مطالب
زیباتر کد بنویسیم

داشتن آگاهی در مورد ساختارهای داده‌‌ها، الگوریتم‌ها و یا عملگرهای بیتی بسیار عالی است و یا تسلط بر نحوه‌ی کارکرد ابزارهایی مانند SharePoint و امثال آن این روزها ضروری است. اما باید در نظر داشت، کدی که امروز تهیه می‌شود شاید فردا یا ماه دیگر یا چند سال بعد نیاز به تغییر داشته باشد، بنابراین دانش زیبا نوشتن یک قطعه کد که خواندن آن‌را ساده‌تر می‌کند و در آینده افرادی که از آن نگهداری خواهند کرد زیاد "زجر" نخواهند کشید، نیز ضروری می‌باشد. (اگر کامنت‌های سایت را خوانده باشید یکی از دوستان پیغام گذاشته بود، اگر به من بگویند یک میلیون بگیرید و برنامه فعلی را توسعه دهید یا رفع اشکال کنید، حاضرم 10 هزارتومان بگیرم و آن‌را از صفر بنویسم! متاسفانه این یک واقعیت تلخ است که ناشی از عدم خوانا بودن کدهای نوشته شده می‌باشد.)
در ادامه یک سری از اصول زیبا نویسی کدها را بررسی خواهیم کرد.


1- سعی کنید میزان تو در تو بودن کدهای خود را محدود کنید.
لطفا به مثال زیر دقت نمائید:

void SetA()
{
if(a == b)
{
foreach(C c in cs)
{
if(c == d)
{
a = c;
}
}
}
}

توصیه شده است فقط یک سطح تو در تو بودن را در یک تابع لحاظ کنید. تابع فوق 4 سطح تو رفتگی را نمایش می‌دهد (برای رسیدن به a=c باید چهار بار از tab استفاده کنید). برای کاهش این تعداد سطح می‌توان به صورت زیر عمل کرد:

void SetA()
{
if(a != b)
return;

foreach(C c in cs)
a = GetValueOfA(c);
}

TypeOfA GetValueOfA(C c)
{
if(c == d)
return c;

return a;
}

خواناتر نشد؟!

افزونه‌های CodeRush و refactor pro مجموعه‌ی DevExpress از لحاظ مباحث refactoring در ویژوال استودیو حرف اول را می‌زنند. فقط کافی است برای مثال قطعه کد if داخلی را انتخاب کنید، بلافاصله سه نقطه زیر آن ظاهر شده و با کلیک بر روی آن امکان استخراج یک تابع از آن‌را برای شما به سرعت فراهم خواهد کرد.



مثالی دیگر:

if (foo) {
if (bar) {
// do something
}
}

به صورت زیر هم قابل نوشتن است (جهت کاهش میزان nesting):

if (foo && bar) {
// do something
}

افزونه‌ی Resharper امکان merge خودکار این نوع if ها را به همراه دارد.



و یا یک مثال دیگر:
میزان تو در تو بودن این تابع جاوا اسکریپتی را ملاحظه نمائید:

function findShape(flags, point, attribute, list) {
if(!findShapePoints(flags, point, attribute)) {
if(!doFindShapePoints(flags, point, attribute)) {
if(!findInShape(flags, point, attribute)) {
if(!findFromGuide(flags,point) {
if(list.count() > 0 && flags == 1) {
doSomething();
}
}
}
}
}
}

آن‌را به صورت زیر هم می‌توان نوشت با همان کارآیی اما بسیار خواناتر:

function findShape(flags, point, attribute, list) {
if(findShapePoints(flags, point, attribute)) {
return;
}

if(doFindShapePoints(flags, point, attribute)) {
return;
}

if(findInShape(flags, point, attribute)) {
return;
}

if(findFromGuide(flags,point) {
return;
}

if (!(list.count() > 0 && flags == 1)) {
return;
}

doSomething();
}

2- نام‌های با معنایی را برای متغیرها وتوابع خود انتخاب کنید.
با وجود پیشرفت‌های زیادی که در طراحی و پیاده سازی IDE ها صورت گرفته و با بودن ابزارهای تکمیل سازی خودکار متن تایپ شده در آن‌ها، این روزها استفاده از نام‌های بلند برای توابع یا متغیرها مشکل ساز نیست و وقت زیادی را تلف نخواهد کرد. برای مثال به نظر شما اگر پس از یک سال به کدهای زیر نگاه کنید کدامیک خود توضیح دهنده‌تر خواهند بود (بدون مراجعه به مستندات موجود)؟

void UpdateBankAccountTransactionListWithYesterdaysTransactions()
//or?
void UpdateTransactions()

3- تنها زمانی از کامنت‌ها استفاده کنید که لازم هستند.
اگر مورد 2 را رعایت کرده باشید، کمتر به نوشتن کامنت نیاز خواهد بود. از توضیح موارد بدیهی خودداری کنید، زیرا آن‌ها بیشتر سبب اتلاف وقت خواهند شد تا کمک به افراد دیگر یا حتی خود شما. همچنین هیچگاه قطعه کدی را که به آن نیاز ندارید به صورت کامنت شده به مخزن کد در یک سیستم کنترل نگارش ارسال نکنید.

//function thisReallyHandyFunction() {
// someMagic();
// someMoreMagic();
// magicNumber = evenMoreMagic();
// return magicNumber;
//}

زمانیکه از ورژن کنترل استفاده می‌کنید نیازی به کامنت کردن قسمتی از کد که شاید در آینده قرار است مجددا به آن بازگشت نمود، نیست. این نوع سطرها باید از کد شما حذف شوند. تمام سیستم‌های ورژن کنترل امکان revert و بازگشت به قبل را دارند و اساسا این یکی از دلایلی است که از آن‌ها استفاده می‌شود!
به صورت خلاصه جهت نگهداری سوابق کدهای قدیمی باید از سورس کنترل استفاده کرد و نه به صورت کامنت قرار دادن آن‌ها.

از کامنت‌های نوع زیر پرهیز کنید که بیشتر سبب رژه رفتن روی اعصاب خواننده می‌شود تا کمک به او! (خواننده را بی‌سواد فرض نکنید)

// Get the student's id
thisId = student.getId();

کامنت زیر بی معنی است!

// TODO: This is too bad. FIX IT!

اگر شخص دیگری به آن مراجعه کند نمی‌داند که منظور چیست و دقیقا مشکل کجاست. شبیه به افرادی که به فوروم‌ها مراجعه می‌کنند و می‌گویند برنامه کار نمی کند و همین! طرف مقابل علم غیب ندارد که مشکل شما را حدس بزند! به توضیحات بیشتری نیاز است.


4- عدم استفاده از عبارات شرطی بی‌مورد هنگام بازگشت دادن یک مقدار bool:
مثال زیر را درنظر بگیرید:

if (foo>bar) {
return true;
} else {
return false;
}

آن‌را به صورت زیر هم می‌توان نوشت:

return foo>bar;

5- استفاده از متغیرهای بی مورد:
برای مثال:

Something something = new Something(foo);
return something;

که می‌شود آ‌ن را به صورت زیر هم نوشت:

return new Something(foo);

البته یکی از خاصیت‌های استفاده از افزونه‌ی Resharper ویژوال استودیو، گوشزد کردن و اصلاح خودکار موارد 4 و 5 است.



6- در نگارش‌های جدید دات نت فریم ورک استفاده از ArrayList منسوخ شده است. بجای آن بهتر است از لیست‌های جنریک استفاده شود. کدی که در آن از ArrayList استفاده می‌شود طعم دات نت فریم ورک 1 را می‌دهد!

7- لطفا بین خطوط فاصله ایجاد کنید. ایجاد فواصل مجانی است!

دو تابع جاوا اسکریپتی زیر را (که در حقیقت یک تابع هستند) در نظر بگیرید:

function getSomeAngle() {
// Some code here then
radAngle1 = Math.atan(slope(center, point1));
radAngle2 = Math.atan(slope(center, point2));
firstAngle = getStartAngle(radAngle1, point1, center);
secondAngle = getStartAngle(radAngle2, point2, center);
radAngle1 = degreesToRadians(firstAngle);
radAngle2 = degreesToRadians(secondAngle);
baseRadius = distance(point, center);
radius = baseRadius + (lines * y);
p1["x"] = roundValue(radius * Math.cos(radAngle1) + center["x"]);
p1["y"] = roundValue(radius * Math.sin(radAngle1) + center["y"]);
pt2["x"] = roundValue(radius * Math.cos(radAngle2) + center["y"]);
pt2["y"] = roundValue(radius * Math.sin(radAngle2) + center["y");
// Now some more code
}

function getSomeAngle() {
// Some code here then
radAngle1 = Math.atan(slope(center, point1));
radAngle2 = Math.atan(slope(center, point2));

firstAngle = getStartAngle(radAngle1, point1, center);
secondAngle = getStartAngle(radAngle2, point2, center);

radAngle1 = degreesToRadians(firstAngle);
radAngle2 = degreesToRadians(secondAngle);

baseRadius = distance(point, center);
radius = baseRadius + (lines * y);

p1["x"] = roundValue(radius * Math.cos(radAngle1) + center["x"]);
p1["y"] = roundValue(radius * Math.sin(radAngle1) + center["y"]);

pt2["x"] = roundValue(radius * Math.cos(radAngle2) + center["y"]);
pt2["y"] = roundValue(radius * Math.sin(radAngle2) + center["y");
// Now some more code

}

کدامیک خواناتر است؟
استفاده از فاصله بین خطوط در تابع دوم باعث بالا رفتن خوانایی آن شده است و این طور به نظر می‌رسد که سطرهایی با عملکرد مشابه در یک گروه کنار هم قرار گرفته‌اند.

8- توابع خود را کوتاه کنید.
یک تابع نباید بیشتر از 50 سطر باشد (البته در این مورد بین علما اختلاف هست!). اگر بیشتر شد بدون شک نیاز به refactoring داشته و باید به چند قسمت تقسیم شود تا خوانایی کد افزایش یابد.
به صورت خلاصه یک تابع فقط باید یک کار را انجام دهد و باید بتوان عملکرد آن‌را در طی یک جمله توضیح داد.

9- از اعداد جادویی در کدهای خود استفاده نکنید!
کد زیر هیچ معنایی ندارد!

if(mode == 3){ ... }
else if(mode == 4) { ... }

بجای این اعداد بی مفهوم باید از enum استفاده کرد:

if(mode == MyEnum.ShowAllUsers) { ... }
else if(mode == MyEnum.ShowOnlyActiveUsers) { ... }

10- توابع شما نباید تعداد پارامتر زیادی داشته باشند
اگر نیاز به تعداد زیادی پارامتر ورودی وجود داشت (بیش از 6 مورد) از struct و یا کلاس جهت معرفی آن‌ها استفاده کنید.

مطالب
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 3#
در ادامه مطالب قبل
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 1# 
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 2#

قبل از شروع توضیحات متد‌های کلاس Shape در ادامه پست‌های قبل در ^ و ^ ابتدا به تشریح یک تصویر می‌پردازیم.

نحوه ترسیم شی

خوب همانگونه که در تصویر بالا مشاده می‌نمایید، برای رسم یک شی چهار حالت متفاوت ممکن است پیش بیاید. (دقت کنید که ربع اول محور مختصات روی بوم گرافیکی قرار گرفته است، در واقع گوشه بالا و سمت چپ بوم گرافیکی نقطه (0 و 0) محور مختصات است و عرض بوم گرافیکی محور X‌ها و ارتفاع بوم گرافیکی محور Y‌ها را نشان می‌دهد)
  1. در این حالت StartPoint.X < EndPoint.X و StartPoint.Y < EndPoint.Y خواهد بود. (StartPoint نقطه ای است که ابتدا ماوس شروع به ترسیم می‌کند، و EndPoint زمانی است که ماوس رها شده و پایان ترسیم را مشخص می‌کند.)
  2. در این حالت StartPoint.X > EndPoint.X و StartPoint.Y > EndPoint.Y خواهد بود.
  3. در این حالت StartPoint.X > EndPoint.X و StartPoint.Y > EndPoint.Y خواهد بود.
  4. در این حالت StartPoint.X < EndPoint.X و StartPoint.Y > EndPoint.Y خواهد بود.

