کافی آورده شده است):
public class BuildManager
{
  public string ProjectPath { get; private set; }
  public BuildManager(string projectPath)
  {
    ProjectPath = projectPath;
  }
  public void Build()
  {
    var regKey = Registry.LocalMachine.OpenSubKey(@"SOFTWARE\Microsoft\MSBuild\ToolsVersions\4.0");
    if (regKey == null) return;
    var msBuildExeFilePath = Path.Combine(regKey.GetValue("MSBuildToolsPath").ToString(), "MSBuild.exe");
    var startInfo = new ProcessStartInfo
    {
      FileName = msBuildExeFilePath,
      Arguments = ProjectPath,
      WindowStyle = ProcessWindowStyle.Hidden
    };
    var process = Process.Start(startInfo);
    process.WaitForExit();
  }
}
درنهایت مثلا با استفاده از کلاس ResXResourceFileManager مدیریت فایلهای این کتابخانه‌ها صورت میپذیرد:
public class ResXResourceFileManager
{
  public static readonly string BinPath = Path.GetDirectoryName(Assembly.GetExecutingAssembly().GetName().CodeBase.Replace("file:///", ""));
  public static readonly string ResourcesPath = Path.Combine(BinPath, @"..\App_Data\Resources");
  public static readonly string ResourceProjectPath = Path.Combine(ResourcesPath, "Resources.csproj");
  public static readonly string DefaultsPath = Path.Combine(ResourcesPath, "Defaults");
  public static void CopyDlls()
  {
    File.Copy(Path.Combine(ResourcesPath, @"bin\debug\Resources.dll"), Path.Combine(BinPath, "Resources.dll"), true);
    File.Copy(Path.Combine(ResourcesPath, @"bin\debug\fa\Resources.resources.dll"), Path.Combine(BinPath, @"fa\Resources.resources.dll"), true);
    Directory.Delete(Path.Combine(ResourcesPath, "bin"), true);
    Directory.Delete(Path.Combine(ResourcesPath, "obj"), true);
  }
  public static void RestoreAll()
  {
    RestoreDlls();
    RestoreResourceFiles();
  }
  public static void RestoreDlls()
  {
    File.Copy(Path.Combine(DefaultsPath, @"bin\Resources.dll"), Path.Combine(BinPath, "Resources.dll"), true);
    File.Copy(Path.Combine(DefaultsPath, @"bin\fa\Resources.resources.dll"), Path.Combine(BinPath, @"fa\Resources.resources.dll"), true);
  }
  public static void RestoreResourceFiles(string resourceCategory)
  {
    RestoreFile(resourceCategory.Replace(".", "\\"));
  }
  public static void RestoreResourceFiles()
  {
    RestoreFile(@"Global\Configs");
    RestoreFile(@"Global\Exceptions");
    RestoreFile(@"Global\Paths");
    RestoreFile(@"Global\Texts");

    RestoreFile(@"ViewModels\Employees");
    RestoreFile(@"ViewModels\LogOn");
    RestoreFile(@"ViewModels\Settings");

    RestoreFile(@"Views\Employees");
    RestoreFile(@"Views\LogOn");
    RestoreFile(@"Views\Settings");
  }

  private static void RestoreFile(string subPath)
  {
    File.Copy(Path.Combine(DefaultsPath, subPath + ".resx"), Path.Combine(ResourcesPath, subPath + ".resx"), true);
    File.Copy(Path.Combine(DefaultsPath, subPath + ".fa.resx"), Path.Combine(ResourcesPath, subPath + ".fa.resx"), true);
  }
}
در این کلاس از مفهومی با عنوان resourceCategory برای استفاده راحتتر در ویوها استفاده شده است که بیانگر فضای نام نسبی فایلهای Resource و کلاسهای متناظر با آنهاست که براساس استانداردها باید برطبق مسیر فیزیکی آنها در پروژه باشد مثل Global.Texts یا Views.LogOn. همچنین در متد RestoreResourceFiles نمونه هایی از مسیرهای این فایلها آورده شده است.
پس از اجرای متد Build از کلاس BuildManager، یعنی پس از build پروژه Resource در زمان اجرا، باید ابتدا فایلهای تولیدی به مسیرهای مربوطه در فولدر bin برنامه کپی شده سپس فولدرهای تولیدشده توسط msbuild، حذف شوند. این کار در متد CopyDlls از کلاسResXResourceFileManager انجام میشود. هرچند در این قسمت فرض شده است که فایل csprj. موجود برای حالت debug تنظیم شده است.
نکته: دقت کنید که در این قسمت بلافاصله پس از کپی فایلها در مقصد با توجه به توضیحات ابتدای این مطلب سایت Restart خواهد شد که یکی از ضعفهای عمده این روش به شمار میرود.
سایر متدهای موجود نیز برای برگرداندن تنظیمات اولیه بکار میروند. در این متدها از محتویات فولدر Defaults استفاده میشود.
نکته: درصورت ساخت دوباره اسمبلی و یا بازگرداندن اسمبلی‌های اولیه، از آنجاکه وب‌سایت Restart خواهد شد، بنابراین بهتر است تا صفحه جاری بلافاصله پس از اتمام عملیات،دوباره بارگذاری شود. مثلا اگر از ajax برای اعمال این دستورات استفاده شده باشد میتوان با استفاده از کدی مشابه زیر در پایان فرایند صفحه را دوباره بارگذاری کرد:
window.location.reload();

در قسمت بعدی راه حل بهتری با استفاده از فراهم کردن پرووایدر سفارشی برای مدیریت فایلهای Resource ارائه میشود.
نظرات مطالب
پشتیبانی توکار از انجام کارهای پس‌زمینه در ASP.NET Core 2x
نکته تکمیلی: معادل  HostingEnvironment.QueueBackgroundWorkItem  در ASP.NET Core
public interface IBackgroundTaskQueue : ISingletonDependency
{
    void QueueBackgroundWorkItem(Func<CancellationToken, IServiceProvider, Task> workItem);

