مطالب
Design Pattern: Factory

الگوهای طراحی، سندها و راه حلهای از پیش تعریف شده و تست شده‌ای برای مسائل و مشکلات روزمره‌ی برنامه نویسی می‌باشند که هر روزه ما را درگیر خودشان می‌کنند. هر چقدر مقیاس پروژه وسیعتر و تعداد کلاسها و اشیاء بزرگتر باشند، درگیری برنامه نویس و چالش برای مرتب سازی و خوانایی برنامه و همچنین بالا بردن کارآیی و امنیت افزون‌تر می‌شود. از همین رو استفاده از ساختارهایی تست شده برای سناریوهای یکسان، امری واجب تلقی می‌شود.

الگوهای طراحی از لحاظ سناریو، به سه گروه عمده تقسیم می‌شوند:

1- تکوینی: هر چقدر تعداد کلاسها در یک پروژه زیاد شود، به مراتب تعداد اشیاء ساخته شده از آن نیز افزوده شده و پیچیدگی و درگیری نیز افزایش می‌یابد. راه حل‌هایی از این دست، تمرکز بر روی مرکزیت دادن به کلاسها با استفاده از رابط‌ها و کپسوله نمودن (پنهان سازی) اشیاء دارد. 

2- ساختاری: گاهی در پروژه‌ها پیش می‌آید که می‌خواهیم ارتباط بین دو کلاس را تغییر دهیم. از این رو امکان از هم پاشی اجزایِ دیگر پروژه پیش می‌آید. راه حلهای ساختاری، سعی در حفظ انسجام پروژه در برابر این دست از تغییرات را دارند.

3- رفتاری: گاهی بنا به مصلحت و نیاز مشتری، رفتار یک کلاس می‌بایستی تغییر نماید. مثلا چنانچه کلاسی برای ارائه صورتحساب داریم و در آن میزان مالیات 30% لحاظ شده است، حال این درصد باید به عددی دیگر تغییر کند و یا پایگاه داده به جای مشاهده‌ی تعدادِ معدودی گره از درخت، حال می‌بایست تمام گره‌ها را ارائه نماید.


الگوی فکتوری:

الگوی فکتوری در دستهء اول قرار می‌گیرد. من در اینجا به نمونه‌ای از مشکلاتی که این الگو حل می‌نماید، اشاره می‌کنم:

فرض کنید یک شرکت بزرگ قصد دارد تا جزییات کامل خرید هر مشتری را با زدن دکمه چاپ ارسال نماید. چنین شرکت بزرگی بر اساس سیاستهای داخلی، بر حسب میزان خرید، مشتریان را به چند گروه مشتری معمولی و مشتری ممتاز تقسیم می‌نماید. در نتیجه نمایش جزییات برای آنها با احتساب میزان تخفیف و به عنوان مثال تعداد فیلدهایی که برای آنها در نظر گرفته شده است، تفاوت دارد. بنابراین برای هر نوع مشتری یک کلاس وجود دارد.


یک راه این است که با کلیک روی دکمه‌ی چاپ، نوع مشتری تشخیص داده شود و به ازای نوع مشتری، یک شیء از کلاس مشخص شده برای همان نوع ساخته شود.

 

 

            // Get Customer Type from Customer click on Print Button
            int customerType = 0;

            // Create Object without instantiation
            object obj;


            //Instantiate obj according to customer Type
            if (customerType == 1)
            {
                obj = new Customer1();
            }
            else if (customerType == 2)
            {
                obj = new Customer2();
            }
            // Problem:
            //          1: Scattered New Keywords
            //          2: Client side is aware of Customer Type

 همانگونه که مشاهده می‌نمایید در این سبک کدنویسی غیرحرفه‌ای، مشکلاتی مشهود است که قابل اغماض نیستند. در ابتدا سمت کلاینت دسترسی مستقیم به کلاسها دارد و همانگونه که در شکل بالا قابل مشاهده است کلاینت مستقیما به کلاس وصل است. مشکل دوم عدم پنهان سازی کلاس از دید مشتری است.

راه حل: این مشکل با استفاده از الگوی فکتوری قابل حل است. با استناد به الگوی فکتوری، کلاینت تنها به کلاس فکتوری و یک اینترفیس دسترسی دارد و کلاسهای فکتوری و اینترفیس، حق دسترسی به کلاسهای اصلی برنامه را دارند.

گام نخست: در ابتدا یک class library  به نام Interface ساخته و در آن یک کلاس با نام ICustomer  می سازیم   که متد Report() را معرفی می‌نماید.

  //Interface

namespace Interface
{
    public interface ICustomer
    {
        void Report();
    }
}

گام دوم: یک class library  به نام MainClass  ساخته و با Add Reference کلاس Interface را اضافه نموده، در آن دو کلاس با نام Customer1, Customer2 می‌سازیم و using Interface را Import می‌نماییم. هر دو کلاس از ICustomer  ارث می‌برند و  سپس متد Report() را در هر دو کلاس Implement می‌نماییم.

// Customer1
using System;
using Interface;

namespace MainClass
{
    public class Customer1 : ICustomer
    {
        public void Report()
        {           
            Console.WriteLine("این گزارش مخصوص مشتری نوع اول است");           
        }
    }
}

//Customer2
using System;
using Interface;

namespace MainClass
{
   public class Customer2 : ICustomer
    {
        public void Report()
        {           
            Console.WriteLine("این گزارش مخصوص مشتری نوع دوم است");           
        }
    }
}

گام سوم: یک class library  به نام FactoryClass  ساخته و با Add Reference کلاس Interface, MainClass را اضافه نموده، در آن یک کلاس با نام clsFactory  می سازیم و using Interface, using MainClass را Import می‌نماییم. پس از آن یک متد با نام getCustomerType ساخته که ورودی آن نوع مشتری از نوع int است و خروجی آن از نوع Interface-ICustomer و بر اساس کد نوع مشتری object را از کلاس Customer1 و یا Customer2 می‌سازیم و آن را return می نماییم.

//Factory
using System;
using Interface;
using MainClass;

namespace FactoryClass
{
    public class clsFactory
    {
        static public ICustomer getCustomerType(int intCustomerType)
        {
            ICustomer objCust;
            if (intCustomerType == 1)
            {
                objCust = new Customer1();
            }
            else if (intCustomerType == 2)
            {
                objCust = new Customer2();
            }
            else
            {
                return null;
            }
            return objCust;
        }
    }
}

گام چهارم (آخر): در قسمت UI   Client، کد نوع مشتری را از کاربر دریافت کرده و با Add Reference کلاس Interface, FactoryClass را اضافه نموده (دقت نمایید هیچ دسترسی به کلاس‌های اصلی وجود ندارد)، و using Interface,  using FactoryClass را Import می‌نماییم. از clsFactory تابع  getCustomerType را فراخوانی نموده (به آن کد نوع مشتری را پاس می‌دهیم) و خروجی آن را که از نوع اینترفیس است به یک object از نوع ICustomer  نسبت می‌دهیم. سپس از این object  متد Report را فراخوانی می‌نماییم. همانطور که از شکل و کدها مشخص است، هیچ رابطه ای بین UI(Client) و کلاسهای اصلی برقرار نیست.

//UI (Client)
using System;
using FactoryClass;
using Interface;

namespace DesignPattern
{
    class Program
    {
        static void Main(string[] args)
        {
            int intCustomerType = 0;
            ICustomer objCust;
            Console.WriteLine("نوع مشتری را وارد نمایید");           
            intCustomerType = Convert.ToInt16(Console.ReadLine());
            objCust = clsFactory.getCustomerType(intCustomerType);
            objCust.Report();
            Console.ReadLine();
        }
    }
}

مطالب
شروع به کار با DNTFrameworkCore - قسمت 3 - پیاده‌سازی سرویس‌های موجودیت‌ها
در قسمت قبل سناریوهای مختلف مرتبط با طراحی موجودیت‌های سیستم را بررسی کردیم. در این قسمت به طراحی DTO‌های متناظر با موجودیت‌ها به همراه اعتبارسنج‌های مرتبط و در نهایت به پیاده سازی سرویس‌های CRUD آنها خواهیم پرداخت. 
قراردادها، مفاهیم و نکات اولیه
  1. برخلاف بسیاری از طراحی‌های موجود، بر فراز هر موجودیت اصلی (منظور AggregateRoot) باید یک DTO که از این پس با عنوان Model از آنها یاد خواهیم کرد، تعریف شود. 
  2. هیچ تراکنشی برای موجودیت‌های فرعی یا همان Detailها نخواهیم داشت. این موجودیت‌ها در تراکنش موجودیت اصلی مرتبط به آن مدیریت خواهند شد.
  3. هر Commandای که قرار است مرتبط با یک موجودیت اصلی در سیستم انجام پذیرد، باید از منطق تجاری آن موجودیت عبور کند و نباید با دور زدن منطق تجاری، از طرق مختلف تغییراتی بر آن موجودیت اعمال شود. (موضوع مهمی که در ادامه مطلب جاری تشریح خواهد شد)
  4. ویوهای مختلفی از یک موجودیت می‌توان انتظار داشت که ویو پیش‌فرض آن در CrudService تدارک دیده شده است. برای سایر موارد نیاز است در سرویس مرتبط، متدهای Read مختلفی را پیاده‌سازی کنید.
  5. با اعمال اصل CQS، متدهای ثبت و ویرایش در کلاس سرویس پایه CRUD، بعد از انجام عملیات مربوطه، Id و RowVersion مدل ورودی و هچنین Id و TrackingState موجودیت‌های فرعی وابسته، مقداردهی خواهند شد و نیاز به انجام یک Query دیگر و بازگشت آن به عنوان خروجی متدها نبوده است. به همین دلیل خروجی این متدها صرفا Result ای می‌باشد که نشان از امکان Failure بودن انجام آنها می‌باشد که با اصل مذکور در تضاد نمی‌باشد.
  6. ورودی متدهای Read شما که در اکثر موارد نیاز به مهیا کردن خروجی صفحه‌بندی شده دارند، باید از نوع PagedQueryModel و یا اگر همچنین نیاز به جستجوی پویا براساس فیلدهایی موجود در ReadModel مرتبط دارید، باید از نوع FilteredPagedQueryModel باشد. متدهای الحاقی برای اعمال خودکار این صفحه‌‌بندی و جستجوی پویا در نظر گرفته شده است. همچنین خروجی آنها در اکثر موارد از نوع IPagedQueryResult خواهد بود. اگر نیاز است تا جستجوی خاصی داشته باشید که خصوصیتی متناظر با آن فیلد در مدل Read وجود ندارد، لازم است تا از این QueryModel‌های مطرح شده، ارث‌بری کرده و خصوصیت اضافی مدنظر خود را تعریف کنید. بدیهی است که اعمال جستجوی این موارد خاص به عهده توسعه دهنده می‌باشد.
  7. عملیات ثبت، ویرایش و حذف، برای کار بر روی لیستی از وهله‌های Model، طراحی شده‌اند. این موضوع در بسیاری از دومین‌ها قابلیت مورد توجهی می‌باشد. 
  8. رخداد متناظر با عملیات CUD مرتبط با هر موجودیت اصلی، به عنوان یکسری نقاط قابل گسترش (Extensibility Point) در اختیار سایر بخش‌های سیستم می‌باشد. این رخدادها درون تراکنش جاری Raise خواهند شد؛ از این جهت امکان اعمال یکسری Rule جدید از سمت سایر موءلفه‌های سیستم موجود می‌باشد.
  9. برخلاف بسیاری از طراحی‌های موجود، قصد ایجاد لایه انتزاعی برفراز EF Core  به منظور رسیدن به Persistence Ignorance را ندارم. بنابراین امروز بسته DNTFrameworkCore.EntityFramework آن آماده می‌باشد. اگر توسعه دهنده‌ای قصد یکپارچه کردن این زیرساخت را با سایر ORMها یا Micro ORMها داشته باشد، می‌تواند Pull Request خود را ارسال کند.
  10. خبر خوب اینکه هیچ وابستگی به AutoMapper به منظور نگاشت مابین موجودیت‌ها و مدل‌های متناظر آنها، در این زیرساخت وجود ندارد. با پیاده سازی متدهای MapToModel و MapToEntity می‌توانید از کتابخانه Mapper مورد نظر خودتان استفاده کنید؛ یا به صورت دستی این کار را انجام دهید. بعد از چند سال استفاده از AutoMapper، این روزها خیلی اعتقادی به استفاده از آن ندارم.
  11. هیچ وابستگی به FluentValidation به منظور اعتبارسنجی ورودی متدها یا پیاده‌سازی قواعد تجاری، در این زیرساخت وجود ندارد. شما امکان استفاده از Attributeهای اعتبارسنجی توکار، پیاده سازی IValidatableObject توسط مدل یا در موارد خاص به منظور پیاده سازی قواعد تجاری پیچیده، پیاده سازی IModelValidator را دارید. با این حال برای یکپارچگی با این کتابخانه محبوب، می‌توانید بسته نیوگت DNTFrameworkCore.FluentValidation را نصب کرده و استفاده کنید.
  12. با اعمال الگوی Template Method در پیاده سازی سرویس CRUD پایه، از طریق تعدادی متد با پیشوندهای Before و After متناظر با عملیات CUD می‌توانید در فرآیند انجام آنها نیز دخالت داشته باشید؛ به عنوان مثال: BeforeEditAsync یا AfterCreateAsync
  13. باتوجه به اینکه در فرآیند انجام متدهای CUD، یکسری Event هم Raise خواهند شد و همچنین در خیلی از موراد شاید نیاز به فراخوانی SaveChange مرتبط با UnitOfWork جاری باشد، لذا مطمئن‌ترین راه حل برای این قضیه و حفظ ثبات سیستم، همان استفاده از تراکنش محیطی می‌باشد. از این جهت متدهای مذکور با TransactionAttribute نیز تزئین شده‌اند که برای فعال سازی این مکانیزم نیاز است تا TransactionInterceptor مربوطه را به سیستم معرفی کنید.
  14. ValidationInterceptor موجود در زیرساخت، در صورتیکه خروجی متد از نوع Result باشد، خطاهای ممکن را در قالب یک شی Result بازگشت خواهد داد؛ در غیر این صورت یک استثنای ValidationException پرتاب می‌شود که این مورد هم توسط GlobalExceptionFilter مدیریت خواهند شد و در قالب یک BadRequest به کلاینت ارسال خواهد شد.
  15. در سناریوهای Master-Detail، قرارداد این است که Detailها به همراه Master متناظر واکشی خواهند شد و در زمان ثبت و یا ویرایش هم همه آنها به همراه Master متناظر خود به سرور ارسال خواهند شد. 
نکته مهم:  همانطور که اشاره شد، در سناریوهای Master-Detail باید تمامی Detailها به سمت سرور ارسال شوند. در این صورت سناریویی را در نظر بگیرید که قرار است کاربر در front-office سیستم امکان حذف یک قلم از اقلام فاکتور را داشته باشد؛ این درحالی است که در back-office و در منطق تجاری اصلی، ما جایی برای حذف یک تک قلم ندیده‌ایم و کلا منطق و قواعد تجاری حاکم بر فاکتور را زیر سوال می‌برد. چرا که ممکن است یکسری قواعد تجاری متناسب با دومین، بر روی لیست اقلام یک فاکتور در زمان ذخیره سازی وجود داشته باشند که با حذف یک تک قلم از یک مسیر فرعی، کل فاکتور را در حالت نامعتبری برای ذخیره سازی‌های بعدی قرار دهد. در این موارد باید API شما یک DTO سفارشی را دریافت کند که شامل شناسه قلم فاکتور و شناسه فاکتور می‌باشد. سپس با استفاده از شناسه فاکتور و سرویس متناظر، آن را واکشی کرده و از لیست قلم‌های InvoiceModel، آن قلم را با TrackingState.Deleted علامت‌گذاری کنید. همچنین باید توجه داشته باشید که برروی فیلدهای موجود در جداول مرتبط با موجودیت‌های Detail، محدودیت‌های دیتابیسی از جمله Unique Constraint و ... را اعمال نکنید؛ مگر اینکه میدانید و دقیقا مطمئن باشید عملیات حذف اقلام، قبل از عملیات ثبت اقلام جدید رخ می‎دهد (این موضوع نیاز به توضیح و شبیه سازی شرایط خاص آن را دارد که در صورت نیاز می‌توان در مطلب جدایی به آن پرداخت).
‌پیاده سازی و بررسی تعدادی سرویس فرضی
برای شروع لازم است بسته‌های نیوگت زیر را نصب کنید:
PM> Install-Package DNTFrameworkCore -Version 1.0.0
PM> Install-Package DNTFrameworkCore.EntityFramework -Version 1.0.0