ابتدا یک کلاس کمکی به صورت استاتیک تعریف می‌کنیم که متدی جهت پیش نمایش رسم شی در حالت جابجایی ، رسم، و تغییر اندازه دارد.

using System;
using System.Drawing;

namespace PWS.ObjectOrientedPaint.Models
{
    /// <summary>
    /// Helpers
    /// </summary>
    public static class Helpers
    {
        /// <summary>
        /// Draws the preview.
        /// </summary>
        /// <param name="g">The g.</param>
        /// <param name="startPoint">The start point.</param>
        /// <param name="endPoint">The end point.</param>
        /// <param name="foreColor">Color of the fore.</param>
        /// <param name="thickness">The thickness.</param>
        /// <param name="isFill">if set to <c>true</c> [is fill].</param>
        /// <param name="backgroundBrush">The background brush.</param>
        /// <param name="shapeType">Type of the shape.</param>
        public static void DrawPreview(Graphics g, PointF startPoint, PointF endPoint, Color foreColor, byte thickness, bool isFill, Brush backgroundBrush, ShapeType shapeType)
        {
            float x = 0, y = 0;
            float width = Math.Abs(endPoint.X - startPoint.X);
            float height = Math.Abs(endPoint.Y - startPoint.Y);
            if (startPoint.X <= endPoint.X && startPoint.Y <= endPoint.Y)
            {
                x = startPoint.X;
                y = startPoint.Y;
            }
            else if (startPoint.X >= endPoint.X && startPoint.Y >= endPoint.Y)
            {
                x = endPoint.X;
                y = endPoint.Y;
            }
            else if (startPoint.X >= endPoint.X && startPoint.Y <= endPoint.Y)
            {
                x = endPoint.X;
                y = startPoint.Y;
            }
            else if (startPoint.X <= endPoint.X && startPoint.Y >= endPoint.Y)
            {
                x = startPoint.X;
                y = endPoint.Y;
            }

            switch (shapeType)
            {
                case ShapeType.Ellipse:
                    if (isFill)
                        g.FillEllipse(backgroundBrush, x, y, width, height);
                    //else
                    g.DrawEllipse(new Pen(foreColor, thickness), x, y, width, height);
                    break;
                case ShapeType.Rectangle:
                    if (isFill)
                        g.FillRectangle(backgroundBrush, x, y, width, height);
                    //else
                    g.DrawRectangle(new Pen(foreColor, thickness), x, y, width, height);
                    break;
                case ShapeType.Circle:
                    float raduis = Math.Max(width, height);

                    if (isFill)
                        g.FillEllipse(backgroundBrush, x, y, raduis, raduis);
                    //else
                    g.DrawEllipse(new Pen(foreColor, thickness), x, y, raduis, raduis);
                    break;
                case ShapeType.Square:
                    float side = Math.Max(width, height);

                    if (isFill)
                        g.FillRectangle(backgroundBrush, x, y, side, side);
                    //else
                    g.DrawRectangle(new Pen(foreColor, thickness), x, y, side, side);
                    break;
                case ShapeType.Line:
                    g.DrawLine(new Pen(foreColor, thickness), startPoint, endPoint);
                    break;
                case ShapeType.Diamond:
                    var points = new PointF[4];
                    points[0] = new PointF(x + width / 2, y);
                    points[1] = new PointF(x + width, y + height / 2);
                    points[2] = new PointF(x + width / 2, y + height);
                    points[3] = new PointF(x, y + height / 2);
                    if (isFill)
                        g.FillPolygon(backgroundBrush, points);
                    //else
                    g.DrawPolygon(new Pen(foreColor, thickness), points);
                    break;
                case ShapeType.Triangle:
                    var tPoints = new PointF[3];
                    tPoints[0] = new PointF(x + width / 2, y);
                    tPoints[1] = new PointF(x + width, y + height);
                    tPoints[2] = new PointF(x, y + height);
                    if (isFill)
                        g.FillPolygon(backgroundBrush, tPoints);
                    //else
                    g.DrawPolygon(new Pen(foreColor, thickness), tPoints);
                    break;
            }
            if (shapeType != ShapeType.Line)
            {
                g.DrawString(String.Format("({0},{1})", x, y), new Font(new FontFamily("Tahoma"), 10), new SolidBrush(foreColor), x - 20, y - 25);
                g.DrawString(String.Format("({0},{1})", x + width, y + height), new Font(new FontFamily("Tahoma"), 10), new SolidBrush(foreColor), x + width - 20, y + height + 5);
            }
            else
            {
                g.DrawString(String.Format("({0},{1})", startPoint.X, startPoint.Y), new Font(new FontFamily("Tahoma"), 10), new SolidBrush(foreColor), startPoint.X - 20, startPoint.Y - 25);
                g.DrawString(String.Format("({0},{1})", endPoint.X, endPoint.Y), new Font(new FontFamily("Tahoma"), 10), new SolidBrush(foreColor), endPoint.X - 20, endPoint.Y + 5);
            }

        }
    }
}
متد های این کلاس:
  • DrawPreview : این متد پیش نمایشی برای شی در زمان ترسیم، جابجایی و تغییر اندازه آماده می‌کند، پارامترهای آن عبارتند از : بوم گرافیکی، نقطه شروع، نقطه پایان و رنگ قلم ترسیم پیش نمایش شی، ضخامت خط، آیا شی توپر باشد؟، الگوی پر کردن پس زمینه شی ، و نوع شی ترسیمی می‌باشد.
در ادامه پست‌های قبل ادامه کد کلاس Shape را تشریح می‌کنیم.
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Net;

namespace PWS.ObjectOrientedPaint.Models
{
    /// <summary>
    /// Shape (Base Class)
    /// </summary>
    public abstract partial class Shape
    {
#region Constructors (2) 

        /// <summary>
        /// Initializes a new instance of the <see cref="Shape" /> class.
        /// </summary>
        /// <param name="startPoint">The start point.</param>
        /// <param name="endPoint">The end point.</param>
        /// <param name="zIndex">Index of the z.</param>
        /// <param name="foreColor">Color of the fore.</param>
        /// <param name="thickness">The thickness.</param>
        /// <param name="isFill">if set to <c>true</c> [is fill].</param>
        /// <param name="backgroundColor">Color of the background.</param>
        protected Shape(PointF startPoint, PointF endPoint, int zIndex, Color foreColor, byte thickness, bool isFill, Color backgroundColor)
        {
            CalulateLocationAndSize(startPoint, endPoint);
            Zindex = zIndex;
            ForeColor = foreColor;
            Thickness = thickness;
            IsFill = isFill;
            BackgroundColor = backgroundColor;
        }

        /// <summary>
        /// Initializes a new instance of the <see cref="Shape" /> class.
        /// </summary>
        protected Shape() { }

#endregion Constructors 
        
#region Methods (10) 

// Public Methods (9) 

        /// <summary>
        /// Draws the specified g.
        /// </summary>
        /// <param name="g">The g.</param>
        public virtual void Draw(Graphics g)
        {
            if (!IsSelected) return;
            float diff = Thickness + 4;
            Color myColor = Color.DarkSeaGreen;
            g.DrawString(String.Format("({0},{1})", StartPoint.X, StartPoint.Y), new Font(new FontFamily("Tahoma"), 10), new SolidBrush(myColor), StartPoint.X - 20, StartPoint.Y - 25);
            g.DrawString(String.Format("({0},{1})", EndPoint.X, EndPoint.Y), new Font(new FontFamily("Tahoma"), 10), new SolidBrush(myColor), EndPoint.X - 20, EndPoint.Y + 5);
            if (ShapeType != ShapeType.Line)
            {
                g.DrawRectangle(new Pen(myColor), X, Y, Width, Height);

                //  1 2 3
                //  8   4 
                //  7 6 5   
                var point1 = new PointF(StartPoint.X - diff / 2, StartPoint.Y - diff / 2);
                var point2 = new PointF((StartPoint.X - diff / 2 + EndPoint.X) / 2, StartPoint.Y - diff / 2);
                var point3 = new PointF(EndPoint.X - diff / 2, StartPoint.Y - diff / 2);
                var point4 = new PointF(EndPoint.X - diff / 2, (EndPoint.Y + StartPoint.Y) / 2 - diff / 2);
                var point5 = new PointF(EndPoint.X - diff / 2, EndPoint.Y - diff / 2);
                var point6 = new PointF((StartPoint.X - diff / 2 + EndPoint.X) / 2, EndPoint.Y - diff / 2);
                var point7 = new PointF(StartPoint.X - diff / 2, EndPoint.Y - diff / 2);
                var point8 = new PointF(StartPoint.X - diff / 2, (EndPoint.Y + StartPoint.Y) / 2 - diff / 2);


                g.FillRectangle(new SolidBrush(myColor), point1.X, point1.Y, diff, diff);
                g.FillRectangle(new SolidBrush(myColor), point2.X, point2.Y, diff, diff);
                g.FillRectangle(new SolidBrush(myColor), point3.X, point3.Y, diff, diff);
                g.FillRectangle(new SolidBrush(myColor), point4.X, point4.Y, diff, diff);
                g.FillRectangle(new SolidBrush(myColor), point5.X, point5.Y, diff, diff);
                g.FillRectangle(new SolidBrush(myColor), point6.X, point6.Y, diff, diff);
                g.FillRectangle(new SolidBrush(myColor), point7.X, point7.Y, diff, diff);
                g.FillRectangle(new SolidBrush(myColor), point8.X, point8.Y, diff, diff);
            }
            else
            {
                var point1 = new PointF(StartPoint.X - diff / 2, StartPoint.Y - diff / 2);
                var point2 = new PointF(EndPoint.X - diff / 2, EndPoint.Y - diff / 2);
                g.FillRectangle(new SolidBrush(myColor), point1.X, point1.Y, diff, diff);
                g.FillRectangle(new SolidBrush(myColor), point2.X, point2.Y, diff, diff);
            }
        }

        /// <summary>
        /// Points the in sahpe.
        /// </summary>
        /// <param name="point">The point.</param>
        /// <param name="tolerance">The tolerance.</param>
        /// <returns>
        ///   <c>true</c> if [has point in sahpe] [the specified point]; otherwise, <c>false</c>.
        /// </returns>
        public virtual bool HasPointInSahpe(PointF point, byte tolerance = 5)
        {
            return point.X > (StartPoint.X - tolerance) && point.X < (EndPoint.X + tolerance) && point.Y > (StartPoint.Y - tolerance) && point.Y < (EndPoint.Y + tolerance);
        }

        /// <summary>
        /// Moves the specified location.
        /// </summary>
        /// <param name="location">The location.</param>
        /// <returns></returns>
        public virtual PointF Move(Point location)
        {
            StartPoint = new PointF(location.X, location.Y);
            EndPoint = new PointF(location.X + Width, location.Y + Height);
            return StartPoint;
        }

        /// <summary>
        /// Moves the specified dx.
        /// </summary>
        /// <param name="dx">The dx.</param>
        /// <param name="dy">The dy.</param>
        /// <returns></returns>
        public virtual PointF Move(int dx, int dy)
        {
            StartPoint = new PointF(StartPoint.X + dx, StartPoint.Y + dy);
            EndPoint = new PointF(EndPoint.X + dx, EndPoint.Y + dy);
            return StartPoint;
        }

        /// <summary>
        /// Resizes the specified dx.
        /// </summary>
        /// <param name="dx">The dx.</param>
        /// <param name="dy">The dy.</param>
        /// <returns></returns>
        public virtual SizeF Resize(int dx, int dy)
        {
            EndPoint = new PointF(EndPoint.X + dx, EndPoint.Y + dy);
            return new SizeF(Width, Height);
        }