    Task<Func<CancellationToken, IServiceProvider, Task>> DequeueAsync(
        CancellationToken cancellationToken);
}
با تزریق این IBackgroundTaskQueue و استفاده از متد QueueBackgoundWorkItem، امکان در صف قرار دادن یک وظیفه جدید را خواهید داشت. 
پیاده سازی واسط IBackgroundTaskQueue
internal class BackgroundTaskQueue : IBackgroundTaskQueue
{
    private readonly ConcurrentQueue<Func<CancellationToken, IServiceProvider, Task>> _workItems =
        new ConcurrentQueue<Func<CancellationToken, IServiceProvider, Task>>();

    private readonly SemaphoreSlim _signal = new SemaphoreSlim(0);

    public void QueueBackgroundWorkItem(
        Func<CancellationToken, IServiceProvider, Task> workItem)
    {
        if (workItem == null)
        {
            throw new ArgumentNullException(nameof(workItem));
        }

        _workItems.Enqueue(workItem);
        _signal.Release();
    }

    public async Task<Func<CancellationToken, IServiceProvider, Task>> DequeueAsync(
        CancellationToken cancellationToken)
    {
        await _signal.WaitAsync(cancellationToken);
        _workItems.TryDequeue(out var workItem);

        return workItem;
    }
}
در زمان ثبت و معرفی یک کار پس‌زمینه، داخل صفی با رعایت مباحث همزمانی و تحت عنوان ‎_workItems قرار خواهد گرفت. متد DequeueAsync نیز توسط HostedService پیاده سازی شده در ادامه، استفاده شده و به ترتیب وظایف ثبت شده را اجرا خواهد کرد.
پیاده سازی یک QueuedHostedService 
public class QueuedHostedService : BackgroundService
{
    private readonly IServiceScopeFactory _factory;
    private readonly ILogger _logger;
    private readonly IBackgroundTaskQueue _queue;

    public QueuedHostedService(
        IBackgroundTaskQueue queue,
        IServiceScopeFactory factory,
        ILoggerFactory loggerFactory)
    {
        _factory = factory ?? throw new ArgumentNullException(nameof(factory));
        _queue = queue ?? throw new ArgumentNullException(nameof(queue));
        _logger = loggerFactory.CreateLogger<QueuedHostedService>();
    }


    protected override async Task ExecuteAsync(CancellationToken cancellationToken)

    {
        _logger.LogInformation("Queued Hosted Service is starting.");

        while (!cancellationToken.IsCancellationRequested)
        {
            var workItem = await _queue.DequeueAsync(cancellationToken);

            try
            {
                using (var scope = _factory.CreateScope())
                {
                    await workItem(cancellationToken, scope.ServiceProvider);
                }
            }
            catch (Exception ex)
            {
                _logger.LogError(ex,
                    $"Error occurred executing {nameof(workItem)}.");
            }
        }

        _logger.LogInformation("Queued Hosted Service is stopping.");
    }
}
این امکان قرار است به صورت آزمایشی به نسخه ASP.NET Core 3.0 اضافه شود. برای استفاده از آن کافی است QueuedHostedService را به سیستم DI معرفی کرده به شکل زیر عمل کنید:
public class InvoiceService : IInvoiceService
{
   private readonly IBackgroundTaskQueue _queue;
   
   public InvoiceService(IBackgroundTaskQueue queue)
   {
     _queue = queue ?? throw new ArgumentNullException(nameof(queue));
   }
   
   public Print(InvoiceModel model)
   {
      _queue.QueueBackgroundWorkItem((token, provider)=>
      {
      //todo: print
      return Task.Task.CompletedTask;
      })
   }
}

مطالب
Roslyn #6
معرفی Analyzers

پیشنیاز این بحث نصب مواردی است که در مطلب «شروع به کار با Roslyn » در قسمت دوم عنوان شدند:
الف) نصب SDK ویژوال استودیوی 2015
ب) نصب قالب‌های ایجاد پروژه‌های مخصوص Roslyn

البته این قالب‌ها چیزی بیشتر از ایجاد یک پروژه‌ی کلاس Library جدید و افزودن ارجاعاتی به بسته‌ی نیوگت Microsoft.CodeAnalysis، نیستند. اما درکل زمان ایجاد و تنظیم این نوع پروژه‌ها را خیلی کاهش می‌دهند و همچنین یک پروژه‌ی تست را ایجاد کرده و تولید بسته‌ی نیوگت و فایل VSIX را نیز بسیار ساده می‌کنند.


هدف از تولید Analyzers

بسیاری از مجموعه‌ها و شرکت‌ها، یک سری قوانین و اصول خاصی را برای کدنویسی وضع می‌کنند تا به کدهایی با قابلیت خوانایی بهتر و نگهداری بیشتر برسند. با استفاده از Roslyn و آنالیز کننده‌های آن می‌توان این قوانین را پیاده سازی کرد و خطاها و اخطارهایی را به برنامه نویس‌ها جهت رفع اشکالات موجود، نمایش داده و گوشزد کرد. بنابراین هدف از آنالیز کننده‌های Roslyn، سهولت تولید ابزارهایی است که بتوانند برنامه نویس‌ها را ملزم به رعایت استانداردهای کدنویسی کنند.
همچنین معلم‌ها نیز می‌توانند از این امکانات جهت ارائه‌ی نکات ویژه‌‌ای به تازه‌کاران کمک بگیرند. برای مثال اگر این قسمت از کد اینگونه باشد، بهتر است؛ مثلا بهتر است فیلدهای سطح کلاس، خصوصی تعریف شوند و امکان دسترسی به آن‌ها صرفا از طریق متدهایی که قرار است با آن‌ها کار کنند صورت گیرد.
این آنالیز کنند‌ها به صورت پویا در حین تایپ کدها در ویژوال استودیو فعال می‌شوند و یا حتی به صورت خودکار در طی پروسه‌ی Build پروژه نیز می‌توانند ظاهر شده و خطاها و اخطارهایی را گزارش کنند.