مثال اول: پیاده‌سازی سرویس یک موجودیت ساده بدون نیاز به ReadModel 
گام اول: طراحی Model متناظر
[LocalizationResource(Name = "SharedResource", Location = "DNTFrameworkCore.TestAPI")]
public class BlogModel : MasterModel<int>, IValidatableObject
{
    public string Title { get; set; }

    [MaxLength(50, ErrorMessage = "Maximum length is 50")]
    public string Url { get; set; }

    public IEnumerable<ValidationResult> Validate(ValidationContext validationContext)
    {
        if (Title == "BlogTitle")
        {
            yield return new ValidationResult("IValidatableObject Message", new[] {nameof(Title)});
        }
    }
}
مدل متناظر با موجودیت‌های اصلی باید از کلاس جنریک MasterModel ارث‌بری کرده باشد. همانطور که ملاحظه می‌کنید، برای نشان دادن مکانیزم اعتبارسنجی، از DataAnnotationها و IValidatableObject استفاده شده‌است. LocalizationResource برای مشخص کردن نام و محل فایل Resource متناظر برای خواندن پیغام‌های اعتبارسنجی استفاده می‌شود. این مورد برای سناریوهای ماژولار و کامپوننت محور بیشتر می‌تواند مدنظر باشد. 
گام دوم: پیاده‌سازی اعتبارسنج مستقل
در صورت نیاز به اعتبارسنجی پیچیده برای مدل متناظر، می‌توانید با استفاده از دو روش زیر به این هدف برسید:
1- استفاده از کتابخانه DNTFrameworkCore.FluentValidation
public class BlogValidator : FluentModelValidator<BlogModel>
{
    public BlogValidator(IMessageLocalizer localizer)
    {
        RuleFor(b => b.Title).NotEmpty()
            .WithMessage(localizer["Blog.Fields.Title.Required"]);
    }
}
2- پیاده‌سازی IModelValidator یا ارث‌بری از کلاس ModelValidator پایه
public class BlogValidator : ModelValidator<BlogkModel>
{
    public override IEnumerable<ModelValidationResult> Validate(BlogModel model)
    {
        yield return new ModelValidationResult(nameof(BlogkModel.Title), "Validation from IModelValidator");
    }
}

گام سوم: پیاده‌سازی سرویس متناظر
public interface IBlogService : ICrudService<int, BlogModel>
{
}
پیاده سازی واسط بالا
public class BlogService : CrudService<Blog, int, BlogModel>, IBlogService
{
    public BlogService(CrudServiceDependency dependency) : base(dependency)
    {
    }

    protected override IQueryable<BlogModel> BuildReadQuery(FilteredPagedQueryModel model)
    {
        return EntitySet.AsNoTracking().Select(b => new BlogModel
            {Id = b.Id, RowVersion = b.RowVersion, Url = b.Url, Title = b.Title});
    }

    protected override Blog MapToEntity(BlogModel model)
    {
        return new Blog
        {
            Id = model.Id,
            RowVersion = model.RowVersion,
            Url = model.Url,
            Title = model.Title,
            NormalizedTitle = model.Title.ToUpperInvariant() //todo: normalize based on your requirement 
        };
    }

    protected override BlogModel MapToModel(Blog entity)
    {
        return new BlogModel
        {
            Id = entity.Id,
            RowVersion = entity.RowVersion,
            Url = entity.Url,
            Title = entity.Title
        };
    }
}
برای این چنین موجودیت‌هایی، بازنویسی همین 3 متد کفایت می‌کند؛ دو متد MapToModel و MapToEntity برای نگاشت مابین مدل و موجودیت مورد نظر و متد BuildReadQuery نیز برای تعیین نحوه ساخت کوئری ReadPagedListAsync پیش‌فرض موجود در CrudService به عنوان متد Read پیش‌فرض این موجودیت. باکمترین مقدار کدنویسی و با کیفیت قابل قبول، عملیات CRUD یک موجودیت ساده، تکمیل شد. 
مثال دوم: پیاده سازی سرویس یک موجودیت ساده با ReadModel و  FilteredPagedQueryModel متمایز
گام اول: طراحی Model متناظر
[LocalizationResource(Name = "SharedResource", Location = "DNTFrameworkCore.TestAPI")]
public class TaskModel : MasterModel<int>, IValidatableObject
{
    public string Title { get; set; }

    [MaxLength(50, ErrorMessage = "Validation from DataAnnotations")]
    public string Number { get; set; }

    public string Description { get; set; }
    public TaskState State { get; set; } = TaskState.Todo;

    public IEnumerable<ValidationResult> Validate(ValidationContext validationContext)
    {
        if (Title == "IValidatableObject")
        {
            yield return new ValidationResult("Validation from IValidatableObject");
        }
    }
}
public class TaskReadModel : MasterModel<int>
{
    public string Title { get; set; }
    public string Number { get; set; }
    public TaskState State { get; set; } = TaskState.Todo;
    public DateTimeOffset CreationDateTime { get; set; }
    public string CreatorUserDisplayName { get; set; }
}
به عنوان مثال خصوصیاتی برای نمایش داریم که در زمان ثبت و ویرایش، انتظار دریافت آنها را از کاربر نیز نداریم. 
گام دوم: پیاده‌سازی اعتبارسنج  مستقل 
public class TaskValidator : ModelValidator<TaskModel>
{
    public override IEnumerable<ModelValidationResult> Validate(TaskModel model)
    {
        if (!Enum.IsDefined(typeof(TaskState), model.State))
        {
            yield return new ModelValidationResult(nameof(TaskModel.State), "Validation from IModelValidator");
        }
    }
}
 گام سوم: پیاده‌سازی سرویس متناظر
public interface ITaskService : ICrudService<int, TaskReadModel, TaskModel, TaskFilteredPagedQueryModel>
{
}
همانطور که ملاحظه می‌کنید، از ICrudService استفاده شده است که امکان تعیین نوع پارامتر جنریک TReadModel و TFilteredPagedQueryModel را هم دارد.
مدل جستجو و صفحه‌بندی سفارشی 
public class TaskFilteredPagedQueryModel : FilteredPagedQueryModel
{
    public TaskState? State { get; set; }
}


پیاده سازی واسط ITaskService با استفاده از AutoMapper

public class TaskService : CrudService<Task, int, TaskReadModel, TaskModel, TaskFilteredPagedQueryModel>,
  ITaskService
{
    private readonly IMapper _mapper;

    public TaskService(CrudServiceDependency dependency, IMapper mapper) : base(dependency)
    {
        _mapper = mapper ?? throw new ArgumentNullException(nameof(mapper));
    }

    protected override IQueryable<TaskReadModel> BuildReadQuery(TaskFilteredPagedQueryModel model)
    {
        return EntitySet.AsNoTracking()
                    .WhereIf(model.State.HasValue, t => t.State == model.State)
                    .ProjectTo<TaskReadModel>(_mapper.ConfigurationProvider);
    }

    protected override Task MapToEntity(TaskModel model)
    {
        return _mapper.Map<Task>(model);
    }

    protected override TaskModel MapToModel(Task entity)
    {
        return _mapper.Map<TaskModel>(entity);
    }
}

به عنوان مثال در کلاس بالا برای نگاشت مابین مدل و موجودیت، از واسط IMapper کتابخانه AutoMapper استفاده شده‌است و همچنین عملیات جستجوی سفارشی در همان متد BuildReadQuery برای تولید کوئری متد Read پیش‌فرض، قابل ملاحظه می‌باشد.

مثال سوم: پیاده‌سازی سرویس یک موجودیت اصلی به همراه تعدادی موجودیت فرعی وابسته (سناریوهای Master-Detail) 

گام اول: طراحی Modelهای متناظر

    public class UserModel : MasterModel
    {
        public string UserName { get; set; }
        public string DisplayName { get; set; }
        public string Password { get; set; }
        public bool IsActive { get; set; }
        public ICollection<UserRoleModel> Roles { get; set; } = new HashSet<UserRoleModel>();
        public ICollection<PermissionModel> Permissions { get; set; } = new HashSet<PermissionModel>();
        public ICollection<PermissionModel> IgnoredPermissions { get; set; } = new HashSet<PermissionModel>();
    }

مدل بالا متناظر است با موجودیت کاربر سیستم، که به یکسری گروه کاربری متصل می‌باشد و همچنین دارای یکسری دسترسی مستقیم بوده و یا یکسری دسترسی از او گرفته شده‌است. مدل‌های Detail نیز از قرارداد خاصی پیروی خواهند کرد که در ادامه مشاهده خواهیم کرد.

public class PermissionModel : DetailModel<int>
{
    public string Name { get; set; }
}

به عنوان مثال PermissionModel بالا از DetailModel جنریک‌ای ارث‌بری کرده است که دارای Id و TrackingState نیز می‌باشد. 

public class UserRoleModel : DetailModel<int>
{
    public long RoleId { get; set; }
}

شاید در نگاه اول برای گروه‌های کاربری یک کاربر کافی بود تا یک لیست ساده از long را از کلاینت دریافت کنیم. در این صورت نیاز است تا برای تمام موجودیت‎های سیستم که چنین شرایط مشابهی را دارند، عملیات ثبت، ویرایش و حذف متناظر با تک تک Detailها را دستی مدیریت کنید. روش فعلی خصوصا برای سناریوهای منفصل به مانند پروژه‌های تحت وب، پیشنهاد می‌شود.

گام دوم: پیاده سازی اعتبارسنج مستقل

public class UserValidator : FluentModelValidator<UserModel>
{
    private readonly IUnitOfWork _uow;

    public UserValidator(IUnitOfWork uow, IMessageLocalizer localizer)
    {
        _uow = uow ?? throw new ArgumentNullException(nameof(uow));

        RuleFor(m => m.DisplayName).NotEmpty()
            .WithMessage(localizer["User.Fields.DisplayName.Required"])
            .MinimumLength(3)
            .WithMessage(localizer["User.Fields.DisplayName.MinimumLength"])
            .MaximumLength(User.MaxDisplayNameLength)
            .WithMessage(localizer["User.Fields.DisplayName.MaximumLength"])
            .Matches(@"^[\u0600-\u06FF,\u0590-\u05FF,0-9\s]*$")
            .WithMessage(localizer["User.Fields.DisplayName.RegularExpression"])
            .DependentRules(() =>
            {
                RuleFor(m => m).Must(model =>
                     !CheckDuplicateDisplayName(model.DisplayName, model.Id))
                    .WithMessage(localizer["User.Fields.DisplayName.Unique"])
                    .OverridePropertyName(nameof(UserModel.DisplayName));
            });

        RuleFor(m => m.UserName).NotEmpty()
            .WithMessage(localizer["User.Fields.UserName.Required"])
            .MinimumLength(3)
            .WithMessage(localizer["User.Fields.UserName.MinimumLength"])
            .MaximumLength(User.MaxUserNameLength)
            .WithMessage(localizer["User.Fields.UserName.MaximumLength"])
            .Matches("^[a-zA-Z0-9_]*$")
            .WithMessage(localizer["User.Fields.UserName.RegularExpression"])
            .DependentRules(() =>
            {
                RuleFor(m => m).Must(model =>
                     !CheckDuplicateUserName(model.UserName, model.Id))
                    .WithMessage(localizer["User.Fields.UserName.Unique"])
                    .OverridePropertyName(nameof(UserModel.UserName));
            });

        RuleFor(m => m.Password).NotEmpty()
            .WithMessage(localizer["User.Fields.Password.Required"])
            .When(m => m.IsNew, ApplyConditionTo.CurrentValidator)
            .MinimumLength(6)
            .WithMessage(localizer["User.Fields.Password.MinimumLength"])
            .MaximumLength(User.MaxPasswordLength)
            .WithMessage(localizer["User.Fields.Password.MaximumLength"]);

        RuleFor(m => m).Must(model => !CheckDuplicateRoles(model))
            .WithMessage(localizer["User.Fields.Roles.Unique"])
            .When(m => m.Roles != null && m.Roles.Any(r => !r.IsDeleted));
    }

    private bool CheckDuplicateUserName(string userName, long id)
    {
        var normalizedUserName = userName.ToUpperInvariant();
        return _uow.Set<User>().Any(u => u.NormalizedUserName == normalizedUserName && u.Id != id);
    }

    private bool CheckDuplicateDisplayName(string displayName, long id)
    {
        var normalizedDisplayName = displayName.NormalizePersianTitle();
        return _uow.Set<User>().Any(u => u.NormalizedDisplayName == normalizedDisplayName && u.Id != id);
    }

    private bool CheckDuplicateRoles(UserModel model)
    {
        var roles = model.Roles.Where(a => !a.IsDeleted);
        return roles.GroupBy(r => r.RoleId).Any(r => r.Count() > 1);
    }
}

به عنوان مثال در این اعتبارسنج بالا، قواعدی از جمله بررسی تکراری بودن نام‌کاربری و از این دست اعتبارسنجی‌ها نیز انجام شده است. نکته حائز اهمیت آن متد CheckDuplicateRoles می‌باشد:

private bool CheckDuplicateRoles(UserModel model)
{
    var roles = model.Roles.Where(a => !a.IsDeleted);
    return roles.GroupBy(r => r.RoleId).Any(r => r.Count() > 1);
}

با توجه به «نکته مهم» ابتدای بحث، model.Roles، شامل تمام گروه‌های کاربری متصل شده به کاربر می‌باشند که در این لیست برخی از آنها با TrackingState.Deleted، برخی دیگر با TrackingState.Added و ... علامت‌گذاری شده‌اند. لذا برای بررسی یکتایی و عدم تکرار در این سناریوها نیاز به اجری پرس‌و‌جویی بر روی دیتابیس نمی‌باشد. بدین منظور، با اعمال یک شرط، گروه‌های حذف شده را از بررسی خارج کرده‌ایم؛ چرا که آنها بعد از عبور از منطق تجاری، حذف خواهند شد. 