        /// <summary>
        /// Resizes the specified start point.
        /// </summary>
        /// <param name="startPoint">The start point.</param>
        /// <param name="currentPoint">The current point.</param>
        public virtual void Resize(PointF startPoint, PointF currentPoint)
        {
            var dx = (int)(currentPoint.X - startPoint.X);
            var dy = (int)(currentPoint.Y - startPoint.Y);
            if (startPoint.X >= X - 5 && startPoint.X <= X + 5)
            {
                StartPoint = new PointF(currentPoint.X, StartPoint.Y);
                if (ShapeType == ShapeType.Circle || ShapeType == ShapeType.Square)
                {
                    Height = Width;
                }
            }
            else if (startPoint.X >= EndPoint.X - 5 && startPoint.X <= EndPoint.X + 5)
            {
                Width += dx;
                if (ShapeType == ShapeType.Circle || ShapeType == ShapeType.Square)
                {
                    Height = Width;
                }
            }
            else if (startPoint.Y >= Y - 5 && startPoint.Y <= Y + 5)
            {
                Y = currentPoint.Y;
                if (ShapeType == ShapeType.Circle || ShapeType == ShapeType.Square)
                {
                    Width = Height;
                }
            }
            else if (startPoint.Y >= EndPoint.Y - 5 && startPoint.Y <= EndPoint.Y + 5)
            {
                Height += dy;
                if (ShapeType == ShapeType.Circle || ShapeType == ShapeType.Square)
                {
                    Width = Height;
                }
            }
        }

        /// <summary>
        /// Sets the background brush as hatch.
        /// </summary>
        /// <param name="hatchStyle">The hatch style.</param>
        public virtual void SetBackgroundBrushAsHatch(HatchStyle hatchStyle)
        {
            var brush = new HatchBrush(hatchStyle, BackgroundColor);
            BackgroundBrush = brush;
        }

        /// <summary>
        /// Sets the background brush as linear gradient.
        /// </summary>
        public virtual void SetBackgroundBrushAsLinearGradient()
        {
            var brush = new LinearGradientBrush(StartPoint, EndPoint, ForeColor, BackgroundColor);
            BackgroundBrush = brush;
        }

        /// <summary>
        /// Sets the background brush as solid.
        /// </summary>
        public virtual void SetBackgroundBrushAsSolid()
        {
            var brush = new SolidBrush(BackgroundColor);
            BackgroundBrush = brush;
        }
// Private Methods (1) 

        /// <summary>
        /// Calulates the size of the location and.
        /// </summary>
        /// <param name="startPoint">The start point.</param>
        /// <param name="endPoint">The end point.</param>
        private void CalulateLocationAndSize(PointF startPoint, PointF endPoint)
        {
            float x = 0, y = 0;
            float width = Math.Abs(endPoint.X - startPoint.X);
            float height = Math.Abs(endPoint.Y - startPoint.Y);
            if (startPoint.X <= endPoint.X && startPoint.Y <= endPoint.Y)
            {
                x = startPoint.X;
                y = startPoint.Y;
            }
            else if (startPoint.X >= endPoint.X && startPoint.Y >= endPoint.Y)
            {
                x = endPoint.X;
                y = endPoint.Y;
            }
            else if (startPoint.X >= endPoint.X && startPoint.Y <= endPoint.Y)
            {
                x = endPoint.X;
                y = startPoint.Y;
            }
            else if (startPoint.X <= endPoint.X && startPoint.Y >= endPoint.Y)
            {
                x = startPoint.X;
                y = endPoint.Y;
            }
            StartPoint = new PointF(x, y);
            EndPoint = new PointF(X + width, Y + height);
        }

#endregion Methods 
    }
}

حال به تشریح سازنده کلاس می‌پردازیم:
  • Shape: پارامترهای این سازنده به ترتیب عبارتند از نقطه شروع، نقطه پایان، عمق شی، رنگ قلم، ضخامت خط، آیا شی توپر باشد؟، و رنگ پر کردن شی، در این سازنده ابتدا توسط متدی به نام CalulateLocationAndSize(startPoint, endPoint); b نقاط ابتدا و انتهای شی مورد نظر تنظیم می‌شود، در متد مذکور بررسی می‌شود در صورتی که نقاط شروع و پایان یکی از حالت‌های 1 ، 2، 3، 4 از تصویر ابتدا پست باشد همگی تبدیل به حالت 1 خواهد شد.

سپس به تشریح متدهای کلاس Shape می‌پردازیم:

  • Draw: این متد دارای یک پارامتر ورودی است که بوم گرافیکی مورد نظر می‌باشد، در واقع شی مورد نظر خود را بروی این بوم گرافیکی ترسیم می‌کند. در کلاس پایه کار این متد زیاد پیچیده نیست، در صورتی که شی در حالت انتخاب باشد (IsSelected = true) بروی شی مورد نظر 8 مربع کوچک ترسیم می‌شود و اگر شی مورد نظر خط باشد دو مربع کوچک در طرفین خط رسم می‌شود که نشان دهنده انتخاب شدن شی مورد نظر است. این متد به صورت virtual تعریف شده است یعنی کلاس هایی که از Shape ارث میبرند می‌توانند این متد را برای خود از نو بازنویسی کرده (override کنند) و تغییر رفتار دهند.
  • HasPointInSahpe : این متد نیز به صورت virtual تعریف شده است دارای خروجی بولین می‌باشد. پارامتر‌های این متد عبارتند از یک نقطه و یک عدد که نشان دهنده تلرانش نقطه بر حسب پیکسل می‌باشد. کار این متد این است که یک نقطه را گرفته و بررسی می‌کند که آیا نقطه مورد نظر با تلرانس وارد شده آیا در داخل شی واقع شده است یا خیر (مثلا وجود نقطه در مستطیل یا وجود نقطه در دایره فرمول‌های متفاوتی دارند که در اینجا پیش فرض برای تمامی اشیا حالت مستطیل در نظر گرفته شده که می‌توانید آنها را بازنویسی (override) کنید).
  • Move: این متد به عنوان پارامتر یک نقطه را گرفته و شی مورد نظر را به آن نقطه منتقل می‌کند در واقع نقطه شروع و پایان ترسیم شی را تغییر می‌دهد.
  • Move: این متد نیز برای جابجایی شی به کار می‌رود، این متد دارای پارامترهای جابجابی در راستای محور Xها , جابجایی در راستای محور Yها؛ و شی مورد نظر را به آن نقطه منتقل می‌کند در واقع نقطه شروع و پایان ترسیم شی را با توجه به پارامترهای ورودی تغییر می‌دهد. 
  • Resize: این متد نیز برای تغییر اندازه شی به کار می‌رود، این متد دارای پارامترهای تغییر اندازه در راستای محور Xها , تغییر اندازه در راستای محور Yها می‌باشد و نقطه پایان شی مورد نظر را تغییر می‌دهد اما نقطه شروع تغییری نمی‌کند.
  • Resize: این متد نیز برای تغییر اندازه شی به کار می‌رود، در زمان تغییر اندازه شی با ماوس ابتدا یک نقطه شروع وجود دارد که ماوس در آن نقطه کلیک شده و شروع به درگ کردن شی جهت تغییر اندازه می‌کند (پارامتر اول این متد نقطه شروع درگ کردن جهت تغییر اندازه را مشخص می‌کند startPoint)، سپس در یک نقطه ای درگ کردن تمام می‌شود در این نقطه باید شی تغییر اندازه پیدا کرده و ترسیم شود ( پارامتر دوم این متد نقطه مذکور می‌باشد currentLocation). سپس با توجه با این دو نقطه بررسی می‌شود که تغییر اندازه در کدام جهت صورت گرفته است و اعداد جهت تغییرات نقاط شروع و پایان شی مورد نظر محاسبه می‌شوند. (مثلا تغییر اندازه در مستطیل از ضلع بالا به طرفین، یا از ضلع سمت راست به طرفین و ....). البته برای مربع و دایره باید کاری کنیم که طول و عرض تغییر اندازه یکسان باشد.
  • CalulateLocationAndSize: این متد که در سازنده کلاس استفاده شده در واقع دو نقطه شروع و پایان را گرفته و با توجه به تصویر ابتدای پست حالت‌های 1 و 2 و3  و 4 را به حالت 1 تبدیل کرده و StartPoint و EndPoint را اصلاح می‌کند.
  • SetBackgroundBrushAsHatch: این متد یک الگوی Brush گرفته و با توجه به رنگ پس زمینه شی خصوصیت BackgroundBrush را مقداردهی می‌کند.
  • SetBackgroundBrushAsLinearGradient: این متد با توجه به خصوصیت ForeColor و BackgroundColor یک Gradiant Brush ساخته و آن را به خصوصیت
    BackgroundBrush نسبت می‌کند. 
  • SetBackgroundBrushAsSolid: یک الگوی پر کردن توپر برای شی مورد نظر با توجه به خصوصیت BackgroundColor شی ایجاد کرده و آن را به خصوصیت BackgroundBrush شی نسبت می‌دهد.

تذکر: متد‌های Move، Resize و HasPointInShape به صورت virtual تعریف شده تا کلاس‌های مشتق شده در صورت نیاز خود کد رفتار مورد نظر خود را override کرده یا از همین رفتار استفاده نمایند.

خوشحال می‌شم در صورتی که در Refactoring کد نوشته شده با من همکاری کنید.

در پست‌های آینده به بررسی و پیاده سازی دیگر کلاس‌ها خواهیم پرداخت.

مطالب
چند نکته اضافه برای Refactoring
Refactoring عامل خوانایی کد و در بسیاری از مواقع، سبب بالاتر رفتن کارآیی برنامه است. در واقع حتی بسیاری از قوانین Refactoring خود یک الگوی طراحی به شمار می‌آیند. در این مقاله به تعدادی از مباحث Refactoring می‌پردازیم:

یک: به جای بازگرداندن شماره خطا، از استثناءها استفاده کنید. نمونه زیر را ببینید:
public int ReturnErrorCodes(int n1)
{
         if(n1==0)
               return -1;
          if(n1<0)
                 return -2;
            if(n1>_max)
                return -3;
            return n1;
}
همانطور که می‌بینید در کد بالا شماره‌های خطا بازگشت داده می‌شوند. در این حالت می‌توانیم آن‌ها را با استثناءها جایگزین کنیم:
public int ReturnErrorCodes(int n1)
{
         if(n1==0)
                throw new ZeroException();
          if(n1<0)
                 throw new MinException();
            if(n1>_max)
                throw new MaxException();
            return n1;
}

امروزه دیگر برگرداندن شماره‌های خطا منسوخ شده و جای آن از کلاس‌های استثناء استفاده می‌کنند و دریافت آن را از طریق Catch کنترل می‌کنند. از مزایای آن می‌توان به این اشاره کرد که کد اصلی، عاری از دستورات شرطی برای چک کردن می‌شود و کد، حالت مختصرتری به خود می‌گیرد. در یک نگاه کد نشان می‌دهد که چه اتفاقی می‌افتد و چه خطاهایی داریم. استثناءها بر خلاف شماره کدها، یک نوع ساده و ابتدایی نیستند. بلکه کلاس هستند و می‌توانند به ما قابلیت توسعه یک کلاس خطا را بدهند. متدی یا چیزی را اضافه کنیم تا قابلیت‌های آن بالاتر برود.

 دو. یک شیء کامل را بازگردانید.
نمونه کد زیر را ببینید:
Public Void Draw()
{
        var x=_pointDetector.X;
        var y=_pointerDetector.Y;
        _rectangle.Draw(x,y);
}
در این شیوه، هر چقدر متغیرهای برگشتی افزایش پیدا کنند، اهمیت استفاده از آن بیشتر می‌شود. برای حل این مسئله باید به جای برگرداندن تک تک مقادیر، همه آن‌ها را در قالب یک شیء برگردانید:
public Void Draw()
{
     var point = _pointDetector.Point;
     _rectangle.Draw(point);
}
از مزایای استفاده‌ی از الگو، این است که تعداد خطوط شما در بدنه اصلی، کاهش می‌یابد و اگر در آینده نیاز به افزایش تعداد خروجی‌ها باشد، لازم نیست که بدنه‌ی اصلی را هم تغییر بدهید و مرتب کدی یا خطی را به آن اضافه کنید.

سه
. شروط یکسان را تابع نویسی کنید. گاهی از اوقات مانند کد زیر پیش می‌آید که خروجی چندین شرط شما، خروجی یکسانی دارند. جهت این کار می‌توانید تمام این شرط‌ها را به یک تابع یا متد دیگر منتقل کنید:
public void Conditions(){
     if(a==0)
             return 0;
     if(b==0)
             return 0;
     if(c==0)
             return 0;
     if(d==0)
             return 0;
}
به جای آن می‌نویسیم:
public void Conditions()
{
          if(allConditions())
               return 0;
}
بدین صورت بدنه اصلی خلاصه‌تر شده و شرط‌ها به متدی با نامی که هدف آن را مشخص می‌کند انتقال می‌یابند.