بررسی مثال معتبری که می‌تواند بهتر باشد

در اینجا یک کلاس نمونه را مشاهده می‌کنید که در آن فیلدهای کلاس به صورت public تعریف شده‌اند.
    public class Student
    {
        public string FirstName;
        public string LastName;
        public int TotalPointsEarned;

        public void TakeExam(int pointsForExam)
        {
            TotalPointsEarned += pointsForExam;
        }

        public void ExtraCredit(int extraPoints)
        {
            TotalPointsEarned += extraPoints;
        }


        public int PointsEarned { get { return TotalPointsEarned; } }
    }
هرچند این کلاس از دید کامپایلر بدون مشکل است و کامپایل می‌شود، اما از لحاظ اصول کپسوله سازی اطلاعات دارای مشکل است و نباید جمع امتیازات کسب شده‌ی یک دانش آموز به صورت مستقیم و بدون مراجعه‌ی به متدهای معرفی شده، از طریق فیلدهای عمومی آن قابل تغییر باشد.
بنابراین در ادامه هدف ما این است که یک Roslyn Analyzer جدید را طراحی کنیم تا از طریق آن هشدارهایی را جهت تبدیل فیلدهای عمومی به خصوصی، به برنامه نویس نمایش دهیم.


با اجرای افزونه‌ی View->Other windows->Syntax visualizer، تصویر فوق نمایان خواهد شد. بنابراین در اینجا نیاز است FieldDeclaration‌ها را یافته و سپس tokenهای آن‌ها را بررسی کنیم و مشخص کنیم که آیا نوع یا Kind آن‌ها public است (PublicKeyword) یا خیر؟ اگر بلی، آن مورد را به صورت یک Diagnostic جدید گزارش می‌دهیم.


ایجاد اولین Roslyn Analyzer

پس از نصب پیشنیازهای بحث، به شاخه‌ی قالب‌های extensibility در ویژوال استودیو مراجعه کرده و یک پروژه‌ی جدید از نوع Analyzer with code fix را آغاز کنید.


قالب Stand-alone code analysis tool آن دقیقا همان برنامه‌های کنسول بحث شده‌ی در قسمت‌های قبل است که تنها ارجاعی را به بسته‌ی نیوگت Microsoft.CodeAnalysis به صورت خودکار دارد.
قالب پروژه‌ی Analyzer with code fix علاوه بر ایجاد پروژه‌های Test و VSIX جهت بسته بندی آنالایزر تولید شده، دارای دو فایل DiagnosticAnalyzer.cs و CodeFixProvider.cs پیش فرض نیز هست. این دو فایل قالب‌هایی را جهت شروع به کار تهیه‌ی آنالیز کننده‌های مبتنی بر Roslyn ارائه می‌دهند. کار DiagnosticAnalyzer آنالیز کد و ارائه‌ی خطاهایی جهت نمایش به ویژوال استودیو است و CodeFixProvider این امکان را مهیا می‌کند که این خطای جدید عنوان شده‌ی توسط آنالایزر، چگونه باید برطرف شود و راه‌کار بازنویسی Syntax tree آن‌را ارائه می‌دهد.
همین پروژه‌ی پیش فرض ایجاد شده نیز قابل اجرا است. اگر بر روی F5 کلیک کنید، یک کپی جدید و محصور شده‌ی ویژوال استودیو را باز می‌کند که در آن افزونه‌ی در حال تولید به صورت پیش فرض و محدود نصب شده‌است. اکنون اگر پروژه‌ی جدیدی را جهت آزمایش، در این وهله‌ی محصور شده‌ی ویژوال استودیو باز کنیم، قابلیت اجرای خودکار آنالایزر در حال توسعه را فراهم می‌کند. به این ترتیب کار تست و دیباگ آنالایزرها با سهولت بیشتری قابل انجام است.
این پروژه‌ی پیش فرض، کار تبدیل نام فضاهای نام را به upper case، به صورت خودکار انجام می‌دهد (که البته بی‌معنا است و صرفا جهت نمایش و ارائه‌ی قالب‌های شروع به کار مفید است).
نکته‌ی دیگر آن، تعریف تمام رشته‌های مورد نیاز آنالایزر در یک فایل resource به نام Resources.resx است که در جهت بومی سازی پیام‌های خطای آن می‌تواند بسیار مفید باشد.

در ادامه کدهای فایل DiagnosticAnalyzer.cs را به صورت ذیل تغییر دهید:
using System.Collections.Immutable;
using System.Linq;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;
using Microsoft.CodeAnalysis.Diagnostics;
 
namespace CodingStandards
{
    [DiagnosticAnalyzer(LanguageNames.CSharp)]
    public class CodingStandardsAnalyzer : DiagnosticAnalyzer
    {
        public const string DiagnosticId = "CodingStandards";