گام سوم: پیاده‌سازی سرویس متناظر

public interface IUserService : ICrudService<long, UserReadModel, UserModel>
{
}
public class UserService : CrudService<User, long, UserReadModel, UserModel>, IUserService
{
    private readonly IUserManager _manager;

    public UserService(CrudServiceDependency dependency, IUserManager manager) : base(dependency)
    {
        _manager = manager ?? throw new ArgumentNullException(nameof(manager));
    }

    protected override IQueryable<User> BuildFindQuery()
    {
        return base.BuildFindQuery()
            .Include(u => u.Roles)
            .Include(u => u.Permissions);
    }

    protected override IQueryable<UserReadModel> BuildReadQuery(FilteredPagedQueryModel model)
    {
        return EntitySet.AsNoTracking().Select(u => new UserReadModel
        {
            Id = u.Id,
            RowVersion = u.RowVersion,
            IsActive = u.IsActive,
            UserName = u.UserName,
            DisplayName = u.DisplayName,
            LastLoggedInDateTime = u.LastLoggedInDateTime
        });
    }

    protected override User MapToEntity(UserModel model)
    {
        return new User
        {
            Id = model.Id,
            RowVersion = model.RowVersion,
            IsActive = model.IsActive,
            DisplayName = model.DisplayName,
            UserName = model.UserName,
            NormalizedUserName = model.UserName.ToUpperInvariant(),
            NormalizedDisplayName = model.DisplayName.NormalizePersianTitle(),
            Roles = model.Roles.Select(r => new UserRole
                {Id = r.Id, RoleId = r.RoleId, TrackingState = r.TrackingState}).ToList(),
            Permissions = model.Permissions.Select(p => new UserPermission
            {
                Id = p.Id,
                TrackingState = p.TrackingState,
                IsGranted = true,
                Name = p.Name
            }).Union(model.IgnoredPermissions.Select(p => new UserPermission
            {
                Id = p.Id,
                TrackingState = p.TrackingState,
                IsGranted = false,
                Name = p.Name
            })).ToList()
        };
    }

    protected override UserModel MapToModel(User entity)
    {
        return new UserModel
        {
            Id = entity.Id,
            RowVersion = entity.RowVersion,
            IsActive = entity.IsActive,
            DisplayName = entity.DisplayName,
            UserName = entity.UserName,
            Roles = entity.Roles.Select(r => new UserRoleModel
                {Id = r.Id, RoleId = r.RoleId, TrackingState = r.TrackingState}).ToList(),
            Permissions = entity.Permissions.Where(p => p.IsGranted).Select(p => new PermissionModel
            {
                Id = p.Id,
                TrackingState = p.TrackingState,
                Name = p.Name
            }).ToList(),
            IgnoredPermissions = entity.Permissions.Where(p => !p.IsGranted).Select(p => new PermissionModel
            {
                Id = p.Id,
                TrackingState = p.TrackingState,
                Name = p.Name
            }).ToList()
        };
    }

    protected override Task BeforeSaveAsync(IReadOnlyList<User> entities, List<UserModel> models)
    {
        ApplyPasswordHash(entities, models);
        ApplySerialNumber(entities, models);
        return base.BeforeSaveAsync(entities, models);
    }

    private void ApplySerialNumber(IEnumerable<User> entities, IReadOnlyList<UserModel> models)
    {
        var i = 0;
        foreach (var entity in entities)
        {
            var model = models[i++];

            if (model.IsNew || !model.IsActive || !model.Password.IsEmpty() ||
                model.Roles.Any(a => a.IsNew || a.IsDeleted) ||
                model.IgnoredPermissions.Any(p => p.IsDeleted || p.IsNew) ||
                model.Permissions.Any(p => p.IsDeleted || p.IsNew))
            {
                entity.SerialNumber = _manager.NewSerialNumber();
            }
            else
            {
                //prevent include SerialNumber in update query
                UnitOfWork.Entry(entity).Property(a => a.SerialNumber).IsModified = false;
            }
        }
    }

    private void ApplyPasswordHash(IEnumerable<User> entities, IReadOnlyList<UserModel> models)
    {
        var i = 0;
        foreach (var entity in entities)
        {
            var model = models[i++];
            if (model.IsNew || !model.Password.IsEmpty())
            {
                entity.PasswordHash = _manager.HashPassword(model.Password);
            }
            else
            {
                //prevent include PasswordHash in update query
                UnitOfWork.Entry(entity).Property(a => a.PasswordHash).IsModified = false;
            }
        }
    }
}

در سناریوهای Master-Detail نیاز است متد دیگری تحت عنوان BuildFindQuery را نیز بازنویسی کنید. این متد برای بقیه حالات نیاز به بازنویسی نداشت؛ چرا که یک تک موجودیت واکشی می‌شد و خبری از موجودیت‌های Detail نبود. در اینجا لازم است تا روش تولید کوئری FindAsyn رو بازنویسی کنیم تا جزئیات دیگری را نیز واکشی کنیم. به عنوان مثال در اینجا Roles و Permissions کاربر نیز Include شده‌اند.

نکته: بازنویسی BuildFindQuery را شاید بتوان با روش‌های دیگری هم مانند تزئین موجودیت‌های وابسته با یک DetailOfAttribute و مشخص کردن نوع موجودیت اصلی، نیز جایگزین کرد.

متدهای MapToModel و MapToEntity هم به مانند قبل پیاده‌سازی شده‌اند. موضوع دیگری که در برخی از سناریوها پیش خواهد آمد، مربوط است به خصوصیتی که در زمان ثبت ضروری می‌باشد، ولی در زمان ویرایش اگر مقدار داشت باید با اطلاعات موجود در دیتابیس جایگزین شود؛ مانند Password و SerialNumber در موجودیت کاربر. برای این حالت می‌توان از متد BeforeSaveAsync بهره برد؛ به عنوان مثال برای SerialNumber:

private void ApplySerialNumber(IEnumerable<User> entities, IReadOnlyList<UserModel> models)
{
    var i = 0;
    foreach (var entity in entities)
    {
        var model = models[i++];

        if (model.IsNew || !model.IsActive || !model.Password.IsEmpty() ||
            model.Roles.Any(a => a.IsNew || a.IsDeleted) ||
            model.IgnoredPermissions.Any(p => p.IsDeleted || p.IsNew) ||
            model.Permissions.Any(p => p.IsDeleted || p.IsNew))
        {
            entity.SerialNumber = _manager.NewSerialNumber();
        }
        else
        {
            //prevent include SerialNumber in update query
            UnitOfWork.Entry(entity).Property(a => a.SerialNumber).IsModified = false;
        }
    }
}

در اینجا ابتدا بررسی شده‌است که اگر کاربر، جدید می‌باشد، غیرفعال شده است، کلمه عبور او تغییر داده شده است و یا تغییراتی در دسترسی‌ها و گروه‌های کاربری او وجود دارد، یک SerialNumber جدید ایجاد کند. در غیر این صورت با توجه به اینکه برای عملیات ویرایش، به صورت منفصل عمل می‌کنیم، نیاز است تا به شکل بالا، از قید این فیلد در کوئری ویرایش، جلوگیری کنیم. 

نکته: متد BeforeSaveAsync دقیقا بعد از ردیابی شدن وهله‌های موجودیت توسط Context برنامه و دقیقا قبل از UnitOfWork.SaveChange فراخوانی خواهد شد.


برای بررسی بیشتر، پیشنهاد می‌کنم پروژه DNTFrameworkCore.TestAPI موجود در مخزن این زیرساخت را بازبینی کنید.
مطالب
آشنایی با تست واحد و استفاده از کتابخانه Moq
تست واحد چیست؟

تست واحد ابزاری است برای مشاهده چگونگی عملکرد یک متد که توسط خود برنامه نویس نوشته میشود. به این صورت که پارامتر‌های ورودی، برای یک متد ساخته شده و آن متد فراخوانی و خروجی متد بسته به حالت مطلوب بررسی میشود. چنانچه خروجی مورد نظر مطلوب باشد تست واحد با موفقیت انجام میشود.


اهمیت انجام تست واحد چیست؟

درستی یک متد، مهمترین مسئله برای بررسی است و بارها مشاهده شده، استثناهایی رخ میدهند که توان تولید را به دلیل فرسایش تکراری رخداد میکاهند. نوشتن تست واحد منجر به این می‌شود چناچه بعدها تغییری در بیزنس متد ایجاد شود و ورودی و خروجی‌ها تغییر نکند، صحت این تغییر بیزنس، توسط تست بررسی مشود؛ حتی میتوان این تست‌ها را در build پروژه قرار داد و در ابتدای اجرای یک Solution تمامی تست‌ها اجرا و درستی بخش به بخش اعضا چک شوند.


شروع تست واحد:

یک پروژه‌ی ساده را داریم برای تعریف حساب‌های بانکی شامل نام مشتری، مبلغ سپرده، وضعیت و 3 متد واریز به حساب و برداشت از حساب و تغییر وضعیت حساب که به صورت زیر است:
    /// <summary>
    /// حساب بانکی
    /// </summary>
    public class Account
    {
        /// <summary>
        /// مشتری
        /// </summary>
        public string Customer { get; set; }
        /// <summary>
        /// موجودی حساب
        /// </summary>
        public float Balance { get; set; }
        /// <summary>
        /// وضعیت
        /// </summary>
        public bool Active { get; set; }

        public Account(string customer, float balance)
        {
            Customer = customer;
            Balance = balance;
            Active = true;
        }
        /// <summary>
        /// افزایش موجودی / واریز به حساب
        /// </summary>
        /// <param name="amount">مبلغ واریز</param>
        public void Credit(float amount)
        {
            if (!Active)
                throw new Exception("این حساب مسدود است.");
            if (amount < 0)
                throw new ArgumentOutOfRangeException("amount");
            Balance += amount;
        }
        /// <summary>
        /// کاهش موجودی / برداشت از حساب
        /// </summary>
        /// <param name="amount">مبلغ برداشت</param>
        public void Debit(float amount)
        {
            if (!Active)
                throw new Exception("این حساب مسدود است.");
            if (amount < 0)
                throw new ArgumentOutOfRangeException("amount");
            if (Balance < amount)
                throw new ArgumentOutOfRangeException("amount");
            Balance -= amount;
        }
        /// <summary>
        /// انسداد / رفع انسداد
        /// </summary>
        public void ChangeStateAccount()
        {
            Active = !Active;
        }
    }
تابع اصلی نیز به صورت زیر است:
    class Program
    {
        static void Main(string[] args)
        {
            var account = new Account("Ali",1000);

            account.Credit(4000);
            account.Debit(2000);
            Console.WriteLine("Current balance is ${0}", account.Balance);
            Console.ReadKey();
        }
    }
به Solution، یک پروژه از نوع تست واحد اضافه میکنیم.
در این پروژه ابتدا Reference ایی از پروژه‌ای که مورد تست هست میگیریم. سپس در کلاس تست مربوطه شروع به نوشتن متدی برای انواع تست متدهای پروژه اصلی میکنیم.
توجه داشته باشید که Data Annotation‌های بالای کلاس تست و متدهای تست، در تعیین نوع نگاه کامپایلر به این بلوک‌ها موثر است و باید این مسئله به درستی رعایت شود. همچنین در صورت نیاز میتوان از کلاس StartUp برای شروع تست استفاده کرد که عمدتا برای تعریف آن از نام ClassInit استفاده میشود و در بالای آن از [ClassInitialize] استفاده میشود.
در Library تست واحد میتوان به دو صورت چگونگی صحت عملکرد یک تست را بررسی کرد: با استفاده از Assert و با استفاده از ExpectedException، که در زیر به هر دو صورت آن میپردازیم.
    [TestClass]
    public class UnitTest
    {
        /// <summary>
        /// تعریف حساب جدید و بررسی تمامی فرآیند‌های معمول روی حساب
        /// </summary>
        [TestMethod]
        public void Create_New_Account_And_Check_The_Process()
        {
            //Arrange
            var account = new Account("Hassan", 4000);
            var account2 = new Account("Ali", 10000);
            //Act
            account.Credit(5000);
            account2.Debit(3000);
            account.ChangeStateAccount();
            account2.Active = false;
            account2.ChangeStateAccount();
            //Assert
            Assert.AreEqual(account.Balance,9000);
            Assert.AreEqual(account2.Balance,7000);
            Assert.IsTrue(account2.Active);
            Assert.AreEqual(account.Active,false);
        }
همانطور که مشاهده میشود ابتدا در قسمت Arrange، خوراک تست آماده میشود. سپس در قسمت Act، فعالیت‌هایی که زیر ذره بین تست هستند صورت می‌پذیرند و سپس در قسمت Assert درستی مقادیر با مقادیر مورد انتظار ما مطابقت داده میشوند.
برای بررسی خطاهای تعیین شده هنگام نوشتن یک متد نیز میتوان به صورت زیر عمل کرد:
        /// <summary>
        /// زمانی که کاربر بخواهد به یک حساب مسدود واریز کند باید جلوی آن گرفته شود.
        /// </summary>
        [TestMethod]
        [ExpectedException(typeof (Exception))]
        public void When_Deactive_Account_Wants_To_add_Credit_Should_Throw_Exception()
        {
            //Arrange
            var account = new Account("Hassan", 4000) {Active = false};
            //Act
            account.Credit(4000);
            //Assert
            //Assert is handled with ExpectedException
        }

        [TestMethod]
        [ExpectedException(typeof (ArgumentOutOfRangeException))]
        public void When_Customer_Wants_To_Debit_More_Than_Balance_Should_Throw_ArgumentOutOfRangeException()
        {
            //Arrange
            var account = new Account("Hassan", 4000);
            //Act
            account.Debit(5000);
            //Assert
            //Assert is handled with ArgumentOutOfRangeException
        }
همانطور که مشخص است نام متد تست باید کامل و شفاف به صورتی انتخاب شود که بیانگر رخداد درون متد تست باشد. در این متدها Assert مورد انتظار با DataAnnotation که پیش از این توضیح داده شد کنترل گردیده است و بدین صورت کار میکند که وقتی Act انجام میشود، متد بررسی می‌کند تا آن Assert رخ بدهد.