چهار. چند خط کد شرطی را در یک شرط ننویسید و آنها را به متغیرهای جداگانه انتساب دهید. نمونه زیر را ببینید:
public void renderBanner() {
  if ((platform.toUpperCase().indexOf("MAC") > -1) &&
       (browser.toUpperCase().indexOf("IE") > -1) &&
        wasInitialized() && resize > 0 )
  {
    // do something
  }
}
در این حالت بهتر است هر شرط به یک خط و یک متغیر انتقال یابد تا خطوط تمیزتر و خلاصه‌تر و قابل فهم‌تری داشته باشیم:
public void renderBanner() {
  bool isMacOs = platform.toUpperCase().indexOf("MAC") > -1;
  bool isIE = browser.toUpperCase().indexOf("IE") > -1;
  bool wasResized = resize > 0;

  if (isMacOs && isIE && wasInitialized() && wasResized) {
    // do something
  }
}

پنج
. معرفی اکستنشن محلی: گاهی اوقات از کلاس‌هایی استفاده می‌کنید که شامل متد یا خاصیتی که احتیاج دارید نیستند و دسترسی به سورس آن کلاس هم امکان پذیر نیست یا هزینه سنگینی دارد. در این صورت می‌توانید از یک زیر کلاس یا Wrapper Class استفاده کنید.
به عنوان مثال متد NextDay جایگاه آن در DateTime است. برای افزودن این خاصیت دو راه دارید که یک زیر کلاس از DateTime ایجاد کنید و متدی را به آن اضافه کنید یا اینکه کلاس DateTime را در یک کلاس دیگر بپیچانید (محصور کنید).
public class Globalization:DateTime
{
     public int NextDay()
     {
      }
}
یا
public class Globalization
{
    public DateTime DT{get;set;}
     public int NextDay()
     {
      }
}

پی نوشت:
اینکه کلاس dateTime قابل ارث بری است یا خیر اهمیتی ندارد. تنها به عنوان مثال ذکر شده است.
مزیت این روش این است که شما در طول برنامه از یک کلاس یکسان استفاده می‌کنید و با همین یک کلاس به همه موارد دسترسی دارید و باعث وجود کد یکتایی می‌شوید و به جای اینکه مرتبا از کلاس‌های مختلف استفاده کنید، از یک نام مشخص استفاده می‌کنید و خوانایی کد را در کل برنامه بالا می‌برید.
مطالب
ویژگی های کمتر استفاده شده در NET. - بخش هفتم

DebuggerStepThroughAttribute

ویژگی DebuggerStepThroughAttribute باعث می‌شود که در زمان دیباگ کردن کد، با کلید F11، متدهایی که این ویژگی را دارند، بدون رفتن به داخل متد (همانند دیباگ با کلید F10 عمل می‌کند، به جز زمانی که در داخل متد break point گذاشته باشید) ، تنها اجرا می‌شوند.
به مثال زیر توجه کنید:
class Program
{
    public static void Main(string[] args)
    {
        DebuggerStepThroughMethod1();
    }

    [DebuggerStepThrough]
    public static void DebuggerStepThroughMethod1()
    {
        Console.WriteLine( "Method 1" );
        DebuggerStepThroughMethod2();
    }

    [DebuggerStepThrough]
    public static void DebuggerStepThroughMethod2()
    {
        Console.WriteLine( "Method 2" );
    }
}
و نتیجه دیباگ با استفاده از F11 به صورت زیر می‌شود:

همانطور که مشاهده می‌کنید برنامه را با کلید F11 اجرا کردم. بعد از ورود به Method1، با زدن کلید F11 دستور بعدی، break point درون Method2 است.

ConditionalAttribute

شما با استفاده از Conditional می توانید اجرای یک متد را به شناساننده پیش پردازشی ( pre-processing identifier ) وابسته کنید. ConditionalAttribute می‌تواند بر روی یک کلاس یا یک متد بکار برده شود.
class Program
{
    public static void Main(string[] args)
    {
        DebugMode();
    }

    [Conditional("DEBUG")]
    public static void DebugMode()
    {
        Console.WriteLine( "Debug mode" );
    }
}
در صورتی که مثال بالا را در حالت Debug اجرا کنید، خروجی کنسول پیام Debug mode است و در صورتی که در حالت Release اجرا کنید، متد DebugMode اجرا نخواهد شد.
نکته: شما می‌توانید با استفاده از دستور define# (در بیرون از فضای نام) مقدار سفارشی خود را تعریف کنید.
#define ReleaseMode


Flags Enum Attribute

ویژگی Flags برای پوشش فیلدهای بیتی و انجام مقایسه بیتی استفاده می‌شود. از این ویژگی باید برای زمانیکه یک داده شمارشی می‌تواند چندین مقدار را به صورت همزمان داشته باشد، استفاده کرد.
[System.Flags]
public enum Permission
{
    View = 1,
    Insert = 2,
    Update = 4,
    Delete = 8
}
این نکته خیلی مهم است که Flags به صورت خودکار، مقادیر enum را به توان دو نمی‌رساند و شما باید به صورت دستی این مقادیر را تعیین کنید. در صورتیکه مقادیر عددی را تعیین نکنید، enum در عملیات بیتی به درستی کار نخواهد کرد، چرا که مقدار enum از 0 شروع می‌شود و افزایش پیدا می‌کند.  
public static void Main( string[] args )
{
    var permission = ( Permission.View | Permission.Insert ).ToString();
    Console.WriteLine( permission ); // Displays ‘View, Insert’

    var userPermission = Permission.View | Permission.Insert | Permission.Update | Permission.Delete;
    // To retrieve the value from property you can do this
    if ( ( userPermission & Permission.Delete ) == Permission.Delete )
    {
        Console.WriteLine( "کاربر دارای مجوز دسترسی به عملیات حذف می‌باشد" );
    }

    // In .NET 4 and later
    Console.WriteLine( userPermission.HasFlag( Permission.Delete )
                            ? "کاربر دارای مجوز دسترسی به عملیات حذف می‌باشد"
                            : "کاربر مجوز دسترسی به عملیات حذف را ندارد");
}

نکته: در صورتیکه مقداری را برای enum تعریف کرده باشید، نمی‌توانید آن را با مقدار 0 مشخص کنید (در زمانی که ویژگی flags را بر روی enum اضافه کرده باشید)، چرا که با استفاده از عملیات بیتی AND نمی‌توانید دارا بودن آن مقدار را تست کنید و همیشه نتیجه صفر خواهد بود.


Dynamically Compile and Execute C# Code

CodeDOM

با استفاده از CodeDOM می‌توانید یک سورس کد را به صورت یک فایل اسمبلی کامپایل و ذخیره کنید.
public static void Main( string[] args )
{
    var sourceCode = @"class DotNetTips
                        {
                            public void Print()
                            {
                                System.Console.WriteLine("".Net Tips"");
                            }
                        }";
    var compiledAssembly = CompileSourceCodeDom( sourceCode );
    ExecuteFromAssembly( compiledAssembly );
}

static Assembly CompileSourceCodeDom( string sourceCode )
{
    CodeDomProvider csharpCodeProvider = new CSharpCodeProvider();
    var cp = new CompilerParameters
                {
                    GenerateExecutable = false
                };
    cp.ReferencedAssemblies.Add( "System.dll" );
    var cr = csharpCodeProvider.CompileAssemblyFromSource( cp,
                                                            sourceCode );
    return cr.CompiledAssembly;
}
همانطور که در مثال بالا مشاهده می‌کنید، متغیر sourceCode حاوی کد مربوط به یک کلاس #C می‌باشد که یک متد Print در آن تعریف شده است.


Roslyn

سکوی کامپایلر دات نت " Roslyn "،  کامپایلرهای متن باز #C و  VB.NET را به همراه APIهای تجزیه و تحلیل کد ارائه کرده است که با استفاده از این APIها می‌توان ابزارهای آنالیز کد جهت استفاده در ویژوال استودیو را ایجاد کرد.

برای استفاده از Roslyn باید این کتابخانه را نصب کنید

Install-Package Microsoft.CodeAnalysis

حال مثال قبل را با استفاده از Roslyn بازنویسی می‌کنیم:

public static void Main(string[] args)
{
    var sourceCode = @"class DotNetTips
                        {
                            public void Print()
                            {
                                System.Console.WriteLine("".Net Tips"");
                            }
                        }";
    var compiledAssembly = CompileSourceRoslyn( sourceCode );
    ExecuteFromAssembly( compiledAssembly );
}

private static Assembly CompileSourceRoslyn(string sourceCode)
{
    using ( var memoryStream = new MemoryStream() )
    {
        var assemblyFileName = string.Concat( Guid.NewGuid().ToString(),
                                                ".dll" );
        var compilation = CSharpCompilation.Create( assemblyFileName,
                                                    new[]
                                                    {
                                                        CSharpSyntaxTree.ParseText( sourceCode )
                                                    },
                                                    new[]
                                                    {
                                                        MetadataReference.CreateFromFile( typeof( object ).Assembly.Location )
                                                    },
                                                    new CSharpCompilationOptions( OutputKind.DynamicallyLinkedLibrary ) );
        compilation.Emit( memoryStream );
        var assembly = Assembly.Load( memoryStream.GetBuffer() );
        return assembly;
    }
}

و جهت فراخوانی اسمبلی ساخته شده به هر دو روش بالا، از کد زیر استفاده می‌کنیم.

static void ExecuteFromAssembly( Assembly assembly )
{
    var helloKittyPrinterType = assembly.GetType( "DotNetTips" );
    var printMethod = helloKittyPrinterType.GetMethod( "Print" );
    var kitty = assembly.CreateInstance( "DotNetTips" );
    printMethod.Invoke( kitty,
                        BindingFlags.InvokeMethod,
                        null,
                        null,
                        CultureInfo.CurrentCulture );
}


مطالب
OpenCVSharp #12
قطعه بندی (segmentation) تصویر با استفاده از الگوریتم watershed

در تصویر ذیل، تصویر یک راه‌رو را مشاهده می‌کنید که توسط ماوس قطعه بندی شده‌است (تصویر اصلی یا سمت چپ). تصویر سمت راست، نسخه‌ی قطعه بندی شده‌ی این تصویر به کمک الگوریتم watershed است.

همانطور که در تصویر نیز مشخص است، نمایش هر ناحیه‌ی قطعه بندی شده، شبیه به سیلان آب است که با رسیدن به مرز قطعه‌ی بعدی متوقف شده‌است. به همین جهت به آن watershed (آب پخشان) می‌گویند.