        // You can change these strings in the Resources.resx file. If you do not want your analyzer to be localize-able, you can use regular strings for Title and MessageFormat.
        internal static readonly LocalizableString Title = new LocalizableResourceString(nameof(Resources.AnalyzerTitle), Resources.ResourceManager, typeof(Resources));
        internal static readonly LocalizableString MessageFormat = new LocalizableResourceString(nameof(Resources.AnalyzerMessageFormat), Resources.ResourceManager, typeof(Resources));
        internal static readonly LocalizableString Description = new LocalizableResourceString(nameof(Resources.AnalyzerDescription), Resources.ResourceManager, typeof(Resources));
        internal const string Category = "Naming";

        internal static DiagnosticDescriptor Rule = 
            new DiagnosticDescriptor(
                DiagnosticId, 
                Title, 
                MessageFormat, 
                Category, 
                DiagnosticSeverity.Error, 
                isEnabledByDefault: true, 
                description: Description);
 
        public override ImmutableArray<DiagnosticDescriptor> SupportedDiagnostics
        {
            get { return ImmutableArray.Create(Rule); }
        }

        public override void Initialize(AnalysisContext context)
        {
            // TODO: Consider registering other actions that act on syntax instead of or in addition to symbols
            context.RegisterSyntaxNodeAction(analyzeFieldDeclaration, SyntaxKind.FieldDeclaration);
        }

        static void analyzeFieldDeclaration(SyntaxNodeAnalysisContext context)
        {
            var fieldDeclaration = context.Node as FieldDeclarationSyntax;
            if (fieldDeclaration == null) return;
            var accessToken = fieldDeclaration
                                .ChildTokens()
                                .SingleOrDefault(token => token.Kind() == SyntaxKind.PublicKeyword);

            // Note: Not finding protected or internal
            if (accessToken.Kind() != SyntaxKind.None)
            {
                // Find the name of the field:
                var name = fieldDeclaration.DescendantTokens()
                              .SingleOrDefault(token => token.IsKind(SyntaxKind.IdentifierToken)).Value;
                var diagnostic = Diagnostic.Create(Rule, fieldDeclaration.GetLocation(), name, accessToken.Value);
                context.ReportDiagnostic(diagnostic);
            }
        }
    }
}
توضیحات:

اولین کاری که در این کلاس انجام شده، خواندن سه رشته‌ی AnalyzerDescription (توضیحی در مورد آنالایزر)، AnalyzerMessageFormat (پیامی که به کاربر نمایش داده می‌شود) و AnalyzerTitle (عنوان پیام) از فایل Resources.resx است. این فایل را گشوده و محتوای آن‌را مطابق تنظیمات ذیل تغییر دهید:


سپس کار به متد Initialize می‌رسد. در اینجا برخلاف مثال‌های قسمت‌های قبل، context مورد نیاز، توسط پارامترهای override شده‌ی کلاس پایه DiagnosticAnalyzer فراهم می‌شوند. برای مثال در متد Initialize، این فرصت را خواهیم داشت تا به ویژوال استودیو اعلام کنیم، قصد آنالیز فیلدها یا FieldDeclaration را داریم. پارامتر اول متد RegisterSyntaxNodeAction یک delegate یا Action است. این Action کار فراهم آوردن context کاری را برعهده دارد که نحوه‌ی استفاده‌ی از آن‌را در متد analyzeFieldDeclaration می‌توانید ملاحظه کنید.
سپس در اینجا نوع نود در حال آنالیز (همان نودی که کاربر در ویژوال استودیو انتخاب کرده‌است یا در حال کار با آن است)، به نوع تعریف فیلد تبدیل می‌شود. سپس توکن‌های آن استخراج شده و بررسی می‌شود که آیا یکی از این توکن‌ها کلمه‌ی کلیدی public هست یا خیر؟ اگر این فیلد عمومی تعریف شده بود، نام آن‌را یافته و به عنوان یک Diagnostic جدید بازگشت و گزارش می‌دهیم.


ایجاد اولین Code fixer

در ادامه فایل CodeFixProvider.cs پیش فرض را گشوده و تغییرات ذیل را به آن اعمال کنید. در اینجا مهم‌ترین تغییر صورت گرفته نسبت به قالب پیش فرض، اضافه شدن متد makePrivateDeclarationAsync بجای متد MakeUppercaseAsync از پیش موجود آن است:
using System.Collections.Immutable;
using System.Composition;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CodeFixes;
using Microsoft.CodeAnalysis.CodeActions;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;
 
namespace CodingStandards
{
    [ExportCodeFixProvider(LanguageNames.CSharp, Name = nameof(CodingStandardsCodeFixProvider)), Shared]
    public class CodingStandardsCodeFixProvider : CodeFixProvider
    {
        public sealed override ImmutableArray<string> FixableDiagnosticIds
        {
            get { return ImmutableArray.Create(CodingStandardsAnalyzer.DiagnosticId); }
        }

        public sealed override FixAllProvider GetFixAllProvider()
        {
            return WellKnownFixAllProviders.BatchFixer;
        }

        public sealed override async Task RegisterCodeFixesAsync(CodeFixContext context)
        {
            var root = await context.Document.GetSyntaxRootAsync(context.CancellationToken).ConfigureAwait(false);

            // TODO: Replace the following code with your own analysis, generating a CodeAction for each fix to suggest
            var diagnostic = context.Diagnostics.First();
            var diagnosticSpan = diagnostic.Location.SourceSpan;

            // Find the type declaration identified by the diagnostic.
            var declaration = root.FindToken(diagnosticSpan.Start)
                                   .Parent.AncestorsAndSelf().OfType<FieldDeclarationSyntax>()
                                   .First();

            // Register a code action that will invoke the fix.
            context.RegisterCodeFix(
                CodeAction.Create("Make Private", 
                c => makePrivateDeclarationAsync(context.Document, declaration, c)),
                diagnostic);
        }

        async Task<Document> makePrivateDeclarationAsync(Document document, FieldDeclarationSyntax declaration, CancellationToken c)
        {
            var accessToken = declaration.ChildTokens()
                .SingleOrDefault(token => token.Kind() == SyntaxKind.PublicKeyword);

            var privateAccessToken = SyntaxFactory.Token(SyntaxKind.PrivateKeyword);

            var root = await document.GetSyntaxRootAsync(c);
            var newRoot = root.ReplaceToken(accessToken, privateAccessToken);

            return document.WithSyntaxRoot(newRoot);
        }
    }
}
اولین کاری که در یک code fixer باید مشخص شود، تعیین FixableDiagnosticIds آن است. یعنی کدام آنالایزرهای از پیش تعیین شده‌ای قرار است توسط این code fixer مدیریت شوند که در اینجا همان Id آنالایزر قسمت قبل را مشخص کرده‌ایم. به این ترتیب ویژوال استودیو تشخیص می‌دهد که خطای گزارش شده‌ی توسط CodingStandardsAnalyzer قسمت قبل، توسط کدام code fixer موجود قابل رفع است.
کاری که در متد RegisterCodeFixesAsync انجام می‌شود، مشخص کردن اولین مکانی است که مشکلی در آن گزارش شده‌است. سپس به این مکان منوی Make Private با متد متناظر با آن معرفی می‌شود. در این متد، اولین توکن public، مشخص شده و سپس با یک توکن private جایگزین می‌شود. اکنون این syntax tree بازنویسی شده بازگشت داده می‌شود. با Syntax Factory در قسمت سوم آشنا شدیم.