استفاده از Library Moq در تست واحد

ابتدا باید به این توضیح بپردازیم که این کتابخانه چه کاری میکند و چه امکانی را برای انجام تست واحد فراهم میکند.
در پروژه‌های بزرگ و زمانی که ارتباطات بین لایه‌ای زیادی موجود است و اصول SOLID رعایت میشود، شما در یک لایه برای ارایه فعالیت‌ها و خدمات متدهایتان با Interface‌های لایه‌های دیگر در ارتباط هستید و برای نوشتن تست واحد متدهایتان، مشکلی بزرگ دارید که نمیتوانید به این لایه‌ها دسترسی داشته باشید و ماهیت تست واحد را زیر سوال میبرید. Library Moq این امکان را به شما میدهد که از این Interface‌ها یک تصویر مجازی بسازید و همانند Snap Shot با آن کار کنید؛ بدون اینکه در لایه‌های دیگر بروید و ماهیت تست واحد را زیر سوال ببرید.
برای استفاده از متدهایی که در این Interface‌ها موجود است شما باید یک شیء از نوع Mock<> از آنها بسازید و سپس با استفاده از متد Setup به صورت مجازی متد مورد نظر را فراخوانی کنید و مقدار بازگشتی مورد انتظار را با Return معرفی کنید، سپس از آن استفاده کنید.
همچنین برای دسترسی به خود شیء از Property ایی با نام Objet از موجودیت mock شده استفاده میکنیم.
برای شناسایی بهتر اینکه از چه اینترفیس هایی باید Mock<> بسازید، میتوانید به متد سازنده کلاسی که معرف لایه ایست که برای آن تست واحد مینویسید، مراجعه کنید.
نحوه اجرای یک تست واحد با استفاده از Moq با توجه به توضیحات بالا به صورت زیر است:
پروژه مورد بررسی لایه Service برای تعریف واحد‌های سازمانی است که با الگوریتم DDD و CQRS پیاده سازی شده است.
ابتدا به Constructor خود لایه سرویس نگاه میکنیم تا بتوانید شناسایی کنید از چه Interface هایی باید Mock<> کنیم.
  public class OrganizationalService : ICommandHandler<CreateUnitTypeCommand>,
                                         ICommandHandler<DeleteUnitTypeCommand>,                                    
    {
        private readonly IUnitOfWork _unitOfWork;
        private readonly IUnitTypeRepository _unitTypeRepository;
        private readonly IOrganizationUnitRepository _organizationUnitRepository;
        private readonly IOrganizationUnitDomainService _organizationUnitDomainService;

        public OrganizationalService(IUnitOfWork unitOfWork, IUnitTypeRepository unitTypeRepository, IOrganizationUnitRepository organizationUnitRepository, IOrganizationUnitDomainService organizationUnitDomainService)
        {
            _unitOfWork = unitOfWork;
            _unitTypeRepository = unitTypeRepository;
            _organizationUnitRepository = organizationUnitRepository;
            _organizationUnitDomainService = organizationUnitDomainService;
        }
مشاهده میکنید که 4 Interface استفاده شده و در متد سازنده نیز مقدار دهی شده اند. پس 4 Mock نیاز داریم. در پروژه تست به صورت زیر و در ClassInitialize عمل میکنیم.
    [TestClass]
    public class OrganizationServiceTest
    {
        private static OrganizationalService _organizationalService;
        private static Mock<IUnitTypeRepository> _mockUnitTypeRepository;
        private static Mock<IUnitOfWork> _mockUnitOfWork;
        private static Mock<IOrganizationUnitRepository> _mockOrganizationUnitRepository;
        private static Mock<IOrganizationUnitDomainService> _mockOrganizationUnitDomainService;

        [ClassInitialize]
        public static void ClassInit(TestContext context)
        {
            TestBootstrapper.ConfigureDependencies();
            _mockUnitOfWork = new Mock<IUnitOfWork>();
            _mockUnitTypeRepository = new Mock<IUnitTypeRepository>();
            _mockOrganizationUnitRepository = new Mock<IOrganizationUnitRepository>();
            _mockOrganizationUnitDomainService=new Mock<IOrganizationUnitDomainService>();
            _organizationalService = new OrganizationalService(_mockUnitOfWork.Object, _mockUnitTypeRepository.Object,  _mockOrganizationUnitRepository.Object,_mockOrganizationUnitDomainService.Object);
        }
از خود لایه سرویس با نام OrganizationService یک آبجکت میگیریم و 4 واسط دیگر به صورت Mock شده تعریف میشوند. همچنین در کلاس بارگذار از همان نوع مقدار دهی میگردند تا در اجرای تمامی متدهای تست، در دست کامپایلر باشند. همچنین برای new کردن خود سرویس از mock.obect‌ها که حاوی مقدار اصلی است استفاده می‌کنیم.
خود متد اصلی به صورت زیر است:
        /// <summary>
        /// یک نوع واحد سازمانی را حذف مینماید
        /// </summary>
        /// <param name="command"></param>
        public void Handle(DeleteUnitTypeCommand command)
        {
            var unitType = _unitTypeRepository.FindBy(command.UnitTypeId);
            if (unitType == null)
                throw new DeleteEntityNotFoundException();

            ICanDeleteUnitTypeSpecification canDeleteUnitType = new CanDeleteUnitTypeSpecification(_organizationUnitRepository);
            if (canDeleteUnitType.IsSatisfiedBy(unitType))
                throw new UnitTypeIsUnderUsingException(unitType.Title);
            _unitTypeRepository.Remove(unitType);
        }
متد‌های تست این متد نیز به صورت زیر هستند:
        /// <summary>
        /// کامند حذف نوع واحد سازمانی باید به درستی حذف کند.
        /// </summary>
        [TestMethod]
        public void DeleteUnitTypeCommand_Should_Delete_UnitType()
        {
            //Arrange
            var unitTypeId=new Guid();
            var deleteUnitTypeCommand = new DeleteUnitTypeCommand { UnitTypeId = unitTypeId };
            var unitType = new UnitType("خوشه");
            var org = new List<OrganizationUnit>();
            _mockUnitTypeRepository.Setup(d => d.FindBy(deleteUnitTypeCommand.UnitTypeId)).Returns(unitType);
            _mockUnitTypeRepository.Setup(x => x.Remove(unitType));
            _mockOrganizationUnitRepository.Setup(z => z.FindBy(unitType)).Returns(org);
            try
            {
                //Act
                _organizationalService.Handle(deleteUnitTypeCommand);
            }
            catch (Exception ex)
            {
                //Assert
                Assert.Fail(ex.Message);
            }
        }
همانطور که مشاهده میشود ابتدا یک Guid به عنوان آی دی نوع واحد سازمانی گرفته میشود و همان آی دی برای تعریف کامند حذف به آن ارسال میشود. سپس یک نوع واحد سازمانی دلخواه تستی ساخته میشود و همچنین یک لیست خالی از واحد‌های سازمانی که برای چک شدن توسط خود متد Handle استفاده شده‌است ساخته میشود. در اینجا این متد خالی است تا شرط غلط شود و عمل حذف به درستی صورت پذیرد.
برای اعمالی که در Handle انجام میشود و متدهایی که از Interface‌ها صدا زده میشوند Setup میکنیم و آنهایی را که Return دارند به object هایی که مورد انتظار خودمان هست نسبت میدهیم.
در Setup اول میگوییم که آن Guid مربوط به "خوشه" است. در Setup بعدی برای عمل Remove کدی مینویسیم و چون عمل حذف Return ندارد میتواند، این خط به کل حذف شود! به طور کلی Setup هایی که Return ندارند میتوانند حذف شوند.
در Setup بعدی از Interface دیگر متد FindBy که قرار است چک کند این نوع واحد سازمانی برای تعریف واحد سازمانی استفاده شده است، در Return به آن یک لیست خالی اختصاص میدهیم تا نشان دهیم لیست خالی برگشته است.
عملیات Act را وارد Try میکنیم تا اگر به هر دلیل انجام نشد، Assert ما باشد.
دو حالت رخداد استثناء که در متد اصلی تست شده است در دو متد تست به طور جداگانه تست گردیده است:
        /// <summary>
        /// کامند حذف یک نوع واحد سازمانی باید پیش از حذف بررسی کند که این شناسه داده شده برای حذف موجود باشد.
        /// </summary>
        [TestMethod]
        [ExpectedException(typeof(DeleteEntityNotFoundException))]
        public void DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitTypeId_NotExist()
        {
            //Arrange
            var unitTypeId = new Guid();
            var deleteUnitTypeCommand = new DeleteUnitTypeCommand();
            var unitType = new UnitType("خوشه");
            var org = new List<OrganizationUnit>();
            _mockUnitTypeRepository.Setup(d => d.FindBy(unitTypeId)).Returns(unitType);
            _mockUnitTypeRepository.Setup(x => x.Remove(unitType));
            _mockOrganizationUnitRepository.Setup(z => z.FindBy(unitType)).Returns(org);

            //Act
            _organizationalService.Handle(deleteUnitTypeCommand);
        }

        /// <summary>
        /// کامند حذف یک نوع واحد سازمانی نباید اجرا شود وقتی که نوع واحد برای تعریف واحد‌های سازمان استفاده شده است.
        /// </summary>
        [TestMethod]
        [ExpectedException(typeof(UnitTypeIsUnderUsingException))]
        public void DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitType_Exist_but_UsedForDefineOrganizationUnit()
        {
            //Arrange
            var unitTypeId = new Guid();
            var deleteUnitTypeCommand = new DeleteUnitTypeCommand { UnitTypeId = unitTypeId };
            var unitType = new UnitType("خوشه");
            var org = new List<OrganizationUnit>()
            {
                new OrganizationUnit("مدیریت یک", unitType, null),
                new OrganizationUnit("مدیریت دو", unitType, null)
            };
            _mockUnitTypeRepository.Setup(d => d.FindBy(deleteUnitTypeCommand.UnitTypeId)).Returns(unitType);
            _mockUnitTypeRepository.Setup(x => x.Remove(unitType));
            _mockOrganizationUnitRepository.Setup(z => z.FindBy(unitType)).Returns(org);

            //Act
            _organizationalService.Handle(deleteUnitTypeCommand);
        }
متد DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitTypeId_NotExist همانطور که از نامش معلوم است بررسی میکند که نوع واحد سازمانی که ID آن برای حذف ارسال میشود در Database وجود دارد و اگر نباشد Exception مطلوب ما باید داده شود.
در متد DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitType_Exist_but_UsedForDefineOrganizationUnit بررسی میشود که از این نوع واحد سازمانی برای تعریف واحد سازمانی استفاده شده است یا نه و صحت این مورد با الگوی Specification صورت گرفته است. استثنای مطلوب ما Assert و شرط درستی این متد تست، میباشد.
مطالب
مروری بر کاربردهای Action و Func - قسمت چهارم
طراحی API برنامه توسط Actionها

روش مرسوم طراحی Fluent interfaces، جهت ارائه روش ساخت اشیاء مسطح به کاربران بسیار مناسب هستند. اما اگر سعی در تهیه API عمومی برای کار با اشیاء چند سطحی مانند معرفی فایل‌های XML توسط کلاس‌های سی شارپ کنیم، اینبار Fluent interfaces آنچنان قابل استفاده نخواهند بود و نمی‌توان این نوع اشیاء را به شکل روانی با کنار هم قرار دادن زنجیر وار متدها تولید کرد. برای حل این مشکل روش طراحی خاصی در نگارش‌های اخیر NHibernate معرفی شده است به نام loquacious interface که این روزها در بسیاری از APIهای جدید شاهد استفاده از آن هستیم و در ادامه با پشت صحنه و طرز تفکری که در حین ساخت این نوع API وجود دارد آشنا خواهیم شد.

در ابتدا کلاس‌های مدل زیر را در نظر بگیرید که قرار است توسط آن‌ها ساختار یک جدول از کاربر دریافت شود:
using System;
using System.Collections.Generic;

namespace Test
{
    public class Table
    {
        public Header Header { set; get; }
        public IList<Cell> Cells { set; get; }
        public float Width { set; get; }
    }

    public class Header
    {
        public string Title { set; get; }
        public DateTime Date { set; get; }
        public IList<Cell> Cells { set; get; }
    }

    public class Cell
    {
        public string Caption { set; get; }
        public float Width { set; get; }
    }
}
در روش طراحی loquacious interface به ازای هر کلاس مدل، یک کلاس سازنده ایجاد خواهد شد. اگر در کلاس جاری، خاصیتی از نوع کلاس یا لیست باشد، برای آن نیز کلاس سازنده خاصی درنظر گرفته می‌شود و این روند ادامه پیدا می‌کند تا به خواصی از انواع ابتدایی مانند int و string برسیم:
using System;
using System.Collections.Generic;

namespace Test
{
    public class TableApi
    {
        public Table CreateTable(Action<TableCreator> action)
        {
            var creator = new TableCreator();
            action(creator);
            return creator.TheTable;
        }
    }

    public class TableCreator
    {
        readonly Table _theTable = new Table();
        internal Table TheTable
        {
            get { return _theTable; }
        }

        public void Width(float value)
        {
            _theTable.Width = value;
        }

        public void AddHeader(Action<HeaderCreator> action)
        {
            _theTable.Header = ...
        }

        public void AddCells(Action<CellsCreator> action)
        {
            _theTable.Cells = ...
        }        
    }
}
نقطه آغازین API ایی که در اختیار استفاده کنندگان قرار می‌گیرد با متد CreateTable ایی شروع می‌شود که ساخت شیء جدول را به ظاهر توسط یک Action به استفاده کننده واگذار کرده است، اما توسط کلاس TableCreator او را مقید و راهنمایی می‌کند که چگونه باید اینکار را انجام دهد.
همچنین در بدنه متد CreateTable، نکته نحوه دریافت خروجی از Action ایی که به ظاهر خروجی خاصی را بر نمی‌گرداند نیز قابل مشاهده است.
همانطور که عنوان شد کلاس‌های xyzCreator تا رسیدن به خواص معمولی و ابتدایی پیش می‌روند. برای مثال در سطح اول چون خاصیت عرض از نوع float است، صرفا با یک متد معمولی دریافت می‌شود. دو خاصیت دیگر نیاز به Creator دارند تا در سطحی دیگر برای آن‌ها سازنده‌های ساده‌تری را طراحی کنیم.
همچنین باید دقت داشت که در این طراحی تمام متدها از نوع void هستند. اگر قرار است خاصیتی را بین خود رد و بدل کنند، این خاصیت به صورت internal تعریف می‌شود تا در خارج از کتابخانه قابل دسترسی نباشد و در intellisense ظاهر نشود.
مرحله بعد، ایجاد دو کلاس HeaderCreator و CellsCreator است تا کلاس TableCreator تکمیل گردد:
using System;
using System.Collections.Generic;

namespace Test
{
    public class CellsCreator
    {
        readonly IList<Cell> _cells = new List<Cell>();
        internal IList<Cell> Cells
        {
            get { return _cells; }
        }

        public void AddCell(string caption, float width)
        {
            _cells.Add(new Cell { Caption = caption, Width = width });
        }
    }

    public class HeaderCreator
    {
        readonly Header _header = new Header();
        internal Header Header
        {
            get { return _header; }
        }

        public void Title(string title)
        {
            _header.Title = title;
        }

        public void Date(DateTime value)
        {
            _header.Date = value;
        }

        public void AddCells(Action<CellsCreator> action)
        {
            var creator = new CellsCreator();
            action(creator);
            _header.Cells = creator.Cells;
        }
    }
}
نحوه ایجاد کلاس‌های Builder و یا Creator این روش بسیار ساده و مشخص است:
مقدار هر خاصیت معمولی توسط یک متد ساده void دریافت خواهد شد.
هر خاصیتی که اندکی پیچیدگی داشته باشد، نیاز به یک Creator جدید خواهد داشت.
کار هر Creator بازگشت دادن مقدار یک شیء است یا نهایتا ساخت یک لیست از یک شیء. این مقدار از طریق یک خاصیت internal بازگشت داده می‌شود.