انتخاب نواحی مختلف به کمک ماوس

در اینجا کدهای آغازین مثال بحث جاری را ملاحظه می‌کنید:
var src = new Mat(@"..\..\Images\corridor.jpg", LoadMode.AnyDepth | LoadMode.AnyColor);
var srcCopy = new Mat();
src.CopyTo(srcCopy);
 
var markerMask = new Mat();
Cv2.CvtColor(srcCopy, markerMask, ColorConversion.BgrToGray);
 
var imgGray = new Mat();
Cv2.CvtColor(markerMask, imgGray, ColorConversion.GrayToBgr);
markerMask = new Mat(markerMask.Size(), markerMask.Type(), s: Scalar.All(0));
 
var sourceWindow = new Window("Source (Select areas by mouse and then press space)")
{
    Image = srcCopy
};
 
var previousPoint = new Point(-1, -1);
sourceWindow.OnMouseCallback += (@event, x, y, flags) =>
{
    if (x < 0 || x >= srcCopy.Cols || y < 0 || y >= srcCopy.Rows)
    {
        return;
    }
 
    if (@event == MouseEvent.LButtonUp || !flags.HasFlag(MouseEvent.FlagLButton))
    {
        previousPoint = new Point(-1, -1);
    }
    else if (@event == MouseEvent.LButtonDown)
    {
        previousPoint = new Point(x, y);
    }
    else if (@event == MouseEvent.MouseMove && flags.HasFlag(MouseEvent.FlagLButton))
    {
        var pt = new Point(x, y);
        if (previousPoint.X < 0)
        {
            previousPoint = pt;
        }
 
        Cv2.Line(img: markerMask, pt1: previousPoint, pt2: pt, color: Scalar.All(255), thickness: 5);
        Cv2.Line(img: srcCopy, pt1: previousPoint, pt2: pt, color: Scalar.All(255), thickness: 5);
        previousPoint = pt;
        sourceWindow.Image = srcCopy;
    }
};
ابتدا تصویر راه‌رو بارگذاری شده‌است. سپس یک نسخه‌ی سیاه و سفید تک کاناله به نام markerMask از آن استخراج می‌شود. از آن برای ترسیم خطوط انتخاب نواحی مختلف تصویر به کمک ماوس استفاده می‌شود. به علاوه متد FindContours که در ادامه معرفی خواهد شد، نیاز به یک تصویر 8 بیتی تک کاناله دارد (به هر یک از اجزای RGB یک کانال گفته می‌شود).
همچنین این نسخه‌ی سیاه و سفید تک کاناله به یک تصویر سه کاناله برای نمایش رنگ‌های قسمت‌های مختلف قطعه بندی شده، تبدیل می‌شود.
سپس پنجره‌ی نمایش تصویر اصلی برنامه ایجاد شده و در اینجا روال رخدادگردان OnMouseCallback آن به صورت inline مقدار دهی شده‌است. در این روال می‌توان مدیریت ماوس را به عهده گرفت و کار نمایش خطوط مختلف را با فشرده شدن و سپس رها شدن کلیک سمت چپ ماوس انجام داد.
خط ترسیم شده بر روی دو تصویر از نوع Mat نمایش داده می‌شود. تصویر srcCopy، همان تصویر نمایش داده شده‌ی در پنجره‌ی اصلی است و تصویر markerMask، بیشتر جنبه‌ی محاسباتی دارد و در متدهای بعدی OpenCV استفاده خواهد شد.


تشخیص کانتورها (Contours) در تصویر

پس از ترسیم نواحی مورد نظر توسط ماوس، یک سری خطوط به هم پیوسته در شکل قابل مشاهده هستند. می‌خواهیم این خطوط را تشخیص داده و سپس از آن‌ها جهت محاسبات قطعه بندی تصویر استفاده کنیم. تشخیص این خطوط متصل، توسط متدی به نام FindContours انجام می‌شود. کانتورها، قسمت‌های خارجی اجزای متصل به هم هستند.
Point[][] contours; //vector<vector<Point>> contours;
HiearchyIndex[] hierarchyIndexes; //vector<Vec4i> hierarchy;
Cv2.FindContours(
    markerMask,
    out contours,
    out hierarchyIndexes,
    mode: ContourRetrieval.CComp,
    method: ContourChain.ApproxSimple);
متد FindContours همان تصویر markerMask را که توسط ماوس، قسمت‌های مختلف تصویر را علامتگذاری کرده‌است، دریافت می‌کند. سپس کانتورهای آن را استخراج خواهد کرد. کانتورها در مثال‌های اصلی OpenCV با verctor مشخص شده‌اند. در اینجا (در کتابخانه‌ی OpenCVSharp) آن‌ها را توسط یک آرایه‌ی دو بعدی از نوع Point مشاهده می‌کنید یا شبیه به لیستی از آرایه‌ی نقاط کانتورهای مختلف تشخیص داده شده (هر کانتور، آرایه‌ی از نقاط است). از hierarchyIndexes جهت یافتن و ترسیم این کانتورها در متد DrawContours استفاده می‌شود.
متد FindContours یک تصویر 8 بیتی تک کاناله را دریافت می‌کند. اگر mode آن CCOMP یا FLOODFILL تعریف شود، امکان دریافت یک تصویر 32 بیتی را نیز خواهد داشت.
پارامتر hierarchy آن یک پارامتر اختیاری است که بیانگر اطلاعات topology تصویر است.
توسط پارامتر Mode، نحوه‌ی استخراج کانتور مشخص می‌شود. اگر به external تنظیم شود، تنها کانتورهای خارجی‌ترین قسمت‌ها را تشخیص می‌دهد. اگر مساوی list قرار گیرد، تمام کانتورها را بدون ارتباطی با یکدیگر و بدون تشکیل hierarchy استخراج می‌کند. حالت ccomp تمام کانتورها را استخراج کرده و یک درخت دو سطحی از آن‌ها را تشکیل می‌دهد. در سطح بالایی مرزهای خارجی اجزاء وجود دارند و در سطح دوم مرزهای حفره‌ها مشخص شده‌اند. حالت و مقدار tree به معنای تشکیل یک درخت کامل از کانتورهای یافت شده‌است.
پارامتر method اگر به none تنظیم شود، تمام نقاط کانتور ذخیره خواهند شد و اگر به simple تنظیم شود، قطعه‌های افقی، عمودی و قطری، فشرده شده و تنها نقاط نهایی آن‌ها ذخیره می‌شوند. برای مثال در این حالت یک کانتور مستطیلی، تنها با 4 نقطه ذخیره می‌شود.


ترسیم کانتورهای تشخیص داده شده بر روی تصویر


می‌توان به کمک متد DrawContours، مرزهای کانتورهای یافت شده را ترسیم کرد:
var markers = new Mat(markerMask.Size(), MatType.CV_32S, s: Scalar.All(0));
 
var componentCount = 0;
var contourIndex = 0;
while ((contourIndex >= 0))
{
    Cv2.DrawContours(
        markers,
        contours,
        contourIndex,
        color: Scalar.All(componentCount + 1),
        thickness: -1,
        lineType: LineType.Link8,
        hierarchy: hierarchyIndexes,
        maxLevel: int.MaxValue);
 
    componentCount++;
    contourIndex = hierarchyIndexes[contourIndex].Next;
}
پارامتر اول آن تصویری است که قرار است ترسیمات بر روی آن انجام شوند. پارامتر کانتور، آرایه‌ای است از کانتورهای یافت شده‌ی در قسمت قبل. پارامتر ایندکس مشخص می‌کند که اکنون کدام کانتور باید رسم شود. برای یافتن کانتور بعدی باید از hierarchyIndexes یافت شده‌ی توسط متد FindContours استفاده کرد. خاصیت Next آن، بیانگر ایندکس کانتور بعدی است و اگر مساوی منهای یک شد، کار متوقف می‌شود. مقدار maxLevel مشخص می‌کند که بر اساس پارامتر hierarchyIndexes، چند سطح از کانتورهای به هم مرتبط باید ترسیم شوند. در اینجا چون به حداکثر مقدار Int32 تنظیم شده‌است، تمام این سطوح ترسیم خواهند شد. اگر پارامتر ضخامت به یک عدد منفی تنظیم شود، سطوح داخلی کانتور ترسیم و پر می‌شوند.



اعمال الگوریتم watershed

در مرحله‌ی آخر، تصویر کانتورهای ترسیم شده را به متد Watershed ارسال می‌کنیم. پارامتر اول آن تصویر اصلی است و پارامتر دوم، یک پارامتر ورودی و خروجی محسوب می‌شود و کار قطعه بندی تصویر بر روی آن انجام خواهد شد.
کار الگوریتم watershed، ایزوله سازی اشیاء موجود در تصویر از پس زمینه‌ی آن‌ها است. این الگوریتم، یک تصویر سیاه و سفید را دریافت می‌کند؛ به همراه یک تصویر ویژه به نام marker. تصویر marker کارش مشخص سازی اشیاء، از پس زمینه‌ی آن‌ها است که در اینجا توسط ماوس ترسیم و سپس به کمک یافتن کانتورها و ترسیم آ‌ن‌ها بهینه سازی شده‌است.
var rnd = new Random();
var colorTable = new List<Vec3b>();
for (var i = 0; i < componentCount; i++)
{
    var b = rnd.Next(0, 255); //Cv2.TheRNG().Uniform(0, 255);
    var g = rnd.Next(0, 255); //Cv2.TheRNG().Uniform(0, 255);
    var r = rnd.Next(0, 255); //Cv2.TheRNG().Uniform(0, 255);
 
    colorTable.Add(new Vec3b((byte)b, (byte)g, (byte)r));
}
 
Cv2.Watershed(src, markers);
 
var watershedImage = new Mat(markers.Size(), MatType.CV_8UC3);
 
// paint the watershed image
for (var i = 0; i < markers.Rows; i++)
{
    for (var j = 0; j < markers.Cols; j++)
    {
        var idx = markers.At<int>(i, j);
        if (idx == -1)
        {
            watershedImage.Set(i, j, new Vec3b(255, 255, 255));
        }
        else if (idx <= 0 || idx > componentCount)
        {
            watershedImage.Set(i, j, new Vec3b(0, 0, 0));
        }
        else
        {
            watershedImage.Set(i, j, colorTable[idx - 1]);
        }
    }
}
 
watershedImage = watershedImage * 0.5 + imgGray * 0.5;
Cv2.ImShow("Watershed Transform", watershedImage);
Cv2.WaitKey(1); //do events
متد Cv2.TheRNG یک تولید کننده‌ی اعداد تصادفی توسط OpenCV است و متد Uniform آن شبیه به متد Next کلاس Random دات نت عمل می‌کند. به نظر این کلاس تولید اعداد تصادفی، آنچنان هم تصادفی عمل نمی‌کند. به همین جهت از کلاس Random دات نت استفاده شد. در اینجا به ازای تعداد کانتورهای ترسیم شده، یک رنگ تصادفی تولید شده‌است.
پس از اعمال متد Watershed، هر نقطه‌ی تصویر marker مشخص می‌کند که متعلق به کدام قطعه‌ی تشخیص داده شده‌است. سپس به این نقطه، رنگ آن قطعه را نسبت داده و آن‌را در تصویر جدیدی ترسیم می‌کنیم.
در آخر، پس زمینه، با نواحی تشخیص داده ترکیب شده‌اند (watershedImage * 0.5 + imgGray * 0.5) تا تصویر ابتدای بحث حاصل شود. اگر این ترکیب صورت نگیرد، چنین تصویری حاصل خواهد شد:




کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
OpenCVSharp #15
تشخیص چهره به کمک OpenCV

OpenCV به کمک الگوریتم‌های machine learning (در اینجا Haar feature-based cascade classifiers) و داد‌ه‌های مرتبط با آن‌ها، قادر است اشیاء پیچیده‌ای را در تصاویر پیدا کند. برای پیگیری مثال بحث جاری نیاز است کتابخانه‌ی اصلی OpenCV را دریافت کنید؛ از این جهت که به فایل‌های XML موجود در پوشه‌ی opencv\sources\data\haarcascades آن نیاز داریم. در اینجا از دو فایل haarcascade_eye_tree_eyeglasses.xml و haarcascade_frontalface_alt.xml آن استفاده خواهیم کرد (این دوفایل جهت سهولت کار، به همراه مثال این بحث نیز ارائه شده‌اند).
فایل haarcascade_frontalface_alt.xml اصطلاحا trained data مخصوص یافتن چهره‌ی انسان در تصاویر است و فایل haarcascade_eye_tree_eyeglasses.xml کمک می‌کند تا بتوان در چهره‌ی یافت شده، چشمان شخص را نیز با دقت بالایی تشخیص داد؛ چیزی همانند تصویر ذیل:



مراحل تشخیص چهره توسط OpenCVSharp

ابتدا همانند سایر مثال‌های OpenCV، تصویر مدنظر را به کمک کلاس Mat بارگذاری می‌کنیم:
var srcImage = new Mat(@"..\..\Images\Test.jpg");
Cv2.ImShow("Source", srcImage);
Cv2.WaitKey(1); // do events
 
var grayImage = new Mat();
Cv2.CvtColor(srcImage, grayImage, ColorConversion.BgrToGray);
Cv2.EqualizeHist(grayImage, grayImage);
همچنین در اینجا جهت بالا رفتن سرعت کار و بهبود دقت تشخیص چهره، این تصویر اصلی به یک تصویر سیاه و سفید تبدیل شده‌است و سپس متد Cv2.EqualizeHist بر روی آن فراخوانی گشته‌است. این متد وضوح تصویر را جهت یافتن الگوها بهبود می‌بخشد.
سپس فایل xml یاد شده‌ی در ابتدای بحث را توسط کلاس CascadeClassifier بارگذاری می‌کنیم:
var cascade = new CascadeClassifier(@"..\..\Data\haarcascade_frontalface_alt.xml");
var nestedCascade = new CascadeClassifier(@"..\..\Data\haarcascade_eye_tree_eyeglasses.xml");
 
var faces = cascade.DetectMultiScale(
    image: grayImage,
    scaleFactor: 1.1,
    minNeighbors: 2,
    flags: HaarDetectionType.Zero | HaarDetectionType.ScaleImage,
    minSize: new Size(30, 30)
    );
 