خوب، تا اینجا یک analyzer و یک code fixer را تهیه کرده‌ایم. برای آزمایش آن دکمه‌ی F5 را فشار دهید تا وهله‌ای جدید از ویژوال استودیو که این آنالایزر جدید در آن نصب شده‌است، آغاز شود. البته باید دقت داشت که در اینجا باید پروژه‌ی CodingStandards.Vsix را به عنوان پروژه‌ی آغازین ویژوال استودیو معرفی کنید؛ چون پروژه‌ی class library آنالایزرها را نمی‌توان مستقیما اجرا کرد. همچنین یکبار کل solution را نیز build کنید.
پس از اینکه وهله‌ی جدید ویژوال استودیو شروع به کار کرد (بار اول اجرای آن کمی زمانبر است؛ زیرا باید تنظیمات وهله‌ی ویژه‌ی اجرای افزونه‌ها را از ابتدا اعمال کند)، همان پروژه‌ی Student ابتدای بحث را در آن باز کنید.


نتیجه‌ی اعمال این افزونه‌ی جدید را در تصویر فوق ملاحظه می‌کنید. زیر سطرهای دارای فیلد عمومی، خط قرمز کشیده شده‌است (به علت تعریف DiagnosticSeverity.Error). همچنین حالت فعلی و حالت برطرف شده را نیز با رنگ‌های قرمز و سبز می‌توان مشاهده کرد. کلیک بر روی گزینه‌ی make private، سبب اصلاح خودکار آن سطر می‌گردد.


روش دوم آزمایش یک Roslyn Analyzer

همانطور که از انتهای بحث قسمت دوم به‌خاطر دارید، این آنالایزرها را می‌توان به کامپایلر نیز معرفی کرد. روش انجام اینکار در ویژوال استودیوی 2015 در تصویر ذیل نمایش داده شده‌است.


نود references را باز کرده و سپس بر روی گزینه‌ی analyzers کلیک راست نمائید. در اینجا گزینه‌ی Add analyzer را انتخاب کنید. در صفحه‌ی باز شده بر روی دکمه‌ی browse کلیک کنید. در اینجا می‌توان فایل اسمبلی موجود در پوشه‌ی CodingStandards\bin\Debug را به آن معرفی کرد.


بلافاصله پس از معرفی این اسمبلی، آنالایزر آن شناسایی شده و همچنین فعال می‌گردد.


در این حالت اگر برنامه را کامپایل کنیم، با خطاهای جدید فوق متوقف خواهیم شد و برنامه کامپایل نمی‌شود (به علت تعریف DiagnosticSeverity.Error).
مطالب
C# 7 - Tuple return types and deconstruction
روش‌های زیادی برای بازگشت چندین مقدار از یک متد وجود دارند؛ مانند استفاده‌ی از آرایه‌ها برای بازگشت اشیایی از یک جنس، ایجاد یک کلاس سفارشی با خواص متفاوت و استفاده از پارامترهای out و ref همانند روش‌های متداول در C و ++C. در این بین روش دیگری نیز به نام Tuples از زمان NET 4.0. برای بازگشت چندین شیء با نوع‌های مختلف، ارائه شده‌است که در C# 7 نحوه‌ی تعریف و استفاده‌ی از آن‌ها بهبود قابل ملاحظه‌ای یافته‌است.


Tuple چیست؟

هدف از کار با Tupleها، عدم تعریف یک کلاس جدید به همراه خواص آن، جهت بازگشت بیش از یک مقدار از یک متد، توسط وهله‌ای از این کلاس جدید می‌باشد. برای مثال اگر بخواهیم از متدی، دو مقدار شهر و ناحیه را بازگشت دهیم، یک روش آن، ایجاد کلاس مکان زیر است:
public class Location   
{ 
     public string City { get; set; } 
     public string State { get; set; } 
 
     public Location(string city, string state) 
     { 
           City = city; 
           State = state; 
     } 
}
و سپس، وهله سازی و بازگشت آن:
 var location = new Location("Lake Charles","LA");
اما توسط Tuples، بدون نیاز به تعریف یک کلاس جدید، باز هم می‌توان به همین دو خروجی، دسترسی یافت:
 var location = new Tuple<string,string>("Lake Charles","LA");   
// Print out the address
var address = $"{location.Item1}, {location.Item2}";


مشکلات نوع Tuple در نگارش‌های قبلی دات نت

هرچند Tuples از زمان دات نت 4 در دسترس هستند، اما دارای این کمبودها و مشکلات می‌باشند:
static Tuple<int, string, string> GetHumanData()
{
   return Tuple.Create(10, "Marcus", "Miller");
}
الف) پارامترهای خروجی آن‌ها ثابت و با نام‌هایی مانند Item1، Item2 و امثال آن هستند که در حین استفاده، به علت ضعف نامگذاری، کاربرد آن‌ها دقیقا مشخص نیست و کاملا بی‌معنا هستند:
 var data = GetHumanData();
Console.WriteLine("What is this value {0} or this {1}",  data.Item1, data.Item3);
ب) Reference Type هستند (کلاس هستند) و در زمان وهله سازی، میزان مصرف حافظه‌ی بیشتری را نسبت به Value Types (معادل Tuples در C# 7) دارند.
ج) Tuples در دات نت 4، صرفا یک کتابخانه‌ی اضافه شده‌ی به فریم ورک بوده و زبان‌های دات نتی، پشتیبانی توکاری را از آن‌ها جهت بهبود و یا ساده سازی تعریف آن‌ها، ارائه نمی‌دهند.