البته عموما بجای معرفی مستقیم کلاس‌های Creator از یک اینترفیس معادل آن‌ها استفاده می‌شود. سپس کلاس Creator را internal تعریف می‌کنند تا خارج از کتابخانه قابل دسترسی نباشد و استفاده کننده نهایی فقط با توجه به متدهای void تعریف شده در interface کار تعریف اشیاء را انجام خواهد داد.

در نهایت، مثال تکمیل شده ما به شکل زیر خواهد بود:
using System;
using System.Collections.Generic;

namespace Test
{
    public class TableCreator
    {
        readonly Table _theTable = new Table();
        internal Table TheTable
        {
            get { return _theTable; }
        }

        public void Width(float value)
        {
            _theTable.Width = value;
        }

        public void AddHeader(Action<HeaderCreator> action)
        {
            var creator = new HeaderCreator();
            action(creator);
            _theTable.Header = creator.Header;
        }

        public void AddCells(Action<CellsCreator> action)
        {
            var creator = new CellsCreator();
            action(creator);
            _theTable.Cells = creator.Cells;
        }
    }

    public class CellsCreator
    {
        readonly IList<Cell> _cells = new List<Cell>();
        internal IList<Cell> Cells
        {
            get { return _cells; }
        }

        public void AddCell(string caption, float width)
        {
            _cells.Add(new Cell { Caption = caption, Width = width });
        }
    }

    public class HeaderCreator
    {
        readonly Header _header = new Header();
        internal Header Header
        {
            get { return _header; }
        }

        public void Title(string title)
        {
            _header.Title = title;
        }

        public void Date(DateTime value)
        {
            _header.Date = value;
        }

        public void AddCells(Action<CellsCreator> action)
        {
            var creator = new CellsCreator();
            action(creator);
            _header.Cells = creator.Cells;
        }
    }
}
نحوه استفاده از این طراحی نیز جالب توجه است:
var data = new TableApi().CreateTable(table =>
            {
                table.Width(1);
                table.AddHeader(header=>
                {
                    header.Title("new rpt");
                    header.Date(DateTime.Now);
                    header.AddCells(cells=>
                    {
                        cells.AddCell("cell 1", 1);
                        cells.AddCell("cell 2", 2);
                    });
                });
                table.AddCells(tableCells=>
                {
                    tableCells.AddCell("c 1", 1);
                    tableCells.AddCell("c 2", 2);
                });
            });

این نوع طراحی مزیت‌های زیادی را به همراه دارد:
الف) ساده سازی طراحی اشیاء چند سطحی و تو در تو
ب) امکان درنظر گرفتن مقادیر پیش فرض برای خواص
ج) ساده‌تر سازی تعاریف لیست‌ها
د) استفاده کنندگان در حین استفاده نهایی و تعریف اشیاء به سادگی می‌توانند کدنویسی کنند (مثلا سلول‌ها را با یک حلقه اضافه کنند).
ه) امکان بهتر استفاده از امکانات Intellisense. برای مثال فرض کنید یکی از خاصیت‌هایی که قرار است برای آن Creator درست کنید یک interface را می‌پذیرد. همچنین در برنامه خود چندین پیاده سازی کمکی از آن نیز وجود دارد. یک روش این است که مستندات قابل توجهی را تهیه کنید تا این امکانات توکار را گوشزد کند؛ روش دیگر استفاده از طراحی فوق است. در اینجا در کلاس Creator ایجاد شده چون امکان معرفی متد وجود دارد، می‌توان امکانات توکار را توسط این متدها نیز معرفی کرد و به این ترتیب Intellisense تبدیل به راهنمای اصلی کتابخانه شما خواهد شد.
مطالب
بررسی Bad code smell ها: فیلدهای موقتی
فیلد موقتی یا Temporary field در دسته بندی الگوهای «بد استفاده کنندگان از شیء گرایی» قرار می‌گیرد. در این الگوی بد، فیلدها یا خصوصیات یک کلاس، در شرایط خاصی مقدار گرفته و مورد استفاده قرار می‌گیرند و در بقیه شرایط خالی هستند. 
زمانیکه در یک کلاس، متدی برای انجام فعالیت خود، تعدادی پارامتر ورودی زیادی نیاز داشته باشد، ممکن است برنامه نویس برای مواجه نشدن با تعداد پارامترهای زیاد ورودی، فیلدها یا خصوصیاتی را در کلاس مربوط به آن متد ایجاد کند. این فیلدها عملا فقط زمان صدا زدن آن متد مقدار گرفته و در بقیه شرایط خالی هستند.
خواندن و استفاده از این نوع کدها معمولا مشکل و چالش برانگیز است. زیرا خواننده شاهد فیلدهایی است که در اکثر مواقع خالی هستند. همچنین زمان استفاده از این کلاس نمی‌توان از وجود مقادیر فیلدها یا خصوصیات آن‌ها اطمینان لازم را داشت.

روش‌های اصلاح این کد بد بو 

برای اصلاح چنین بوی بدی به طور معمول دو راه وجود دارد. 
اول: با در نظر گرفتن اینکه تمامی کد موجود در متد و فیلدهای مرتبط به آن قابلیت انتقال به کلاس خاص خودشان را دارند، می‌تواند کلاس مجزایی را برای آن متد و فیلدهای مربوطه ایجاد کرد. 
دوم: برای فیلدها و خصوصیاتی که در خیلی مواقع خالی هستند، می‌توان با روش Null object برای وضعیت خالی بودن آن، یک شیء خالی بی اثر را ایجاد کرد.  
به مثال زیر توجه کنید: 
فرض کنید در حال تولید سیستمی هستید که در روال خاصی، نیاز به محاسبه پورسانت فروشنده‌ها دارید. برای محاسبه پورسانت به موارد زیر نیاز است:
  • لیست محصولات فروخته شده
  • درصد کمیسیون خام
  • تاریخ فروش
  • شعبه فروش
  • نوع پرداخت 
به طور نمونه اگر فروشنده فروش نقدی ای انجام دهد، کمیسیون بیشتری نسبت به کمیسیون پیشفرض، به او تعلق خواهد گرفت و … 
ممکن است طراحی اولیه برای چنین متدی به صورت زیر باشد: 
public class Salesman 
{ 
    public void Method1() 
    { 
       return; 
    } 
    public void Method2() 
    { 
        return; 
    } 
    public void Method3() 
    { 
       return; 
    }
    public decimal CalculateCommission(dynamic products, dynamic commissionRate, dynamic saleDate, dynamic branch, dynamic paymentType) 
    { 
       return decimal.MaxValue; 
    } 
}
با مشاهده پارامتر‌های زیاد متد، برنامه نویس می‌تواند از روش‌های اصلاح بوی بد «تعداد زیاد پارامترهای ورودی» استفاده کند. یا اینکه برنامه نویس برای خلاصی از این کد بد بو، بجای ارسال پارامتر، فیلدهایی را در کلاس Salesman ایجاد کند؛ مانند کد زیر:  
public class SalesmanV2 
{ 
    public IEnumerable<dynamic> Products { get; set; } 
    public dynamic CommisionRate { get; set; } 
    public dynamic SaleDate { get; set; } 
    public dynamic Branch { get; set; } 
    public dynamic PaymentType { get; set; } 
    public void Method1() 
    { 
        return; 
    } 
    public void Method2() 
    { 
        return; 
    } 
    public void Method3() 
    { 
        return; 
    } 
    public decimal CalculateCommission() 
    { 
       return decimal.MaxValue; 
    } 
}
با این تغییر، پارامترهای متد CalculateCommision به خصوصیاتی در کلاس Salesman تبدیل خواهند شد. دقت کنید این کلاس متدهای دیگری برای فعالیت‌های مختلف دارد.  
در روش‌های اصلاح این کد بد بو، اشاره به انتقال منطق متد مذکور به کلاس مجزا و مخصوص به خود شده بود. در واقع کد بد بوی «فیلد موقتی» ناشی از عدم رعایت اصل single responsibility است و محاسبه پورسانت را از نظر ذاتی می‌توان وظیفه‌ی اضافه‌ای در این کلاس دانست. با توجه به اینکه می‌توان محاسبه پورسانت را به صورت جداگانه پیاده سازی کرد. به چنین پیاده سازی ای خواهیم رسید.  
public class SalesmanV3 
{ 
    public void Method1() 
    { 
        return; 
    } 
    public void Method2() 
    { 
        return; 
    } 
    public void Method3() 
    { 
        return; 
    } 
} 

public class CommissionCalculator 
{ 
    private IEnumerable<dynamic> _products; 
    private dynamic _commisionRate; 
    private dynamic _saleDate; 
    private dynamic _branch; 
    private dynamic _paymentType; 
    public CommissionCalculator(IEnumerable<dynamic> products, dynamic commisionRate, 
            dynamic saleDate, dynamic branch, dynamic paymentType) 
    { 
        _products = products; 
        _commisionRate = commisionRate; 
        _saleDate = saleDate; 
        _branch = branch; 
        _paymentType = paymentType; 
    } 
}
در شرایط نادری، کد بد بوی «فیلد موقتی» ناشی از عدم رعایت اصل single responsibility نیست. در چنین شرایطی می‌توان از null object برای رفع این بوی بد استفاده کرد.

جمع بندی 

همان‌طور که در متن نیز اشاره شد، عدم رعایت اصل single responsibility می‌تواند منجر به چنین کد بد بویی شود. این کد بد بو با روش‌های ساده‌ای قابل اصلاح است. اصلاح چنین بویی خوانایی و قابلیت نگهداری کد را افزایش خواهد داد. 
مطالب
پیاده سازی الگوی طراحی Memento

Memento یک الگوی طراحی مفید و ساده است که برای ذخیره و بازیابی state یک object استفاده می‌شود. در بعضی از مقالات از آن به عنوان snapshot نیز یاد شده است! اگر با git  کار کرده باشید، این مفهوم را می‌توان در git بسیار یافت؛ هر commit به عنوان یک snapshot میباشد که میتوان به صورت مکرر آن را undo کرد و یا مثال خیلی ساده‌تر میتوان به ctrl+z در سیستم عامل اشاره کرد.

به مثال زیر توجه کنید:

Int temp;
Int a=1;
temp=a;
a=2;
.
.
a=temp;

شما قطعا در برنامه نویسی با کد بالا زیاد برخورد داشته‌اید و آن‌را به صورت مکرر انجام داده‌اید. کد بالا را در قالب یک object بیان میکنیم. به مثال زیر توجه کنید:

int main()
{
  MyClass One = new MyClass();
  MyClass Temp = new MyClass();
  // Set an initial value.
  One.Value = 10;
  One.Name = "Ten";
  // Save the state of the value.
  Temp.Value = One.Value;
  Temp.Name = One.Name;
  // Change the value.
  One.Value = 99;
  One.Name = "Ninety Nine";
  // Undo and restore the state.
  One.Value = Temp.Value;
  One.Name = Temp.Name;
}

در کد بالا با استفاده از یک temp، شیء مورد نظر را ذخیره کرده و در آخر مجدد داده‌ها را درون شیء، restore  میکنیم.


 از مشکلات کد بالا میتوان گفت :

۱- برای هر object باید یک شیء temp ایجاد کنیم.

۲- ممکن است بخواهیم که حالات یک object را بر روی هارد ذخیره کنیم. با روش فوق کدها خیلی پیچیده‌تر خواهند شد.

۳- نوشتن کد به این سبک برای پروژه‌های بزرگ، پیچیده و مدیریت آن سخت‌تر می‌شود.


پیاده سازی memento

ما این مثال را در قالب یک پروژه NET Core  onsole. ایجاد میکنیم. برای این کار یک پوشه‌ی جدید را ایجاد و درون ترمینال دستور زیر را وارد کنید:

dotnet new console

روش‌های زیادی برای پیاده سازی memento وجود دارند. برای پیاده سازی memento ابتدا یک abstract class را به شکل زیر ایجاد میکنیم: 

abstract class MementoBase
{
  protected Guid mementoKey = Guid.NewGuid();
  abstract public void SaveMemento(Memento memento);
  abstract public void RestoreMemento(Memento memento);
}

اگر به کلاس بالا دقت کنید، این کلاس قرار است parent کلاس‌های دیگری باشد که داری دو متد SaveMemento و RestoreMemento برای ذخیره و بازیابی و همچنین یک Guid برای نگهداری state‌های مختلف میباشد.

ورودی متدها از نوع memento میباشد. پس کلاس memento را به شکل زیر ایجاد می‌کنیم:

class Memento
{
    private Dictionary<Guid, object> stateList = new Dictionary<Guid, object>();
    public object GetState(Guid key)
    {
        return stateList[key];
    }
    public void SetState(Guid key, object newState)
    {
        stateList[key] = newState;
    }
    public Memento()
    {
    }
}

در کد بالا با یک Dictionary می‌توان هر object را با کلیدش ذخیره کنیم. توجه کنید که value دیکشنری از نوع object میباشد و چون object پدر تمام object‌های دیگر است پس می‌توانیم هر نوع داده‌ای را در آن ذخیره کنیم. تا اینجا، Memento پیاده سازی شده است. میتوان این کار را با جنریک‌ها نیز پیاده سازی کرد.