Console.WriteLine("Detected faces: {0}", faces.Length);
پس از بارگذاری فایل‌های XML اطلاعات نحوه‌ی تشخیص چهره و اعضای آن، با فراخوانی متد DetectMultiScale، کار تشخیص چهره و استخراج آن از grayImage انجام خواهد شد. در اینجا minSize، اندازه‌ی حداقل چهره‌ی مدنظر است که قرار هست تشخیص داده شود. نواحی کوچکتر از این اندازه، به عنوان نویز در نظر گرفته خواهند شد و پردازش نمی‌شوند.
خروجی این متد، مستطیل‌ها و نواحی یافت شده‌ی مرتبط با چهره‌های موجود در تصویر هستند. اکنون می‌توان حلقه‌ای را تشکیل داد و این نواحی را برای مثال با مستطیل‌های رنگی، متمایز کرد:
var rnd = new Random();
var count = 1;
foreach (var faceRect in faces)
{
    var detectedFaceImage = new Mat(srcImage, faceRect);
    Cv2.ImShow(string.Format("Face {0}", count), detectedFaceImage);
    Cv2.WaitKey(1); // do events
 
    var color = Scalar.FromRgb(rnd.Next(0, 255), rnd.Next(0, 255), rnd.Next(0, 255));
    Cv2.Rectangle(srcImage, faceRect, color, 3);
  
    count++;
}
 
Cv2.ImShow("Haar Detection", srcImage);
Cv2.WaitKey(1); // do events
در اینجا علاوه بر رسم یک مستطیل، به دور ناحیه‌ی تشخیص داده شده، نحوه‌ی استخراج تصویر آن ناحیه را هم در سطر var detectedFaceImage مشاهده می‌کنید.

همچنین اگر علاقمند باشیم تا در این ناحیه‌ی یافت شده، چشمان شخص را نیز استخراج کنیم، می‌توان به نحو ذیل عمل کرد:
var rnd = new Random();
var count = 1;
foreach (var faceRect in faces)
{
    var detectedFaceImage = new Mat(srcImage, faceRect);
    Cv2.ImShow(string.Format("Face {0}", count), detectedFaceImage);
    Cv2.WaitKey(1); // do events
 
    var color = Scalar.FromRgb(rnd.Next(0, 255), rnd.Next(0, 255), rnd.Next(0, 255));
    Cv2.Rectangle(srcImage, faceRect, color, 3);
 
 
    var detectedFaceGrayImage = new Mat();
    Cv2.CvtColor(detectedFaceImage, detectedFaceGrayImage, ColorConversion.BgrToGray);
    var nestedObjects = nestedCascade.DetectMultiScale(
        image: detectedFaceGrayImage,
        scaleFactor: 1.1,
        minNeighbors: 2,
        flags: HaarDetectionType.Zero | HaarDetectionType.ScaleImage,
        minSize: new Size(30, 30)
        );
 
    Console.WriteLine("Nested Objects[{0}]: {1}", count, nestedObjects.Length);
 
    foreach (var nestedObject in nestedObjects)
    {
        var center = new Point
        {
            X = Cv.Round(nestedObject.X + nestedObject.Width * 0.5) + faceRect.Left,
            Y = Cv.Round(nestedObject.Y + nestedObject.Height * 0.5) + faceRect.Top
        };
        var radius = Cv.Round((nestedObject.Width + nestedObject.Height) * 0.25);
        Cv2.Circle(srcImage, center, radius, color, thickness: 3);
    }
 
    count++;
}
 
Cv2.ImShow("Haar Detection", srcImage);
Cv2.WaitKey(1); // do events
کدهای ابتدایی آن همانند توضیحات قبل است. تنها تفاوت آن، استفاده از nestedCascade بارگذاری شده‌ی در ابتدای بحث می‌باشد. این nestedCascade حاوی trained data استخراج چشمان اشخاص، از تصاویر است. پارامتر ورودی آن‌را نیز تصویر سیاه و سفید ناحیه‌ی چهره‌ی یافت شده‌، قرار داده‌ایم تا سرعت تشخیص چشمان شخص، افزایش یابد.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
C# 8.0 - Pattern Matching
در نگارش‌های پیشین #C، بهبودهایی در زمینه‌ی Pattern matching وجود داشتند. در نگارش 8 نیز این بهبودها ادامه پیدا کرده‌اند که نتیجه‌ی آن به‌وجود آمدن روش جدیدی برای نوشتن عبارات switch است.


معرفی روش جدید نوشتن عبارات switch در C#8.0

فرض کنید یک enum که معرف تعدادی رنگ است را تعریف کرده‌ایم:
    public enum Rainbow
    {
        Red,
        Orange,
        Yellow,
        Green,
        Blue,
        Indigo,
        Violet
    }
همچنین کلاسی را نیز جهت تشکیل اشیاء رنگ مبتنی بر RGB تدارک دیده‌ایم:
    class RGBColor
    {
        internal byte Red { get; }
        internal byte Green { get; }
        internal byte Blue { get; }

        internal RGBColor(byte red, byte green, byte blue)
        {
            Red = red;
            Green = green;
            Blue = blue;
        }

        public override string ToString() => $"rgb({Red}, {Green}, {Blue})";
    }
اکنون هدف ما این است که اگر یکی از اعضای این enum را انتخاب کردیم، بتوانیم معادل رنگ RGB آن‌را نیز داشته باشیم. برای این منظور می‌توان switch ساده‌ی زیر را تشکیل داد:
        internal static RGBColor FromRainbow(Rainbow rainbowBolor)
        {
            switch (rainbowBolor)
            {
                case Rainbow.Red:
                    return new RGBColor(0xFF, 0x00, 0x00);
                case Rainbow.Orange:
                    return new RGBColor(0xFF, 0x7F, 0x00);
                case Rainbow.Yellow:
                    return new RGBColor(0xFF, 0xFF, 0x00);
                case Rainbow.Green:
                    return new RGBColor(0x00, 0xFF, 0x00);
                case Rainbow.Blue:
                    return new RGBColor(0x00, 0x00, 0xFF);
                case Rainbow.Indigo:
                    return new RGBColor(0x4B, 0x00, 0x82);
                case Rainbow.Violet:
                    return new RGBColor(0x94, 0x00, 0xD3);
                default:
                    throw new ArgumentException(message: "invalid enum value", paramName: nameof(rainbowBolor));
            };
        }
این کاری است که تا پیش از C# 8.0 به صورت متداولی انجام می‌شود. اکنون در C# 8.0 می‌توان عبارت switch فوق را به صورت زیر خلاصه کرد:
        internal static RGBColor TasteTheRainbow(Rainbow rainbowColor) =>
            rainbowColor switch
        {
            Rainbow.Red => new RGBColor(0xFF, 0x00, 0x00),
            Rainbow.Orange => new RGBColor(0xFF, 0x7F, 0x00),
            Rainbow.Yellow => new RGBColor(0xFF, 0xFF, 0x00),
            Rainbow.Green => new RGBColor(0x00, 0xFF, 0x00),
            Rainbow.Blue => new RGBColor(0x00, 0x00, 0xFF),
            Rainbow.Indigo => new RGBColor(0x4B, 0x00, 0x82),
            Rainbow.Violet => new RGBColor(0x94, 0x00, 0xD3),
            _ => throw new ArgumentException(message: "invalid enum value", paramName: nameof(rainbowColor)),
        };
- در این روش جدید، بجای اینکه با ذکر switch و سپس، مقداری/نوعی شروع شود، ابتدا با نوع شروع می‌شود و سپس واژه‌ی کلیدی switch ذکر خواهد شد.
- در ادامه تمام caseها حذف می‌شوند و بجای آن‌ها صرفا مقادیر مدنظر باقی می‌ماند. در اینجا <= به صورت expressed as خوانده می‌شود.
- caseهای مختلف با کاما از هم جدا می‌شوند.
- همچنین در سطر آخر آن نیز از یک discard استفاده شده‌است که معادل همان حالت default یا حالتی است که هیچ تطابقی صورت نگرفته باشد.
- به علاوه اگر دقت کنید، نتیجه‌ی نهایی این switch جدید، به صورت یک مقدار، توسط متد TasteTheRainbow، بازگشت داده شده‌است. بنابراین نوشتن یک چنین عباراتی در C# 8.0، مجاز است:
var operation = "+";
int a = 1, b = 2;
var result = operation switch
{
   "+" => a + b,
   "-" => a - b,
   "/" => a / b,
     _ => throw new NotSupportedException()
};


معرفی Property Patterns در C# 8.0

کلاس زیر را درنظر بگیرید که از تعدادی خاصیت عمومی تشکیل شده‌است:
    class Address
    {
        public string AddressLine1 { get; set; }
        public string AddressLine2 { get; set; }
        public string City { get; set; }
        public string State { get; set; }
        public string PostalCode { get; set; }
        public string CountryRegion { get; set; }
    }
اکنون فرض کنید که می‌خواهیم مالیات فروش را بر اساس آدرس و محل آن، محاسبه کنیم. در C# 8.0 با معرفی قابلیت الگوهای خواص، می‌توان بر روی آدرس، یک switch را تشکیل داد و سپس تک تک خواص آن‌را ارزیابی کرد:
    static class PropertyPatterns
    {
        internal static decimal ComputeSalesTax(
            Address location,
            decimal salePrice) =>
            location switch
        {
            { State: "Fars" } => salePrice * 0.06m,
            { State: "Tehran", City: "Tehran" } => salePrice * 0.056m,

            // Other cases removed for brevity...
            _ => 0M
        };
    }
در اینجا، سمت چپ هر case، داخل یک {} قرار می‌گیرد و در آن می‌توان مقادیر چندین خاصیت شیء location دریافتی را بررسی کرد. برای نمونه در سطر دوم آن، روش ارزیابی بیش از یک خاصیت را نیز مشاهده می‌کنید که روش ذکر آن شبیه به تعریف شیء‌های JSON است. در آخر نیز توسط یک discard، حالت default ذکر شده‌است.


معرفی Tuple Patterns در C# 8.0

در switch‌های C# 8.0، می‌توان از tuples نیز برای تشکیل قسمت case و همچنین مقداری که قرار است switch بر روی آن صورت گیرد، استفاده کرد:
    static class TuplePatterns
    {
        internal static string RockPaperScissors(
            string first,
            string second)
            => (first, second) switch
        {
            ("rock", "paper") => "Rock is covered by Paper. Paper wins!",
            ("rock", "scissors") => "Rock breaks Scissors. Rock wins!",
            ("paper", "rock") => "Paper covers Rock. Paper wins!",
            ("paper", "scissors") => "Paper is cut by Scissors. Scissors wins!",
            ("scissors", "rock") => "Scissors is broken by Rock. Rock wins!",
            ("scissors", "paper") => "Scissors cuts Paper. Scissors wins!",
            (_, _) => "tie"
        };
    }
در اینجا بر روی tuple ای که به صورت (first, second) تعریف شده، یک switch تعریف می‌شود. سپس برای نمونه 6 حالت مختلف برای آن پیش‌بینی شده و یک حالت default که آن نیز توسط discards معرفی می‌شود.