ایجاد Tuples در C# 7

برای ایجاد Tuples در سی شارپ 7، از پرانتزها به همراه ذکر نام و نوع پارامترها استفاده می‌شود.
(int x1, string s1) = (3, "one");
Console.WriteLine($"{x1} {s1}");
در مثال فوق، یک Tuple ایجاد شده‌است و در آن مقدار 3 به x1 و مقدار "one" به s1 انتساب داده شده‌اند. به این عملیات deconstruction هم می‌گویند.
دسترسی به این مقادیر نیز همانند متغیرهای معمولی است.

اگر سعی کنیم این قطعه کد را کامپایل نمائیم، با خطای ذیل متوقف خواهیم شد:
 error CS8179: Predefined type 'System.ValueTuple`2' is not defined or imported
برای رفع این مشکل نیاز است بسته‌ی نیوگت ذیل را نیز نصب کرد:
 PM> install-package System.ValueTuple

تعاریف متغیرهای بازگشتی، خارج از پرانتزها هم می‌توانند صورت گیرند:
int x2;
string s2;
(x2, s2) = (42, "two");
Console.WriteLine($"{x2} {s2}");


بازگشت Tuples از متدها

متد ذیل، دو خروجی نتیجه و باقیمانده‌ی تقسیم دو عدد صحیح را باز می‌گرداند:
static (int, int) Divide(int x, int y)
{
   int result = x / y;
   int reminder = x % y;
 
   return (result, reminder);
}
برای این منظور، نوع خروجی متد به صورت (int, int) و همچنین مقدار بازگشتی نیز به صورت یک Tuple از نتیجه و باقیمانده‌ی تقسیم، تعریف شده‌است.
در ادامه نحوه‌ی استفاده‌ی از این متد را مشاهده می‌کنید:
 (int result, int reminder) = Divide(11, 3);
Console.WriteLine($"{result} {reminder}");

در اینجا امکان استفاده‌ی از var نیز برای تعریف نوع متغیرهای دریافتی از یک Tuple نیز وجود دارد و کامپایلر به صورت خودکار نوع آن‌ها را بر اساس نوع خروجی tuple مشخص می‌کند:
 (var result1, var reminder1) = Divide(11, 3);
Console.WriteLine($"{result1} {reminder1}");
و یا حتی چون نوع var پارامترها در اینجا یکی است و در هر دو حالت به int اشاره می‌کند، می‌توان این var را در خارج از پرانتز هم قرار داد:
 var (result1, reminder1) = Divide(11, 3);

و یا برای نمونه متد GetHumanData دات نت 4 ابتدای بحث را به صورت ذیل می‌توان در C# 7 بازنویسی کرد:
static (int, string, string) GetHumanData()
{
   return (10, "Marcus", "Miller");
}
و سپس به نحو واضح‌تری از آن استفاده نمود؛ بدون استفاده‌ی اجباری از Item1 و غیره (هرچند هنوز هم می‌توان از آن‌ها استفاده کرد):
 (int Age, string FirstName, string LastName) results = GetHumanData();
Console.WriteLine(results.Age);
Console.WriteLine(results.FirstName);
Console.WriteLine(results.LastName);


پشت صحنه‌ی Tuples در C# 7

همانطور که عنوان شد، برای اینکه بتوانید قطعه کدهای فوق را کامپایل کنید، نیاز به بسته‌ی نیوگت System.ValueTuple است. در حقیقت کامپایلر خروجی متد فوق را به نحو ذیل تفسیر می‌کند:
 ValueTuple<int, int> tuple1 = Divide(11, 3);
برای مثال قطعه کد
 (int, int) n = (1,1);
System.Console.WriteLine(n.Item1);
توسط کامپایلر به قطعه کد ذیل ترجمه می‌شود:
 ValueTuple<int, int> n = new ValueTuple<int, int>(1, 1);
System.Console.WriteLine(n.Item1);
- برخلاف نگارش‌های پیشین دات نت که Tuples در آن‌ها reference type بودند، این ValueTuple یک struct است و به همین جهت سربار تخصیص حافظه‌ی کمتری را به همراه داشته و از لحاظ کارآیی و میزان مصرف حافظه بهینه‌تر عمل می‌کند.
- همچنین در اینجا محدودیتی از لحاظ تعداد پارامترهای ذکر شده‌ی در یک Tuple وجود ندارد.
 (int,int,int,int,int,int,int,(int,int))
در اینجا هم مانند قبل (دات نت 4) 8 آیتم را می‌توان تعریف کرد؛ اما چون آخرین آیتم ValueTuple تعریف شده نیز یک Tuple است، در عمل محدودیتی از نظر تعداد پارامتر نخواهیم داشت.


مفهوم Tuple Literals

همانند نگارش‌های پیشین دات نت، خروجی یک Tuple را می‌توان به یک متغیر از نوع var و یا ValueType نیز نسبت داد:
 var tuple2 = ("Stephanie", 7);
Console.WriteLine($"{tuple2.Item1}, {tuple2.Item2}");
در این حالت برای دسترسی به مقادیر Tuple همانند قبل باید از فیلدهای Item1 و Item2 و ... استفاده کرد.
به علاوه در سی شارپ 7  می‌توان برای اعضای یک Tuple نام نیز تعریف کرد که به آن‌ها Tuple literals گویند:
 var tuple3 = (Name: "Matthias", Age: 6);
Console.WriteLine($"{tuple3.Name} {tuple3.Age}");
در این حالت زمانیکه Tuple به یک متغیر از نوع var نسبت داده می‌شود، می‌توان به خروجی آن بر اساس نام‌های اعضای Tuple، بجای ذکر Item1 و ... دسترسی یافت که خوانایی بیشتری دارند.