در ادامه می‌خواهیم یک کلاس بسازیم و حالت‌های مختلف را در آن بررسی کنیم. کلاس زیر را ایجاد کنید:

class ConcreteOriginator : MementoBase
{
  private int value = 0;
  public ConcreteOriginator(int newValue)
  {
    SetData(newValue);
  }
  public void SetData(int newValue)
  {
    value = newValue;
  }
  public void Speak()
  {
    Console.WriteLine("My value is " + value.ToString());
  }
  public override void SaveMemento(Memento memento)
  {
    memento.SetState(mementoKey, value);
  }
  public override void RestoreMemento(Memento memento)
  {
    int restoredValue = (int)memento.GetState(mementoKey);
    SetData(restoredValue);
  }
}

کلاس ConcreteOriginator از کلاس MementoBase ارث بری کرده و دو متد RestoreMemento و SaveMemento را پیاده سازی میکند و همچنین دارای یک مشخصه value می‌باشد. برای خروجی گرفتن، متد main را به صورت زیر پیاده سازی می‌کنیم:

static void Main(string[] args)
{
  Memento memento = new Memento();
  // Create an originator, which will hold our state data.
  ConcreteOriginator myOriginator = new ConcreteOriginator("Hello World!", StateType.ONE);
  ConcreteOriginator anotherOriginator = new ConcreteOriginator("Hola!", StateType.ONE);
  ConcreteOriginator2 thirdOriginator = new ConcreteOriginator2(7);
  // Set some state data.
  myOriginator.Speak();
  anotherOriginator.Speak();
  thirdOriginator.Speak();
  // Save the states into our memento.
  myOriginator.SaveMemento(memento);
  anotherOriginator.SaveMemento(memento);
  thirdOriginator.SaveMemento(memento);
  // Now change our originators' states.
  myOriginator.SetData("Goodbye!", StateType.TWO);
  anotherOriginator.SetData("Adios!", StateType.TWO);
  thirdOriginator.SetData(99);
  myOriginator.Speak();
  anotherOriginator.Speak();
  thirdOriginator.Speak();
  // Restore our originator's state.
  myOriginator.RestoreMemento(memento);
  anotherOriginator.RestoreMemento(memento);
  thirdOriginator.RestoreMemento(memento);
  myOriginator.Speak();
  anotherOriginator.Speak();
  thirdOriginator.Speak();
  Console.ReadKey();
}
تا خط ۱۲، مراحل عادی کد نویسی را پیش رفته‌ایم. در خطوط ۱۳ تا ۱۵، داده را در Memento ذخیره میکنیم. در خطوط ۱۷ تا ۱۹، داده‌های اشیاء را با استفاده از متد SetData عوض میکنیم. در خطوط ۲۰ تا ۲۲ با متد Speak، مقدار value را نمایش میدهیم و در خطوط ۲۴ تا ۲۶، داده‌ها را Restore میکنیم و در آخر دوباره مقدار value را نمایش میدهیم.
برنامه را اجرا کنید .خروجی به شکل زیر خواهد بود:
Hello World! I'm in state ONE
Hola! I'm in state ONE
My value is 7
Goodbye! I'm in state TWO
Adios! I'm in state TWO
My value is 99
Hello World! I'm in state ONE
Hola! I'm in state ONE
My value is 7
مطالب
نوشتن آزمون‌های واحد به کمک کتابخانه‌ی Moq - قسمت اول - معرفی
گاهی از اوقات، برای نوشتن آزمون‌های واحد، ایزوله سازی قسمتی که می‌خواهیم آن‌را بررسی کنیم، از سایر قسمت‌های سیستم مشکل می‌شود. برای مثال اگر در کلاسی کار اتصال به بانک اطلاعاتی صورت می‌گیرد و قصد داریم برای آن آزمون واحد بنویسیم، اما قرار نیست که الزاما با بانک اطلاعاتی کار کنیم، در این حالت نیاز به یک نمونه‌ی تقلیدی یا Mock از بانک اطلاعاتی را خواهیم داشت، تا کار دسترسی به بانک اطلاعاتی را شبیه سازی کند. در این سری با استفاده از کتابخانه‌ی بسیار معروف Moq (ماک‌یو تلفظ می‌شود؛ گاهی از اوقات هم ماک)، کار ایزوله سازی کلاس‌ها را انجام خواهیم داد، تا بتوانیم آن‌ها را مستقل از هم آزمایش کنیم.


Mocking چیست؟

فرض کنید برنامه‌ای را داریم که از تعدادی کلاس تشکیل شده‌است. در این بین می‌خواهیم تعدادی از آن‌ها را به صورت ایزوله‌ی از کل سیستم آزمایش کنیم. البته باید درنظر داشت که این کلاس‌ها در حین اجرای واقعی برنامه، از تعدادی وابستگی خاص در همان سیستم استفاده می‌کنند. برای مثال کلاسی در این بین برای بررسی میزان اعتبار مالی یک کاربر، نیاز دارد تا با یک وب سرویس خارجی کار کند. اما چون می‌خواهیم این کلاس را به صورت ایزوله‌ی از کل سیستم آزمایش کنیم، اینبار بجای استفاده‌ی از وابستگی واقعی این کلاس، آن وابستگی را با یک نمونه‌ی تقلیدی یا Mock object در اینجا، جایگزین می‌کنیم.
بنابراین Mocking به معنای جایگزین کردن یک وابستگی واقعی سیستم که در زمان اجرای آن مورد استفاده قرار می‌گیرد، با نمونه‌ی تقلیدی مختص زمان آزمایش برنامه، جهت بالابردن سهولت نوشتن آزمون‌های واحد است.


دلایل و مزایای استفاده‌ی از Mocking

- یکی از مهم‌ترین دلایل استفاده‌ی از Mocking، کاهش پیچیدگی تنظیمات اولیه‌ی نوشتن آزمون‌های واحد است. برای مثال اگر در برنامه‌ی خود از تزریق وابستگی‌ها استفاده می‌کنید و کلاسی دارای چندین وابستگی تزریق شده‌ی به آن است، برای آزمایش این کلاس نیاز به تدارک تمام این وابستگی‌ها را خواهید داشت تا بتوان این کلاس را وهله سازی کرد و همچنین برنامه را نیز کامپایل نمود. اما در این بین ممکن است آزمایش متدی در همان کلاس، الزاما از تمام وابستگی‌های تزریق شده‌ی در یک کلاس استفاده نکند. در این حالت، Mocking می‌تواند تنظیمات پیچیده‌ی وهله سازی این کلاس را به حداقل برساند.
- Mocking می‌تواند سبب افزایش سرعت اجرای آزمون‌های واحد نیز شود. برای مثال با تقلید سرویس‌های خارجی مورد استفاده‌ی در برنامه (هر عملی که از مرزهای سیستم رد شود مانند کار با شبکه، بانک اطلاعاتی، فایل سیستم و غیره)، می‌توان میزان I/O و همچنین زمان صرف شده‌ی به آن‌را به حداقل رساند.
- از mock objects می‌توان برای رهایی از مشکلات کار با مقادیر غیرمشخص استفاده کرد. برای مثال اگر در کدهای خود از DateTime.Now استفاده می‌کنید یا اعداد اتفاقی و امثال آن، هربار که آزمون‌های واحد را اجرا می‌کنیم، خروجی متفاوتی را دریافت کرده و بسیاری از آزمون‌های نوشته شده با مشکل مواجه می‌شوند. به کمک mocking می‌توان بجای این مقادیر غیرمشخص، یک مقدار ثابت و مشخص را بازگشت دهد.
- چون به سادگی می‌توان mock objects را تهیه کرد، می‌توان کار توسعه و آزمایش برنامه را پیش از به پایان رسیدن پیاده سازی اصلی سرویس‌های مدنظر، همینقدر که اینترفیس آن سرویس مشخص باشد، شروع کرد که می‌تواند برای کارهای تیمی بسیار مفید باشد.
- اگر وابستگی مورد استفاده ناپایدار و یا غیرقابل پیش بینی است، می‌توان توسط mocking به یک نمونه‌ی قابل پیش بینی و پایدار مخصوص آزمون‌های برنامه رسید.
- اگر وابستگی خارجی مورد استفاده به ازای هر بار استفاده، هزینه‌ای را شارژ می‌کند، می‌توان توسط mocking، هزینه‌ی آزمون‌های برنامه را کاهش داد.


Unit test چیست؟

بدیهی است در کنار آزمایش ایزوله‌ی قسمت‌های مختلف برنامه توسط mocking، باید کل برنامه را جهت بررسی دستیابی به نتایج واقعی نیز آزمایش کرد که به این نوع آزمون‌ها، آزمون یکپارچگی (Integration Tests)، API Tests ،UI Tests و غیره می‌گویند که در کنار Unit tests ما حضور خواهند داشت. بنابراین اکنون این سؤال مطرح می‌شود که یک Unit چیست؟
در برنامه‌ای که از چندین کلاس تشکیل می‌شود، به یک کلاس، یک Unit گفته می‌شود. همچنین اگر در این سیستم، دو یا چند کلاس با هم کار می‌کنند (کلاسی که از چندین وابستگی استفاده می‌کند)، این‌ها با هم نیز یک Unit را تشکیل دهند. بنابراین تعریف Unit بستگی به نحوه‌ی درک عملکرد یک سیستم و تعامل اجزای آن با هم دارد.


واژه‌های متناظر با Mock objects

در حین مطالعه‌ی منابع مرتبط با آزمون‌های واحد ممکن است با این واژه‌های تقریبا مشابه مواجه شوید: fakes ،stubs ،dummies و mocks. اما تفاوت آن‌ها در چیست؟
- Fakes در حقیقت یک نمونه پیاده سازی واقعی، اما غیرمناسب محیط واقعی و اصلی پروژه‌است. برای نمونه EF Core به همراه یک نمونه in-memory database هم هست که دقیقا با مفهوم Fakes تطابق دارد.
- از Dummies صرفا جهت تهیه‌ی پارامترهای مورد نیاز برای اجرای یک آزمایش استفاده می‌شوند. این پارامترها، هیچگاه در آزمایش‌های انجام شده مورد استفاده قرار نمی‌گیرند.
- از Stubs برای ارائه‌ی پاسخ‌هایی مشخص به فراخوان‌ها استفاده می‌شود. برای مثال یک متد یا خاصیت، دقیقا چه چیزی را باید بازگشت دهند.
- از Mocks برای بررسی تعامل اجزای مختلف در حال آزمایش استفاده می‌شود. آیا متدی یا خاصیتی مورد استفاده قرار گرفته‌است یا خیر؟

باید درنظر داشت که زمانیکه یک شیء Mock را توسط کتابخانه‌ی Moq تهیه می‌کنیم، هر سه مفهوم stubs ،dummies و mocks را با هم به همراه دارد. به همین جهت در این سری زمانیکه به یک mock object اشاره می‌شود، هر سه مفهوم مدنظر هستند.

واژه‌ی دیگری که ممکن است در این گروه زیاد مشاهده شود، «Test double» نام دارد که ترکیب هر 4 مورد fakes ،stubs ،dummies و mocks می‌باشد. در کل هر زمانیکه یک شیء مورد استفاده‌ی در زمان اجرای برنامه را جهت آزمایش ساده‌تر آن جایگزین می‌کنید، یک Test double را ایجاد کرده‌اید.


بررسی ساختار برنامه‌ای که می‌خواهیم آن‌را آزمایش کنیم

در این سری قصد داریم یک برنامه‌ی وام دهی را آزمایش کنیم که قسمت‌های مختلف آن دارای وابستگی‌های خاصی می‌باشند. ساختار این برنامه را در ادامه مشاهده می‌کنید:


موجودیت‌های برنامه‌ی وام دهی
namespace Loans.Entities
{
    public class Applicant
    {
        public int Id { set; get; }

        public string Name { set; get; }

        public int Age { set; get; }

        public string Address { set; get; }

        public decimal Salary { set; get; }
    }
}

namespace Loans.Entities
{
    public class LoanProduct
    {
        public int Id { set; get; }

        public string ProductName { set; get; }

        public decimal InterestRate { set; get; }
    }
}

namespace Loans.Entities
{
    public class LoanApplication
    {
        public int Id { set; get; }

        public LoanProduct Product { set; get; }

        public LoanAmount Amount { set; get; }

        public Applicant Applicant { set; get; }

        public bool IsAccepted { set; get; }
    }

    public class LoanAmount
    {
        public string CurrencyCode { get; set; }

        public decimal Principal { get; set; }
    }
}

مدل‌های برنامه‌ی وام دهی

namespace Loans.Models
{
    public class IdentityVerificationStatus
    {
        public bool Passed { get; set; }
    }
}

سرویس‌های برنامه‌ی وام دهی

using Loans.Models;

namespace Loans.Services.Contracts
{
    public interface IIdentityVerifier
    {
        void Initialize();

        bool Validate(string applicantName, int applicantAge, string applicantAddress);

        void Validate(string applicantName, int applicantAge, string applicantAddress, out bool isValid);

        void Validate(string applicantName, int applicantAge, string applicantAddress,
            ref IdentityVerificationStatus status);
    }
}

namespace Loans.Services.Contracts
{
    public interface ICreditScorer
    {
        int Score { get; }

        void CalculateScore(string applicantName, string applicantAddress);
    }
}

using System;
using Loans.Entities;
using Loans.Services.Contracts;

namespace Loans.Services
{
    public class LoanApplicationProcessor
    {
        private const decimal MinimumSalary = 1_500_000_0;
        private const int MinimumAge = 18;
        private const int MinimumCreditScore = 100_000;

        private readonly IIdentityVerifier _identityVerifier;
        private readonly ICreditScorer _creditScorer;

        public LoanApplicationProcessor(
            IIdentityVerifier identityVerifier,
            ICreditScorer creditScorer)
        {
            _identityVerifier = identityVerifier ?? throw new ArgumentNullException(nameof(identityVerifier));
            _creditScorer = creditScorer ?? throw new ArgumentNullException(nameof(creditScorer));
        }

        public bool Process(LoanApplication application)
        {
            application.IsAccepted = false;

            if (application.Applicant.Salary < MinimumSalary)
            {
                return application.IsAccepted;
            }

            if (application.Applicant.Age < MinimumAge)
            {
                return application.IsAccepted;
            }

            _identityVerifier.Initialize();

            var isValidIdentity = _identityVerifier.Validate(
                application.Applicant.Name, application.Applicant.Age, application.Applicant.Address);

            if (!isValidIdentity)
            {
                return application.IsAccepted;
            }

            _creditScorer.CalculateScore(application.Applicant.Name, application.Applicant.Address);
            if (_creditScorer.Score < MinimumCreditScore)
            {
                return application.IsAccepted;
            }

            application.IsAccepted = true;
            return application.IsAccepted;
        }
    }
}

using System;
using Loans.Models;
using Loans.Services.Contracts;

namespace Loans.Services
{
    public class IdentityVerifierServiceGateway : IIdentityVerifier
    {
        public DateTime LastCheckTime { get; private set; }

        public void Initialize()
        {
            // Initialize connection to external service
        }

        public bool Validate(string applicantName, int applicantAge, string applicantAddress)
        {
            Connect();
            var isValidIdentity = CallService(applicantName, applicantAge, applicantAddress);
            LastCheckTime = DateTime.Now;
            Disconnect();

            return isValidIdentity;
        }

        private void Connect()
        {
            // Open connection to external service
        }

        private bool CallService(string applicantName, int applicantAge, string applicantAddress)
        {
            // Make call to external service, interpret the response, and return result

            return false; // Simulate result for demo purposes
        }

        private void Disconnect()
        {
            // Close connection to external service
        }

        public void Validate(string applicantName, int applicantAge, string applicantAddress, out bool isValid)
        {
            throw new NotImplementedException();
        }

        public void Validate(string applicantName, int applicantAge, string applicantAddress,
            ref IdentityVerificationStatus status)
        {
            throw new NotImplementedException();
        }
    }
}
توضیحات:
هدف از این برنامه، درخواست یک وام جدید است. Application در اینجا به معنای درخواست یا فرم جدید است و Applicant نیز شخصی است که این درخواست را داده‌است.
در اینجا بیشتر تمرکز ما بر روی کلاس LoanApplicationProcessor است که دارای دو وابستگی تزریق شده‌ی به آن نیز می‌باشد:
        public LoanApplicationProcessor(
            IIdentityVerifier identityVerifier,
            ICreditScorer creditScorer)
        {
            _identityVerifier = identityVerifier ?? throw new ArgumentNullException(nameof(identityVerifier));
            _creditScorer = creditScorer ?? throw new ArgumentNullException(nameof(creditScorer));
        }
از این وابستگی‌ها برای تصدیق هویت درخواست کننده و همچنین بررسی میزان اعتبار او استفاده می‌شود.
تمام این منطق نیز در متد Process آن قابل مشاهده‌است که هدف اصلی آن، بررسی قابل پذیرش بودن درخواست یک وام جدید است.