بهبودهای Pattern Matching بر روی اشیاء در C# 8.0

فرض کنید شیء پایه‌ی Shape را تعریف و بر اساس آن دو شیء جدید دایره و مستطیل را ایجاد کرده‌ایم:
    class Shape
    {
        protected internal double Height { get; }
        protected internal double Length { get; }

        protected Shape(double height = 0, double length = 0)
        {
            Height = height;
            Length = length;
        }
    }

    class Circle : Shape
    {
        internal double Radius => Height / 2;
        internal double Diameter => Radius * 2;
        internal double Circumference => 2 * Math.PI * Radius;

        internal Circle(double height = 10, double length = 10)
            : base(height, length) { }
    }

    class Rectangle : Shape
    {
        internal bool IsSquare => Height == Length;

        internal Rectangle(double height = 10, double length = 10)
            : base(height, length) { }
    }
امکان Pattern Matching بر روی اشیاء، در C# 7x نیز وجود دارد؛ اما در C# 8.0 می‌توان از روش جدید بیان عبارت switch آن به صورت زیر نیز در این حالت استفاده کرد:
    static class ObjectPatterns
    {
        internal static string ShapeDetails(this Shape shape)
            => shape switch
        {
            Circle c => $"circle with (C): {c.Circumference}",
            Rectangle s when s.IsSquare => $"L:{s.Length} H:{s.Height}, square",
            Rectangle r => $"L:{r.Length} H:{r.Height}, rectangle",
            _ => "Unknown shape!" // Discard
        };
    }
در اینجا یک شیء، به متد ShapeDetails ارسال شده و سپس جزئیاتی از آن دریافت می‌شود. مطابق روش C# 8.0، در اینجا نیز کار با ذکر نوع و سپس عبارت switch، شروع می‌شود. در ادامه روش بررسی نوع‌ها را در caseهای این سوئیچ ملاحظه می‌کنید. اگر در قسمت case آن Circle c ذکر شد، یعنی نوع shape از نوع دایره بوده و همچنین در همینجا می‌توان متغیر c را بر این اساس تعریف کرد و از آن استفاده نمود و یا می‌توان به کمک واژه‌ی کلیدی when، بر روی این متغیری که جدید تعریف شده، شرطی را نیز بررسی کرد. حالت default آن هم توسط discards معرفی می‌شود.


معرفی Positional Patterns در C# 8.0

در اینجا یک Point را داریم که می‌خواهیم بر اساس آن یک Quadrant را استخراج کنیم:
    class Point
    {
        public int X { get; }

        public int Y { get; }

        public Point(int x, int y) => (X, Y) = (x, y);

        public void Deconstruct(out int x, out int y) => (x, y) = (X, Y);
    }

    enum Quadrant
    {
        Unknown,
        Origin,
        One,
        Two,
        Three,
        Four,
        OnBorder
    }
برای این منظور می‌توان از الگوهای موقعیتی C# 8.0 استفاده کرد:
    static class PositionalPatterns
    {
        internal static Quadrant AsQuadrant(Point point) => point switch
        {
            (0, 0) => Quadrant.Origin,
            var (x, y) when x > 0 && y > 0 => Quadrant.One,
            var (x, y) when x < 0 && y > 0 => Quadrant.Two,
            var (x, y) when x < 0 && y < 0 => Quadrant.Three,
            var (x, y) when x > 0 && y < 0 => Quadrant.Four,
            (_, _) => Quadrant.OnBorder, // Either are 0, but not both
            _ => Quadrant.Unknown
        };
    }
اگر به کلاس Point دقت کنید، یک قسمت Deconstruct هم دارد. به همین جهت در قسمت‌های case این switch، زمانیکه برای مثال (0,0) ذکر می‌شود (که یک tuple literal است)، به صورت خودکار یک شیء Point متناظر را با مقادیر X و Y آن، تشکیل می‌دهد. همچنین روش‌های مختلف مقایسه‌ی مقادیر x و y این tuple را نیز در caseهای مختلف آن مشاهده می‌کنید.
در اینجا اگر دقت کنید و case مخصوص discards معرفی شده‌است. اولی برای حالت‌هایی است که هیچکدام از شرایط پیش از آن را برآورده نمی‌کند، مانند حالت (1,0)، در غیراینصورت سطر بعد از آن بازگشت داده می‌شود.
اشتراک‌ها
مثال هایی از نحوه استفاده از JSON.stringify
JSON.stringify({});                  // '{}'
JSON.stringify(true);                // 'true'
JSON.stringify('foo');               // '"foo"'
JSON.stringify([1, 'false', false]); // '[1,"false",false]'
JSON.stringify({ x: 5 });            // '{"x":5}'

JSON.stringify(new Date(2006, 0, 2, 15, 4, 5)) 
// '"2006-01-02T15:04:05.000Z"'

JSON.stringify({ x: 5, y: 6 });
// '{"x":5,"y":6}' or '{"y":6,"x":5}'
JSON.stringify([new Number(1), new String('false'), new Boolean(false)]);
// '[1,"false",false]'

JSON.stringify({ x: [10, undefined, function(){}, Symbol('')] }); 
// '{"x":[10,null,null,null]}' 
 
// Symbols:
JSON.stringify({ x: undefined, y: Object, z: Symbol('') });
// '{}'
JSON.stringify({ [Symbol('foo')]: 'foo' });
// '{}'
JSON.stringify({ [Symbol.for('foo')]: 'foo' }, [Symbol.for('foo')]);
// '{}'
JSON.stringify({ [Symbol.for('foo')]: 'foo' }, function(k, v) {
  if (typeof k === 'symbol') {
    return 'a symbol';
  }
});
// '{}'

// Non-enumerable properties:
JSON.stringify( Object.create(null, { x: { value: 'x', enumerable: false }, y: { value: 'y', enumerable: true } }) );
// '{"y":"y"}'
مثال هایی از نحوه استفاده از JSON.stringify
مطالب
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 6#
در ادامه پست پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 5# ، در این پست به تشریح کلاس دایره و بیضی می‌پردازیم.

ابتدا به تشریح کلاس ترسیم بیضی (Ellipse) می‌پردازیم.
using System.Drawing;

namespace PWS.ObjectOrientedPaint.Models
{
    /// <summary>
    /// Ellipse Draw
    /// </summary>
    public class Ellipse : Shape
    {
        #region Constructors (2)

        /// <summary>
        /// Initializes a new instance of the <see cref="Ellipse" /> class.
        /// </summary>
        /// <param name="startPoint">The start point.</param>
        /// <param name="endPoint">The end point.</param>
        /// <param name="zIndex">Index of the z.</param>
        /// <param name="foreColor">Color of the fore.</param>
        /// <param name="thickness">The thickness.</param>
        /// <param name="isFill">if set to <c>true</c> [is fill].</param>
        /// <param name="backgroundColor">Color of the background.</param>
        public Ellipse(PointF startPoint, PointF endPoint, int zIndex, Color foreColor, byte thickness, bool isFill, Color backgroundColor)
            : base(startPoint, endPoint, zIndex, foreColor, thickness, isFill, backgroundColor)
        {
            ShapeType = ShapeType.Ellipse;
        }

        /// <summary>
        /// Initializes a new instance of the <see cref="Ellipse" /> class.
        /// </summary>
        public Ellipse()
        {
            ShapeType = ShapeType.Ellipse;
        }

        #endregion Constructors

        #region Methods (1)

        // Public Methods (1) 

        /// <summary>
        /// Draws the specified g.
        /// </summary>
        /// <param name="g">The g.</param>
        public override void Draw(Graphics g)
        {
            if (IsFill)
                g.FillEllipse(BackgroundBrush, StartPoint.X, StartPoint.Y, Width, Height);
            g.DrawEllipse(Pen, StartPoint.X, StartPoint.Y, Width, Height);
            base.Draw(g);
        }

        #endregion Methods
    }
}
این کلاس از شی Shape ارث برده و دارای دو سازنده ساده می‌باشد که نوع شی ترسیمی را مشخص می‌کنند، در متد Draw نیز با توجه به توپر یا توخالی بودن شی ترسیم آن انجام میشود، در این کلاس باید متد HasPointInShape بازنویسی (override) شود، در این متد باید تعیین شود که یک نقطه در داخل بیضی قرار گرفته است یا خیر که متاسفانه فرمول بیضی خاطرم نبود. البته به صورت پیش فرض نقطه با توجه به چهارگوشی که بیضی را احاطه می‌کند سنجیده می‌شود.

کلاس دایره (Circle) از کلاس بالا (Ellipse) ارث بری دارد که کد آن را در زیر مشاهده می‌نمایید.
using System;
using System.Drawing;

namespace PWS.ObjectOrientedPaint.Models
{
    /// <summary>
    /// Circle
    /// </summary>
    public class Circle : Ellipse
    {
#region Constructors (2) 

        /// <summary>
        /// Initializes a new instance of the <see cref="Circle" /> class.
        /// </summary>
        /// <param name="startPoint">The start point.</param>
        /// <param name="endPoint">The end point.</param>
        /// <param name="zIndex">Index of the z.</param>
        /// <param name="foreColor">Color of the fore.</param>
        /// <param name="thickness">The thickness.</param>
        /// <param name="isFill">if set to <c>true</c> [is fill].</param>
        /// <param name="backgroundColor">Color of the background.</param>
        public Circle(PointF startPoint, PointF endPoint, int zIndex, Color foreColor, byte thickness, bool isFill, Color backgroundColor)
        {
            float x = 0, y = 0;
            float width = Math.Abs(endPoint.X - startPoint.X);
            float height = Math.Abs(endPoint.Y - startPoint.Y);
            if (startPoint.X <= endPoint.X && startPoint.Y <= endPoint.Y)
            {
                x = startPoint.X;
                y = startPoint.Y;
            }
            else if (startPoint.X >= endPoint.X && startPoint.Y >= endPoint.Y)
            {
                x = endPoint.X;
                y = endPoint.Y;
            }
            else if (startPoint.X >= endPoint.X && startPoint.Y <= endPoint.Y)
            {
                x = endPoint.X;
                y = startPoint.Y;
            }
            else if (startPoint.X <= endPoint.X && startPoint.Y >= endPoint.Y)
            {
                x = startPoint.X;
                y = endPoint.Y;
            }
            StartPoint = new PointF(x, y);
            var side = Math.Max(width, height);
            EndPoint = new PointF(x + side, y + side);
            ShapeType = ShapeType.Circle;
            Zindex = zIndex;
            ForeColor = foreColor;
            Thickness = thickness;
            BackgroundColor = backgroundColor;
            IsFill = isFill;
        }

        /// <summary>
        /// Initializes a new instance of the <see cref="Circle" /> class.
        /// </summary>
        public Circle()
        {
            ShapeType = ShapeType.Circle;
        }

#endregion Constructors 

#region Methods (1) 

// Public Methods (1) 

        /// <summary>
        /// Points the in sahpe.
        /// </summary>
        /// <param name="point">The point.</param>
        /// <param name="tolerance">The tolerance.</param>
        /// <returns>
        ///   <c>true</c> if [has point in sahpe] [the specified point]; otherwise, <c>false</c>.
        /// </returns>
        public override bool HasPointInSahpe(PointF point, byte tolerance = 5)
        {
            float width = Math.Abs(EndPoint.X+tolerance - StartPoint.X-tolerance);
            float height = Math.Abs(EndPoint.Y+tolerance - StartPoint.Y-tolerance);
            float diagonal = Math.Max(height, width);
            float raduis = diagonal / 2;
            float dx = Math.Abs(point.X - (X + Width / 2));
            float dy = Math.Abs(point.Y - (Y + height / 2));
            return (dx + dy <= raduis);
        }

#endregion Methods 
    }
}
این کلاس شامل دو سازنده می‌باشد، که در سازنده اول با توجه به نقاط ایتدا و انتهای ترسیم شکل مقدار طول و عرض مستطیل احاطه کننده دایره محاسبه شده و باتوجه به آنها بزرگترین ضلع به عنوان قطر دایره در نظر گرفته می‌شود و EndPoint شکل مورد نظر تعیین می‌شود.

در متد HasPointInShape  با استفاده از فرمول دایره تعیین می‌شود که آیا نقطه پارامتر ورودی متد در داخل دایره واقع شده است یا خیر (جهت انتخاب شکل برای جابجایی یا تغییر اندازه).
در پست‌های بعد به پیاده سازی اینترفیس نرم افزار خواهیم پرداخت.