و یا هنگام تعریف نوع خروجی، می‌توان نام پارامترهای متناظر را نیز ذکر کرد که به آن named elements هم می‌گویند:
static (int radius, double area) CalculateAreaOfCircle(int radius)
{
   return (radius, Math.PI * Math.Pow(radius, 2));
}
و نمونه‌ای از کاربرد آن به صورت ذیل است که در اینجا خروجی Tuple صرفا به یک متغیر از نوع var نسبت داده شده‌است و توسط نام پارامترهای خروجی متد، می‌توان به اعضای Tuple دسترسی یافت.
 var circle = CalculateAreaOfCircle(2);
Console.WriteLine($"A circle of radius, {circle.radius}," +
 $" has an area of {circle.area:N2}.");


مفهوم Deconstructing Tuples

مفهوم deconstruction که در ابتدای بحث عنوان شد صرفا مختص به Tuples نیست. در C# 7 می‌توان مشخص کرد که چگونه یک نوع خاص، به اجزای آن تجزیه شود. برای مثال کلاس شخص ذیل را درنظر بگیرید:
class Person
{
    private readonly string _firstName;
    private readonly string _lastName;
 
    public Person(string firstname, string lastname)
    {
        _firstName = firstname;
        _lastName = lastname;
    }
 
    public override String ToString() => $"{_firstName} {_lastName}";
 
    public void Deconstruct(out string firstname, out string lastname)
    {
        firstname = _firstName;
        lastname = _lastName;
    }
}
- در اینجا یک متد جدید را به نام Deconstruct مشاهده می‌کنید. کار این متد جدید که توسط کامپایلر استفاده خواهد شد، ارائه‌ی روشی است برای «تجزیه‌ی» یک نوع، به یک Tuple‌. متد Deconstruct تعریف شده‌ی در اینجا توسط پارامترهایی از نوع out، دو خروجی را مشخص می‌کنند. امکان تعریف این متد ویژه، به صورتیکه یک Tuple را بازگرداند، وجود ندارد.
- علت تعریف این دو خروجی هم به constructor و یا سازنده‌ی کلاس بر می‌گردد که دو ورودی را دریافت می‌کند. اگر یک کلاس چندین سازنده داشته باشد، به همان تعداد می‌توان متد Deconstruct تعریف کرد؛ به همراه خروجی‌هایی متناظر با نوع پارامترهای سازنده‌ها.
- علت استفاده‌ی از نوع خروجی out نیز این است که در #C نمی‌توان چندین overload را صرفا بر اساس نوع خروجی‌های متفاوت متدها تعریف کرد.
- متد Deconstruct به صورت خودکار در زمان تجزیه‌ی یک شیء به یک tuple فراخوانی می‌شود. در مثال زیر، شیء p1 به یک Tuple تجزیه شده‌است و این تجزیه بر اساس متد Deconstruct این کلاس مفهوم پیدا می‌کند:
 var p1 = new Person("Katharina", "Nagel");
(string first, string last) = p1;
Console.WriteLine($"{first} {last}");


امکان تعریف متد Deconstruct‌، به صورت یک متد الحاقی

روش اول تعریف متد ویژه‌ی Deconstruct را در مثال قبل، در داخل کلاس اصلی مشاهده کردید. روش دیگر آن، استفاده‌ی از متدهای الحاقی است که در این مورد خاص نیز مجاز است:
public class Rectangle
{
    public Rectangle(int height, int width)
    {
        Height = height;
        Width = width;
    }
 
    public int Width { get; }
    public int Height { get; }
}
 
public static class RectangleExtensions
{
    public static void Deconstruct(this Rectangle rectangle, out int height, out int width)
    {
        height = rectangle.Height;
        width = rectangle.Width;
    }
}
در اینجا کلاس مستطیل دارای سازنده‌ای با دو پارامتر است؛ اما متد Deconstruct آن به صورت یک متد الحاقی، خارج از کلاس اصلی تعریف شده‌است.
اکنون امکان انتساب وهله‌ای از این کلاس به یک Tuple وجود دارد:
 var r1 = new Rectangle(100, 200);
(int height, int width) = r1;
Console.WriteLine($"height: {height}, width: {width}");


امکان جایگزین کردن Anonymous types با Tuples

قطعه کد ذیل را در نظر بگیرید:
List<Employee> allEmployees = new List<Employee>()
{
  new Employee { ID = 1L, Name = "Fred", Salary = 50000M },
  new Employee { ID = 2L, Name = "Sally", Salary = 60000M },
  new Employee { ID = 3L, Name = "George", Salary = 70000M }
};
var wellPaid =
  from oneEmployee in allEmployees
  where oneEmployee.Salary > 50000M
  select new { EmpName = oneEmployee.Name,
               Income = oneEmployee.Salary };
در اینجا خروجی LINQ تهیه شده یک لیست anonymously typed است؛ با محدودیت‌هایی مانند عدم امکان استفاده‌ی از خروجی آن در سایر اسمبلی‌ها. این نوع‌های ویژه تنها محدود هستند به همان اسمبلی که در آن تعریف می‌شوند. اما در C# 7 می‌توان قطعه کد فوق را با Tuples به صورت ذیل بازنویسی کرد که این محدودیت‌ها را هم ندارد (با هدف به حداقل رساندن تعداد ViewModel‌های تعریفی یک برنامه):
var wellPaid =
  from oneEmployee in allEmployees
  where oneEmployee.Salary > 50000M
  orderby oneEmployee.Salary descending
  select (EmpName: oneEmployee.Name,
          Income: oneEmployee.Salary);
var highestPaid = wellPaid.First().EmpName;