نوشتن اولین تست، برای برنامه‌ی وام دهی

در اولین تصویر این قسمت، پروژه‌ی class library دومی را نیز به نام Loans.Tests مشاهده می‌کنید. فایل csproj آن به صورت زیر برای کار با MSTest تنظیم شده‌است:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>netcoreapp2.2</TargetFramework>
  </PropertyGroup>
  <ItemGroup>
    <ProjectReference Include="..\Loans\Loans.csproj" />
  </ItemGroup>
  <ItemGroup>
    <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.3.0" />
    <PackageReference Include="MSTest.TestAdapter" Version="2.0.0" />
    <PackageReference Include="MSTest.TestFramework" Version="2.0.0" />    
  </ItemGroup>
</Project>
که در آن ارجاعی به پروژه‌ی Loans.csproj و همچنین وابستگی‌های MSTest، تنظیم شده‌اند.

اکنون اولین آزمون واحد ما در کلاس جدید LoanApplicationProcessorShould چنین شکلی را پیدا می‌کند:
using Loans.Entities;
using Loans.Services;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Loans.Tests
{
    [TestClass]
    public class LoanApplicationProcessorShould
    {
        [TestMethod]
        public void DeclineLowSalary()
        {
            var product = new LoanProduct {Id = 99, ProductName = "Loan", InterestRate = 5.25m};
            var amount = new LoanAmount {CurrencyCode = "Rial", Principal = 2_000_000_0};
            var applicant =
                new Applicant {Id = 1, Name = "User 1", Age = 25, Address = "This place", Salary = 1_100_000_0};
            var application = new LoanApplication {Id = 42, Product = product, Amount = amount, Applicant = applicant};
            var processor = new LoanApplicationProcessor(null, null);
            processor.Process(application);

            Assert.IsFalse(application.IsAccepted);
        }
    }
}
در حین کار با MSTest، کلاس آزمون واحد باید به ویژگی TestClass و متدهای public void آن به ویژگی TestMethod مزین شوند تا توسط این فریم‌ورک آزمون واحد شناسایی شده و مورد آزمایش قرار گیرند.
در این آزمایش، شخص درخواست کننده، حقوق کمی دارد و می‌خواهیم بررسی کنیم که آیا LoanApplicationProcessor می‌تواند آن‌را بر اساس مقدار MinimumSalary، رد کند یا خیر؟
public class LoanApplicationProcessor
{
    private const decimal MinimumSalary = 1_500_000_0;

در حین وهله سازی LoanApplicationProcessor، دو وابستگی آن به null تنظیم شده‌اند؛ چون می‌دانیم که بررسی MinimumSalary پیش از سایر بررسی‌ها صورت می‌گیرد و اساسا در این آزمایش، نیازی به این وابستگی‌ها نداریم.
اما اگر سعی در اجرای این آزمایش کنیم (برای مثال با اجرای دستور dotnet test در خط فرمان)، آزمایش اجرا نشده و با استثنای زیر مواجه می‌شویم:
Test method Loans.Tests.LoanApplicationProcessorShould.DeclineLowSalary threw exception:
System.ArgumentNullException: Value cannot be null.
Parameter name: identityVerifier
چون در سازنده‌ی کلاس LoanApplicationProcessor، در صورت نال بودن وابستگی‌های دریافتی، یک استثناء صادر می‌شود. بنابراین ذکر آن‌ها الزامی است:
        public LoanApplicationProcessor(
            IIdentityVerifier identityVerifier,
            ICreditScorer creditScorer)
        {
            _identityVerifier = identityVerifier ?? throw new ArgumentNullException(nameof(identityVerifier));
            _creditScorer = creditScorer ?? throw new ArgumentNullException(nameof(creditScorer));
        }


نصب کتابخانه‌ی Moq جهت برآورده کردن وابستگی‌های کلاس LoanApplicationProcessor

در این آزمایش چون وجود وابستگی‌های در سازنده‌ی کلاس، برای ما اهمیتی ندارند و همچنین ذکر آن‌ها نیز الزامی است، می‌خواهیم توسط کتابخانه‌ی Moq، دو نمونه‌ی تقلیدی از آن‌ها را تهیه کرده (همان dummies که پیشتر معرفی شدند) و جهت برآورده کردن بررسی صورت گرفته‌ی در سازنده‌ی کلاس LoanApplicationProcessor، آن‌ها را ارائه کنیم.
کتابخانه‌ی بسیار معروف Moq، با پروژه‌های مبتنی بر NETFramework 4.5. و همچنین NETStandard 2.0. به بعد سازگار است و برای نصب آن، می‌توان یکی از دو دستور زیر را صادر کرد:
> dotnet add package Moq
> Install-Package Moq

اما چرا کتابخانه‌ی Moq؟
کتابخانه‌ی Moq این اهداف را دنبال می‌کند: ساده‌است، به شدت کاربردی‌است و همچنین strongly typed است. این کتابخانه سورس باز بوده و تعداد بار دانلود بسته‌ی نیوگت آن میلیونی است.


پس از نصب آن، اولین آزمایشی را که نوشتیم، به صورت زیر اصلاح می‌کنیم:
using Loans.Entities;
using Loans.Services;
using Loans.Services.Contracts;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Moq;

namespace Loans.Tests
{
    [TestClass]
    public class LoanApplicationProcessorShould
    {
        [TestMethod]
        public void DeclineLowSalary()
        {
            var product = new LoanProduct {Id = 99, ProductName = "Loan", InterestRate = 5.25m};
            var amount = new LoanAmount {CurrencyCode = "Rial", Principal = 2_000_000_0};
            var applicant =
                new Applicant {Id = 1, Name = "User 1", Age = 25, Address = "This place", Salary = 1_100_000_0};
            var application = new LoanApplication {Id = 42, Product = product, Amount = amount, Applicant = applicant};

            var mockIdentityVerifier = new Mock<IIdentityVerifier>();
            var mockCreditScorer = new Mock<ICreditScorer>();

            var processor = new LoanApplicationProcessor(mockIdentityVerifier.Object, mockCreditScorer.Object);
            processor.Process(application);

            Assert.IsFalse(application.IsAccepted);
        }
    }
}
در اینجا بجای ارسال null به سازنده‌ی کلاس LoanApplicationProcessor، جهت برآورده کردن مقدار پیش‌فرض پارامترهای آن و کامپایل شدن برنامه، نمونه‌های تقلیدی دو وابستگی مورد نیاز آن‌را تهیه و به آن ارسال کرده‌ایم.
کار با ذکر new Mock شروع شده و آرگومان جنریک آن‌را از نوع وابستگی‌هایی که نیاز داریم، مقدار دهی می‌کنیم. سپس خاصیت Object آن، امکان دسترسی به این شیء تقلید شده را میسر می‌کند.
اکنون اگر مجددا این آزمون واحد را اجرا کنیم، مشاهده خواهیم کرد که بجای صدور استثناء، با موفقیت به پایان رسیده‌است:



گاهی از اوقات جایگزین کردن یک وابستگی null با نمونه‌ی Mock آن کافی نیست

در مثالی که بررسی کردیم، اشیاء mock، کار برآورده کردن نیازهای ابتدایی آزمایش را انجام داده و سبب اجرای موفقیت آمیز آن شدند؛ اما همیشه اینطور نیست:
using Loans.Entities;
using Loans.Services;
using Loans.Services.Contracts;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Moq;

namespace Loans.Tests
{
    [TestClass]
    public class LoanApplicationProcessorShould
    {        
        [TestMethod]
        public void Accept()
        {
            var product = new LoanProduct {Id = 99, ProductName = "Loan", InterestRate = 5.25m};
            var amount = new LoanAmount {CurrencyCode = "Rial", Principal = 2_000_000_0};
            var applicant =
                new Applicant {Id = 1, Name = "User 1", Age = 25, Address = "This place", Salary = 1_500_000_0};
            var application = new LoanApplication {Id = 42, Product = product, Amount = amount, Applicant = applicant};

            var mockIdentityVerifier = new Mock<IIdentityVerifier>();
            var mockCreditScorer = new Mock<ICreditScorer>();

            var processor = new LoanApplicationProcessor(mockIdentityVerifier.Object, mockCreditScorer.Object);
            processor.Process(application);

            Assert.IsTrue(application.IsAccepted);
        }
    }
}
تفاوت این آزمایش جدید با قبلی، در دو مورد است: مقدار Salary به MinimumSalary تنظیم شده‌است و در آخر Assert.IsTrue را داریم.
اگر این آزمایش را اجرا کنیم، با شکست مواجه خواهد شد. علت اینجا است که هرچند در حال استفاده‌ی از دو mock object به عنوان وابستگی‌های مورد نیاز هستیم، اما تنظیمات خاصی را بر روی آن‌ها انجام نداده‌ایم و به همین جهت خروجی مناسبی را در اختیار LoanApplicationProcessor قرار نمی‌دهند. برای مثال مرحله‌ی بعدی بررسی اعتبار شخص در کلاس LoanApplicationProcessor، فراخوانی سرویس identityVerifier و متد Validate آن است که خروجی آن بر اساس کدهای فعلی، همیشه false است:
_identityVerifier.Initialize();
var isValidIdentity = _identityVerifier.Validate(
    application.Applicant.Name, application.Applicant.Age, application.Applicant.Address);
در قسمت بعدی، کار تنظیم اشیاء mock را انجام خواهیم داد.

کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: MoqSeries-01.zip
نظرات مطالب
شروع به کار با EF Core 1.0 - قسمت 8 - بررسی رابطه‌ی Many-to-Many
تغییر نام جدول واسط در این روش: (+)
public class PostConfiguration : IEntityTypeConfiguration<Post>
{
    public void Configure(EntityTypeBuilder<Post> builder)
    {
        builder.HasMany(post => post.Tags)
            .WithMany(tag => tag.Posts)
            .UsingEntity(join => join.ToTable("PostsTags"));
    }
}
مطالب
نکاتی توصیه ای برای برنامه نویسی اندروید : قسمت دوم
در ادامه‌ی قسمت اول، ده مورد دیگر از نکات کاربردی را بیان می‌کنیم.

  یازده. در جاوا رویدادها با استفاده از اینترفیس‌ها پیاده سازی می‌شوند. برای نامگذاری یک رویداد، قاعده آن در جاوا بدین شکل است که نام‌ها به صورت (+ ) Camel نوشته شده و آخرین عبارت هم Listener باشد و نیازی هم به حرف I در نامگذاری اینترفیس نیست؛ چون همه می‌دانند که این Listener آخری یعنی رویدادی که با اینترفیس پیاده سازی شده است و استفاده از I بی معنی است. هر چند بر خلاف دات نت، در اینجا استفاده از قاعده I چندان متداول نیست.
 public interface CopyFileListener
    {
        void PublishProgress(long fileSize,long copiedSize);
    }

دوازده. گوگل اینترفیس‌هایی را که برای رویدادها میسازد، داخل کلاس اصلی تعریف میکند. پس بهتر هست که شما هم همین روند را ادامه بدید و از این قاعده خارج نشوید. اگر خوب دقت کرده باشید، در برنامه نویسی اندروید تمام اینترفیس‌ها داخل کلاس اصلی هستند:
 textView.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                
            }
        });
در کد بالا رویداد OnclickListener در خود کلاس View تعریف شده است. پس ما هم بهتر هست همین کار را بکنیم:
public class MemoryWare {

    public interface CopyFileListener
    {
        void PublishProgress(long fileSize,long copiedSize);
    }
....
}
یک نکته دیگر اینکه موقعی که یک رویداد را به یک پراپرتی set انتساب می‌دهیم، رسم این است که نام آن پراپرتی با عبارت SetOn آغاز شود و با نام اینترفیس پایان یابد:
SetOnClickListener
البته اگر کلاس شما لیستی از رویدادها را درست میکند بهتر است از عبارت Add به جای SetOn استفاده کنید و برای آن یک Remove هم قرار دهید. نمونه آن را می‌توانید در کد زیر ببینید:
 editText.addTextChangedListener(new TextWatcher() {
            @Override
            public void beforeTextChanged(CharSequence s, int start, int count, int after) {

            }

            @Override
            public void onTextChanged(CharSequence s, int start, int before, int count) {

            }

            @Override
            public void afterTextChanged(Editable s) {

            }
        });

سیزده
. آداپتورها و آداپتور ویوها (چون لیست) قسمت مهمی از برنامه‌های اندرویدی به شمار می‌آیند؛ تا حدی که در بیشتر برنامه‌های ساده هم حضور پررنگی دارند. ولی برای استفاده از این آداپتورها باید بدانید که نحوه کار آن‌ها چگونه است. بسیاری از کاربران در این قسمت اشتباهات زیادی می‌کنند. اگر در stackOverflow هم در اینباره نگاه کنید، با حجم انبوهی از سوالات روبرو می‌شوید و فقط به خاطر اینکه نحوه کارکرد آن را نمی‌دانند، به مشکل برخورده‌اند.
کلاس BaseAdapter اصلی‌ترین کلاس آداپتور هاست که بقیه از آن مشتق شده‌اند و معروفترین مشتقات آن، کلاس‌های CursorAdapter و ArrayAdapter هستند که امکانات بیس آداپتور را افزایش داده‌اند.به عنوان مثال در کد پایین از ArrayAdapter استفاده شده است.


نحوه کار یک آداپتور بدین صورت است که متدی را به نام GetView با قابلیت override دارد که با هر تعداد آیتم موجود صدا زده می‌شود. ولی اگر تصور کنیم فقط چند صدهزار آیتم هم داشته باشیم، آیا واقعا اجرا می‌شود؟ جواب این سوال این است که با هر بار اسکرولی که شما میکنید آیتم‌های بعدی ایجاد می‌شوند ولی باز این سوال پیش می‌آید که هر آیتم برای خود جداگانه تشکیل می‌شود؟ مطمئنا جواب خیر است. آداپتورها از سیستمی به نام ViewRecycler برای کش کردن آیتم‌های ایجاد شده استفاده می‌کنند و با هر اسکرولی که انجام می‌شود آیتم‌های بعدی از روی آیتم‌های قبلی که قبلا از صفحه خارج شده‌اند، ساخته می‌شوند و آیتم‌های کش شده قبلی را با پارامتری با نام convertView به دست شما می‌رساند.
کد زیر را ببینید:
  @Override
    public View getView(int position, View rowView, ViewGroup parent) {

        ViewHolder viewHolder=null;
        if(rowView==null)
        {
            // 1. Create inflater
            LayoutInflater inflater = (LayoutInflater) context
                    .getSystemService(Context.LAYOUT_INFLATER_SERVICE);

            // 2. Get rowView from inflater
            rowView = inflater.inflate(R.layout.row_bank_group_list, parent, false);
            viewHolder=new ViewHolder();
            viewHolder.txtGroupName=(TextView) rowView.findViewById(R.id.text_groupName);
            rowView.setTag(viewHolder);
        }
        else
        {
            viewHolder=(ViewHolder)rowView.getTag();
        }
        viewHolder.txtGroupName.setText(getItem(position).getName());
        viewHolder.txtGroupName.setTypeface(new FontSystem().get_General_Font(context));
        viewHolder.txtGroupName.setTextColor(context.getResources().getColor(R.color.black));

        return rowView;
    }
کد بالا ابتدا بررسی میکند که آیا convertView نال است یا خیر. اگر نال بود به این معنا است که کش برای شما چیزی نداشته است و باید آیتم جدیدی را بسازید. پس اشیاء موجود در آن را در حافظه می‌آورید و مقداردهی می‌کنید. ولی اگر برابر نال نباشد، یعنی کش حاوی یک سری آیتم است که قبلا ایجاد شده‌اند. پس نیاز به inflate کردن مجدد ندارد و میتوانید  همان را مستقیما مورد استفاده قرار دهید و با مقادیر جدید آن را ست کنید.
کلاس داخلی ViewHolder هم یک الگو برای عدم بررسی Viewهای داخل آن است که نیازی به یافتن و تبدیل مجدد آن‌ها نداشته باشید. در این روش شیء، داخل خصوصیت tag آیتم قرار گرفته است و وقتی از کش برداشته شود، خاصیت تگ آن را می‌خوانیم و مستقیما مورد استفاده قرار می‌دهیم. در این حالت شما بهترین استفاده را از پردازش‌ها و حافظه، می‌کنید.