موفق و موید باشید

در ادامه مطالب قبل:
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 1# 
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 2# 
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 3#
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 4# 
پیاده سازی پروژه نقاشی (Paint) به صورت شی گرا 5# 
مطالب
روش محاسبه‌ی لحظه‌ی سال تحویل
سال قبل نتیجه‌ی جستجوی من برای یافتن فرمول محاسبه‌ی زمان سال تحویل، برای ارسال ایمیل‌های خودکار تبریک آن، در سایت‌های ایرانی حاصلی نداشت. اما واژه‌ی انگلیسی Equinox سرآغازی شد برای یافتن این الگوریتم.
نام علمی لحظه‌ی سال تحویل، Vernal Equinox است. Equinox به معنای نقطه‌ای است که یک فصل، به فصلی دیگر تبدیل می‌شود:


Equinox واژه‌ای است لاتین به معنای «شب‌های مساوی» و به این نکته اشاره دارد که در Equinox، طول شب و روز یکی می‌شوند. هر سال دارای دو Equinox است: vernal equinox و autumnal equinox (بهاری و پائیزی). البته باید درنظر داشت که Equinox بهاری در نیم کره‌ی شمالی بیشتر معنا پیدا می‌کند؛ زیرا در نیم کره‌ی جنوبی در همین زمان، پائیز شروع می‌شود.
بنابراین می‌توان enum زیر را برای تعریف این چهار ثابت رخدادهای خورشیدی تعریف کرد:
public enum SunEvent
{
    /// <summary>
    /// march equinox
    /// </summary>
    VernalEquinox,
 
    /// <summary>
    /// june solstice
    /// </summary>
    SummerSolstice,
 
    /// <summary>
    /// september equinox
    /// </summary>
    AutumnalEquinox,
 
    /// <summary>
    /// december solstice
    /// </summary>
    WinterSolstice
}

در ادامه برای محاسبه‌ی زمان equinox از فصل 27 کتاب Astronomical Algorithms کمک گرفته شده و تمام اعداد و ارقام و جداولی را که ملاحظه می‌کنید از این کتاب استخراج شده‌اند.
/// <summary>
/// Based on Jean Meeus book _Astronomical Algorithms_
/// </summary>
public static class EquinoxCalculator
{
    /// <summary>
    /// Degrees to Radians conversion factor.
    /// </summary>
    public static readonly double Deg2Radian = Math.PI / 180.0;
 
    public static bool ApproxEquals(double d1, double d2)
    {
        const double epsilon = 2.2204460492503131E-16;
        if (d1 == d2)
            return true;
        var tolerance = ((Math.Abs(d1) + Math.Abs(d2)) + 10.0) * epsilon;
        var difference = d1 - d2;
        return (-tolerance < difference && tolerance > difference);
    }
 
    /// <summary>
    /// Calculates time of the Equinox and Solstice.
    /// </summary>
    /// <param name="year">Year to calculate for.</param>
    /// <param name="sunEvent">Event to calculate.</param>
    /// <returns>Date and time event occurs as a fractional Julian Day.</returns>
    public static DateTime GetSunEventUtc(this int year, SunEvent sunEvent)
    {
        double y;
        double julianEphemerisDay;
 
        if (year >= 1000)
        {
            y = (Math.Floor((double)year) - 2000) / 1000;
 
            switch (sunEvent)
            {
                case SunEvent.VernalEquinox:
                    julianEphemerisDay = 2451623.80984 + 365242.37404 * y + 0.05169 * (y * y) - 0.00411 * (y * y * y) - 0.00057 * (y * y * y * y);
                    break;
                case SunEvent.SummerSolstice:
                    julianEphemerisDay = 2451716.56767 + 365241.62603 * y + 0.00325 * (y * y) - 0.00888 * (y * y * y) - 0.00030 * (y * y * y * y);
                    break;
                case SunEvent.AutumnalEquinox:
                    julianEphemerisDay = 2451810.21715 + 365242.01767 * y + 0.11575 * (y * y) - 0.00337 * (y * y * y) - 0.00078 * (y * y * y * y);
                    break;
                case SunEvent.WinterSolstice:
                    julianEphemerisDay = 2451900.05952 + 365242.74049 * y + 0.06223 * (y * y) - 0.00823 * (y * y * y) - 0.00032 * (y * y * y * y);
                    break;
                default:
                    throw new NotSupportedException();
            }
        }
        else
        {
            y = Math.Floor((double)year) / 1000;
 
            switch (sunEvent)
            {
                case SunEvent.VernalEquinox:
                    julianEphemerisDay = 1721139.29189 + 365242.13740 * y + 0.06134 * (y * y) - 0.00111 * (y * y * y) - 0.00071 * (y * y * y * y);
                    break;
                case SunEvent.SummerSolstice:
                    julianEphemerisDay = 1721233.25401 + 365241.72562 * y + 0.05323 * (y * y) - 0.00907 * (y * y * y) - 0.00025 * (y * y * y * y);
                    break;
                case SunEvent.AutumnalEquinox:
                    julianEphemerisDay = 1721325.70455 + 365242.49558 * y + 0.11677 * (y * y) - 0.00297 * (y * y * y) - 0.00074 * (y * y * y * y);
                    break;
                case SunEvent.WinterSolstice:
                    julianEphemerisDay = 1721414.39987 + 365242.88257 * y + 0.00769 * (y * y) - 0.00933 * (y * y * y) - 0.00006 * (y * y * y * y);
                    break;
                default:
                    throw new NotSupportedException();
            }
        }
 
        var julianCenturies = (julianEphemerisDay - 2451545.0) / 36525;
 
        var w = 35999.373 * julianCenturies - 2.47;
 
        var lambda = 1 + 0.0334 * Math.Cos(w * Deg2Radian) + 0.0007 * Math.Cos(2 * w * Deg2Radian);
 
        var sumOfPeriodicTerms = getSumOfPeriodicTerms(julianCenturies);
 
        return JulianToUtcDate(julianEphemerisDay + (0.00001 * sumOfPeriodicTerms / lambda));
    }
 
    /// <summary>
    /// Converts a fractional Julian Day to a .NET DateTime.
    /// </summary>
    /// <param name="julianDay">Fractional Julian Day to convert.</param>
    /// <returns>Date and Time in .NET DateTime format.</returns>
    public static DateTime JulianToUtcDate(double julianDay)
    {
        double a;
        int month, year;
 
        var j = julianDay + 0.5;
        var z = Math.Floor(j);
        var f = j - z;
 
        if (z >= 2299161)
        {
            var alpha = Math.Floor((z - 1867216.25) / 36524.25);
            a = z + 1 + alpha - Math.Floor(alpha / 4);
        }
        else
            a = z;
 
        var b = a + 1524;
 
        var c = Math.Floor((b - 122.1) / 365.25);
 
        var d = Math.Floor(365.25 * c);
 
        var e = Math.Floor((b - d) / 30.6001);
 
        var day = b - d - Math.Floor(30.6001 * e) + f;
 
        if (e < 14)
            month = (int)(e - 1.0);
        else if (ApproxEquals(e, 14) || ApproxEquals(e, 15))
            month = (int)(e - 13.0);
        else
            throw new NotSupportedException("Illegal month calculated.");
 
        if (month > 2)
            year = (int)(c - 4716.0);
        else if (month == 1 || month == 2)
            year = (int)(c - 4715.0);
        else
            throw new NotSupportedException("Illegal year calculated.");
 
        var span = TimeSpan.FromDays(day);
 
        return new DateTime(year, month, (int)day, span.Hours, span.Minutes,
            span.Seconds, span.Milliseconds, new GregorianCalendar(), DateTimeKind.Utc);
    }
 
    /// <summary>
    /// These values are from Table 27.C
    /// </summary>
    private static double getSumOfPeriodicTerms(double julianCenturies)
    {
        return 485 * Math.Cos(Deg2Radian * 324.96 + Deg2Radian * (1934.136 * julianCenturies))
               + 203 * Math.Cos(Deg2Radian * 337.23 + Deg2Radian * (32964.467 * julianCenturies))
               + 199 * Math.Cos(Deg2Radian * 342.08 + Deg2Radian * (20.186 * julianCenturies))
               + 182 * Math.Cos(Deg2Radian * 27.85 + Deg2Radian * (445267.112 * julianCenturies))
               + 156 * Math.Cos(Deg2Radian * 73.14 + Deg2Radian * (45036.886 * julianCenturies))
               + 136 * Math.Cos(Deg2Radian * 171.52 + Deg2Radian * (22518.443 * julianCenturies))
               + 77 * Math.Cos(Deg2Radian * 222.54 + Deg2Radian * (65928.934 * julianCenturies))
               + 74 * Math.Cos(Deg2Radian * 296.72 + Deg2Radian * (3034.906 * julianCenturies))
               + 70 * Math.Cos(Deg2Radian * 243.58 + Deg2Radian * (9037.513 * julianCenturies))
               + 58 * Math.Cos(Deg2Radian * 119.81 + Deg2Radian * (33718.147 * julianCenturies))
               + 52 * Math.Cos(Deg2Radian * 297.17 + Deg2Radian * (150.678 * julianCenturies))
               + 50 * Math.Cos(Deg2Radian * 21.02 + Deg2Radian * (2281.226 * julianCenturies))
               + 45 * Math.Cos(Deg2Radian * 247.54 + Deg2Radian * (29929.562 * julianCenturies))
               + 44 * Math.Cos(Deg2Radian * 325.15 + Deg2Radian * (31555.956 * julianCenturies))
               + 29 * Math.Cos(Deg2Radian * 60.93 + Deg2Radian * (4443.417 * julianCenturies))
               + 28 * Math.Cos(Deg2Radian * 155.12 + Deg2Radian * (67555.328 * julianCenturies))
               + 17 * Math.Cos(Deg2Radian * 288.79 + Deg2Radian * (4562.452 * julianCenturies))
               + 16 * Math.Cos(Deg2Radian * 198.04 + Deg2Radian * (62894.029 * julianCenturies))
               + 14 * Math.Cos(Deg2Radian * 199.76 + Deg2Radian * (31436.921 * julianCenturies))
               + 12 * Math.Cos(Deg2Radian * 95.39 + Deg2Radian * (14577.848 * julianCenturies))
               + 12 * Math.Cos(Deg2Radian * 287.11 + Deg2Radian * (31931.756 * julianCenturies))
               + 12 * Math.Cos(Deg2Radian * 320.81 + Deg2Radian * (34777.259 * julianCenturies))
               + 9 * Math.Cos(Deg2Radian * 227.73 + Deg2Radian * (1222.114 * julianCenturies))
               + 8 * Math.Cos(Deg2Radian * 15.45 + Deg2Radian * (16859.074 * julianCenturies));
    }
}
خروجی‌های زمانی ستاره شناسی، عموما بر اساس فرمت Julian Date است که آغاز آن  4713BCE January 1, 12 hours GMT است. به همین جهت در انتهای این مباحث، تبدیل Julian Date به DateTime دات نت را نیز ملاحظه می‌کنید. همچنین باید دقت داشت که خروجی نهایی بر اساس UTC است و برای زمان ایران، باید 3.5 ساعت به آن اضافه شود.

خروجی این الگوریتم را برای سال‌های 2014 تا 2022 به صورت ذیل مشاهده می‌کنید:
2014 -> 1392/12/29 20:28:08
2015 -> 1394/01/01 02:16:29
2016 -> 1395/01/01 08:01:21
2017 -> 1395/12/30 14:00:00
2018 -> 1396/12/29 19:46:10
2019 -> 1398/01/01 01:29:29
2020 -> 1399/01/01 07:21:03
2021 -> 1399/12/30 13:08:41
2022 -> 1400/12/29 19:04:37
برای نمونه زمان محاسبه شده‌ی 1394/01/01 02:16:29 با زمان رسمی اعلام شده‌ی ساعت 2 و 15 دقیقه و 10 ثانیه روز شنبه 1 فروردین 1394 و یا برای سال 93 زمان محاسبه شده‌ی 1392/12/29 20:28:08 با زمان رسمی ساعت ۲۰ و ۲۷ دقیقه و ۷ ثانیه پنجشنبه ۲۹ اسفند ۱۳۹۲، تقریبا برابری می‌کند.

کدهای کامل این پروژه را از اینجا می‌توانید دریافت کنید
 Equinox.zip