سایر کاربردهای Tuples

از Tuples صرفا برای تعریف چندین خروجی از یک متد استفاده نمی‌شود. در ذیل نحوه‌ی استفاده‌ی از آن‌ها را جهت تعریف کلید ترکیبی یک شیء دیکشنری و یا استفاده‌ی از آن‌ها را در آرگومان جنریک یک متد async هم مشاهده می‌کنید:
public Task<(int index, T item)> FindAsync<T>(IEnumerable<T> input, Predicate<T> match)
{
   var dictionary = new Dictionary<(int, int), string>();
   throw new NotSupportedException();
}
نظرات مطالب
ارتقاء به ASP.NET Core 1.0 - قسمت 20 - بررسی تغییرات فیلترها
نکته تکمیلی
در صورتیکه قبل از فراخوانی delegate زیر
await next();
بخواید کاری انجام بدید که اکشن متود فراخوانی نشه نباید next رو فراخوانی کنید، چون با خطا مواجه میشوید؛ برای مثال اکشن فیلتری رو نوشتید که اگه آی پی کاربر جزء آی پی‌های بن شده سایت بود صفحه غیر مجاز رو به اون نمایش بده
public class CheckUserIp : IAsyncActionFilter
{
    private readonly string[] _bannedIps;

    public CheckUserIp(params string[] bannedIps)
    {
        _bannedIps = bannedIps;
    }
    public async Task OnActionExecutionAsync(ActionExecutingContext context, ActionExecutionDelegate next)
    {
        var userIp = context.HttpContext.Connection.RemoteIpAddress?.ToString() ?? string.Empty;
        if (_bannedIps.Contains(userIp))
        {
            context.Result = new ViewResult()
            {
                ViewName = "Forbidden"
            };
        }
        else
        {
            await next();
        }
        // await next(); => throw exception
    }
}

در مثال بالا در صورتیکه آی پی کاربر بن شده باشد دیگر next فراخوانی نمیشود و از بروز خطا جلوگیری میکند.
نحوه فراخوانی اکشن فیلتر بالا
[TypeFilter(typeof(CheckUserIp), Arguments = new object[]{ new[] { "::1", "134.56.110.44" } })]
public IActionResult Index()
{
    return View();
}
نظرات مطالب
ساخت یک Form Generator ساده در MVC
به دو روش می‌تونید اینکار رو انجام بدید: 1- از یک جدول دیگر برای اعمال اعتبارسنجی استفاده کنید که کاربر خودش بتونه rule اعمال کنه، رابطه این جدول با جدول فیلد هم به صورت یک به چند هست یعنی یک فیلد می‌تونه چند تا validation rule داشته باشه:
public class FieldValidation
{
        public int Id { get; set; }
        public string Rule { get; set; }
        public virtual Field Field { get; set; }
}
روش دوم:
می‌تونید از یک فیلد اضافی تحت عنوان "متن خطا" در جدول فیلد استفاده کنید و در ویوی مربوطه به این صورت از اون استفاده کنید:
<div class="col-md-4">
                                    <input type="text" name="[@i].TitleEn" data-val="true" data-val-required="عنوان را وارد نمائید" id="[@i].TitleEn" value="" />
                                    <span class="field-validation-valid text-danger" data-valmsg-for="[@i].TitleEn" data-valmsg-replace="true"></span>
                                </div>

نظرات مطالب
ModelBinder سفارشی در ASP.NET MVC
سلام؛ با تشکر از مقاله شما.
میخواستم بپرسم override کردن BindModel یا BindProperty برای زمانییه که ما به تمام دیتا هامون دسترسی داریم حالا شکل برگرداندنمون فرق میکنه؟
اگر اینطوره سوالم اینه که برای حالتی که مدل ما به شکل زیر هست چگونه Items را Bind کنم چون از هر روشی میرم null هست!
public class Model 
{
  public Model()
  {
     Items = new List<ItemModel>();
  }
 public Guid Id { get; set; }
 public Guid ProductId { get; set; }
  public List<ItemModel> Items { get; set; }
}

public class ItemModel
{
        Public Guid Id
        public string  Title{ get; set; }
        public int Value { get; set; }
}
و من در view مدل زیر را احتیاج دارم.
@model  List<Model>
در اکشن  HttpPost مربوط به این مدل ItemsProperty Is Null.
نظرات مطالب
خودکار کردن تعاریف DbSetها در EF Code first
سلام
من یه مشکلی دارم توی این قسمت.
توی پروژه از خودکار سازی نگاشت‌ها و همین بخش استفاده کردم که در نهایت پیعام خطای زیر رو میده:
The entity type User is not part of the model for the current context.
قسمت نگاشت‌ها همانند همین که تو سایت گفتین استفاده کردم. پروژه شامل سه بخش Domain و Model  و Console هست برای تست این دو بخش. 
قسمت خودکار سازی نگاشت‌ها بدون خود کارسازی تعاریف DbSet‌ها به درستی کار میکنه، وقتی این بخش رو پیاده میکنم پیغام خطای بالا رو میده تو متد Seed واسه دیتاهای پیش فرض User.
namespace Test.Domain
{
    public abstract class BaseEntity
    {
        public int Id { set; get; }
    }
}

namespace Test.Domain.Entities
{
    public class User : BaseEntity
    {
        public int UserNumber { get; set; }
        public string Name { get; set; }
    }
}

namespace Test.Domain.Mappings
{
    public class UserMap : EntityTypeConfiguration<User>
    {
        public UserMap()
        {
            this.HasKey(x => x.UserNumber);
            this.Property(x => x.Name).HasMaxLength(450).IsRequired();
        }
    }
} 

   loadEntities(asm, modelBuilder, "Test.Domain");