چهارده. یکی از کارهایی را که قبل از کار کردن در یک مسیر فیزیکی باید انجام دهید این است که مطمئن باشید اجازه نوشتن در آن ناحیه را دارید یا خیر. در غیر اینصورت برنامه شما با خطای FC روبرو می‌شود و اجرای آن خاتمه می‌یابد. به همین دلیل اکثر برنامه نویسان از متد CanWrite در کلاس File استفاده می‌کنند. ولی در هنگام استفاده از این متد باید دقت داشته باشید که کلاس File فقط باید حاوی مسیر باشد و اسمی از فایل مربوطه در آن نباشد. دلیل هم آن است که این احتمال می‌رود اگر فایلی هم وجود نداشته باشد، مقدار false را به شما برگرداند. مثال زیر قرار است فایلی را در کارت حافظه بنویسید، ولی بررسی اجازه نوشتن در مسیر، اشتباه است:
File file=new File(sdcardPath,fileName);

if(file.CanWrite())
{
  .....
}
کد بالا را به طور صحیح بازنویسی می‌کنیم:
File file=new File(sdcardPath);

if(file.CanWrite())
{
file=new File(sdcardPath,filePath);
  .....
}
اگر هنگام تست این کد مشکلی نداشتید، دلیل بر صحت کد نیست. بلکه بنابر تجربه شخصی من، زمانی این مشکل پیش آمده بود که روی چند گوشی تست شده و بعدها مشکل در گوشی پیش آمده بود که هم مدل و دقیقا مشابه یکی از گوشی‌های تستی بود.

پانزده. کارت حافظه خارجی: همه برنامه نویسان اندروید حداقل یکبار از کد زیر استفاده کرده اند:
Environment.getExternalStorageDirectory()
بررسی‌ها در استک اورفلو نشان می‌دهد که برنامه نویسان، گزارش عملکرد اشتباهی را از این متد دارند. ولی حقیقت این است که این متد به هیچ عنوان مقدار اشتباهی را بر نمی‌گرداند. بلکه منطق آن متفاوت از چیزی است که شما فکر می‌کنید. وقتی ما صحبت از حافظه خارجی برای یک گوشی میکنیم، منظور همان کارت حافظه‌ای است که به طور جداگانه داخل گوشی قرار داده‌ایم و انتظار داریم متد بالا آدرس و مدخل همین کارت را برای ما فراهم کند. ولی در کمال تعجب می‌بینیم که آدرس حافظه داخلی برگردانده می‌شود. پس باید ببینیم اندروید از  آن چه انتظاری دارد؟
هر برنامه‌ای که در اندروید نصب می‌شود در مسیر
/Data/Data
یک دایرکتوری با نام خود دارد مثل:
/Data/Data/Info.Dotnettips.MyApp
این دایرکتوری تنها متعلق به این برنامه بوده و کسی جز Root به آن دسترسی ندارد. اندروید این دایرکتوری را به عنوان حافظه داخلی در نظر میگیرد که برای کار با آن نیاز به هیچ آدرس دهی نیست. ولی در کنار این دایرکتوری حافظه داخلی خود گوشی که در آن انبوه فایل‌های خود را ذخیره می‌کنید هم هست که اندروید آن را حافظه خارجی می‌پندارد. حال آن حافظه‌ای را که شما جداگانه به صورت یک کارت یا USB OTG متصل میکنید، به عنوان حافظه خارجی در نظر نمیگیرد. در صورتی که شما چنین انتظاری را دارید، برای حل این مشکل بهتر است از کدهای موجود مثل کد زیر استفاده کنید:
    /**
     * it will returns sd path for you
     *  <p>
     *  <b>Required Permission: </b>android.permission.READ_EXTERNAL_STORAGE<br/>
     * </p>
     * @return
     */
    public  List<String> GetExternalMounts() {
        final List<String> out = new ArrayList<>();
        String reg = "(?i).*vold.*(vfat|ntfs|exfat|fat32|ext3|ext4).*rw.*";
        String s = "";
        try {
            final Process process = new ProcessBuilder().command("mount")
                    .redirectErrorStream(true).start();
            process.waitFor();
            final InputStream is = process.getInputStream();
            final byte[] buffer = new byte[1024];
            while (is.read(buffer) != -1) {
                s = s + new String(buffer);
            }
            is.close();
        } catch (final Exception e) {
            e.printStackTrace();
        }

        // parse output
        final String[] lines = s.split("\n");
        for (String line : lines) {
            if (!line.toLowerCase(Locale.US).contains("asec")) {
                if (line.matches(reg)) {
                    String[] parts = line.split(" ");
                    for (String part : parts) {
                        if (part.startsWith("/"))
                            if (!part.toLowerCase(Locale.US).contains("vold"))
                                if(new File(part).canWrite())
                                    out.add(part);
                    }
                }
            }
        }
        return out;
    }

شانزده.
یکی از روش‌های انتقال اطلاعات بین اکتیویتی‌ها مختلف استفاده از Extras هاست که شما با تعیین یک نام یا کلید، اطلاعات مربوطه را ارسال و توسط همان کلید؛ اطلاعات را در اکتیویتی مقصد دریافت میکنید:
notesIntent.putExtra("PartyId", PartyId);
startActivity(notesIntent);
و در مقصد:
PartyId=getIntent().getLongExtra("PartyId",0);
در این حالت بهتر است با این رشته‌ها نیز همانند مورد شماره دو در قسمت اول رفتار شود تا نیازی به نوشتن و تکرار این نام‌ها نباشد. ولی با یک نگاه به استانداردهای نوشته شده در خود اندروید و بسیاری از کتابخانه‌های ثالث در می‌یابیم که بهترین روش این است که این کلید‌ها را به صورت متغیرهای ایستا در خود اکتیویتی ذخیره کنیم؛ در این حالت هر کلید در جایگاه واقعی خودش قرار گرفته است. نمونه‌ای از این استفاده را می‌توانید در کتابخانه FilePicker مشاهده کنید:
i.putExtra(FilePickerActivity.EXTRA_ALLOW_MULTIPLE, false);
i.putExtra(FilePickerActivity.EXTRA_ALLOW_CREATE_DIR, false);
i.putExtra(FilePickerActivity.EXTRA_MODE, FilePickerActivity.MODE_FILE);

هفده.
قواعد نامگذاری: برای نامگذاری متغیرها از قانون CamelCase استفاده میکنیم. ولی برای حالات زیر از روش‌های دیگر استفاده می‌شود:
  • برای ثابت‌ها از حروف بزرگ و _ استفاده کنید.
  • برای متغیرهای خصوصی از حرف m در ابتدای نام متغیر استفاده کنید.
  • برای متغیرهای استاتیک از حرف s در ابتدای نام متغیر استفاده کنید.
نمونه ای از این نامگذاری که توسط مستندات گوگل سفارش شده است:
public class MyClass {
    public static final int SOME_CONSTANT = 42;
    public int publicField;
    private static MyClass sSingleton;
    int mPackagePrivate;
    private int mPrivate;
    protected int mProtected;
}

هجده:
قاعده نظم و ترتیب در import‌ها توسط مستندات گوگل بدین شکل تعریف شده است:
  1. نام پکیج‌های ارائه شده توسط گوگل
  2. نام پکیج‌های ثالث
  3. نام پکیج‌های موجود در java و javax
  4. پکیج‌های موجود در پکیج اصلی
البته رعایت این قاعده کمی سخت و عموما بدون اجراست ولی نگران نباشید. از آنجایی که ادیتور از طرف jet brains ارائه شده‌است و عمل import به طور خودکار صورت میگیرد و با ابزارهای دیگری که در دل این ادیتور قرار گرفته است، این عمل به طور خودکار انجام می‌گیرد.

نوزدهم. مرتب سازی متدهای دسترسی یک کلاس: بسیار خوب است که همیشه کدهای ما نظم خاصی را داشته باشد تا پیگیری‌های شخصی و تیمی در آن راحت‌تر صورت بگیرد. برای مثال در یک کلاس ابتدا متدهای public و سپس private قرار گیرند و الی آخر.
الگوی عمومی که برای کار با جاوا صورت گرفته است به شکل زیر می‌باشد:
public, protected, private,abstract, static, transient, volatile, synchronized, final, native.
البته این متدهای دسترسی بسته به فیلد بودن و متد بودن نیز تغییر میکند. به عنوان مثال ابتدا فیلدها در نظر گرفته می‌شوند و سپس متدها و ...
ادیتور intelij شامل تنظمیاتی برای مرتب سازی کدهاست که در این مورد بسیار سودمند است. با طی کردن مسیر زیر می‌توانید برای آن ترتیب اینگونه موارد را مشخص کنید.
Settings>Editor>Code Style>Arrangement
در اینجا شما امکان تعاریف این ترتیب‌ها را دارید. البته بهتر هست در حالت پیش فرض باشد تا حالتی عمومی بین افراد مختلف برقرار باشد.

در تصویر بالا متدها به ترتیب متدهای دستری بین بلوک‌های کامنت method start و method end قرار گرفته اند.

 همچنین شامل گزینه‌های دیگری نیز میباشد که به نظرم فعال کردنشان بسیار خوب است. گزینه keep overridden methods together به شما کمک می‌کند تا متدهایی را که رونویسی می‌شوند، در کنار یکدیگر قرار بگیرند که برای کلاس‌های اندرویدی مثل اکتیویتی‌ها و فرگمنت‌ها و ... بسیار خوب است. گزینه مفید دیگر Keep dependent methods together است که در دو حالت عمقی یا خطی متدهای وابسته (متدهایی که متدهای دیگر را در آن کلاس صدا میزنند) در کنار یکدیگر قرار میدهد و مابقی گزینه‌ها، که بسیار سودمند هست. به هر حال هر قاعده‌ای را که برای خود انتخاب میکنید اگر در حالت پیش فرض نیست بهتر است در مستندات پروژه ذکر شود تا افراد دیگر سریعتر به موضوع پی ببرند.

قسمت بیستم. این مورد برای افراد تازه کار می‌باشد که تازه اندروید استادیو را باز کرده‌اند و مشغول کدنویسی می‌باشند. یکی از مواردی که در همان مرحله اول به آن برمیخورید این است که intellisense  ادیتور به بزرگی و کوچکی حروف حساس است و تنها با حرف اول سازگاری دارد. برای تغییر این مسئله باید مسیر زیر را طی کنید:
Settings>Editor>Completion>Case-sensitive Completion>None
حالا با تایپ هر کلمه، دستورات و آبجکت‌هایی را که شامل آن کلمات باشند، به شما نمایش داده خواهند شد.

مطالب دوره‌ها
تزریق وابستگی‌ها در حالتی‌که از یک اینترفیس چندین کلاس مشتق شده‌اند
حین کار با ASP.NET Identity به اینترفیسی به نام IIdentityMessageService شبیه به اینترفیس ذیل می‌رسیم:
namespace SameInterfaceDifferentClasses.Services.Contracts
{
  public interface IMessageService
  {
   void Send(string message);
  }
}
فرض کنید از آن دو پیاده سازی در برنامه برای ارسال پیام‌ها توسط ایمیل و همچنین توسط SMS، وجود دارد:
public class EmailService : IMessageService
{
  public void Send(string message)
  {
   // ...
  }
}

public class SmsService : IMessageService
{
  public void Send(string message)
  {
   //todo: ...
  }
}
اکنون کلاس مدیریت کاربران برنامه، در سازنده‌ی خود نیاز به دو وهله، از این سرویس‌های متفاوت، اما در اصل مشتق شده‌ی از یک اینترفیس دارد:
public interface IUsersManagerService
{
  void ValidateUserByEmail(int id);
}

public class UsersManagerService : IUsersManagerService
{
  private readonly IMessageService _emailService;
  private readonly IMessageService _smsService;
 
  public UsersManagerService(IMessageService emailService, IMessageService smsService)
  {
   _emailService = emailService;
   _smsService = smsService;
  }
 
  public void ValidateUserByEmail(int id)
  {
   _emailService.Send("Validated.");
  }
}
در این حالت صرف تنظیمات ابتدایی انتساب یک اینترفیس، به یک کلاس مشخص کافی نیست:
ioc.For<IMessageService>().Use<SmsService>();
ioc.For<IMessageService>().Use<EmailService>();
از این جهت که در سازنده‌ی کلاس UsersManagerService دقیقا مشخص نیست، پارامتر اول باید سرویس SMS باشد یا ایمیل؟
برای حل این مشکل می‌توان به نحو ذیل عمل کرد:
public static class SmObjectFactory
{
  private static readonly Lazy<Container> _containerBuilder =
   new Lazy<Container>(defaultContainer, LazyThreadSafetyMode.ExecutionAndPublication);
 
  public static IContainer Container
  {
   get { return _containerBuilder.Value; }
  }
 
  private static Container defaultContainer()
  {
   return new Container(ioc =>
   {
    // map same interface to different concrete classes
    ioc.For<IMessageService>().Use<SmsService>();
    ioc.For<IMessageService>().Use<EmailService>();
 
    ioc.For<IUsersManagerService>().Use<UsersManagerService>()
     .Ctor<IMessageService>("smsService").Is<SmsService>()
     .Ctor<IMessageService>("emailService").Is<EmailService>();
   });
  }
}
در اینجا توسط متد Ctor که مخفف Constructor یا سازنده‌ی کلاس است، مشخص می‌کنیم که اگر به پارامتر smsService رسیدی، از کلاس SmsService استفاده کن و در مورد کلاس سرویس ایمیل نیز به همین ترتیب. اینبار اگر برنامه را اجرا کنیم:
 var usersManagerService = SmObjectFactory.Container.GetInstance<IUsersManagerService>();
usersManagerService.ValidateUserByEmail(id: 1);


همانطور که در تصویر مشخص است، هر کدام از پارامترها، توسط کلاس‌های متفاوتی مقدار دهی شده‌اند؛ هرچند از یک اینترفیس مشخص استفاده می‌کنند.

کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید:
Dependency-Injection-Samples/DI09