مطالب
مهارت‌های تزریق وابستگی‌ها در برنامه‌های NET Core. - قسمت ششم - دخالت در مراحل وهله سازی اشیاء توسط IoC Container
روش متداول کار با تزریق وابستگی‌های برنامه‌های مبتنی بر NET Core.، عموما با ثبت و معرفی یک سرویس به صورت زیر، توسط متدهای AddTransient، AddSingleton و AddScoped است:
public class Startup 
{ 
    public void ConfigureServices(IServiceCollection services) 
    { 
        // ... 
         
        services.AddTransient<ICustomerService, DefaultCustomerService>(); 
         
        // ... 
    } 
}
و سپس استفاده‌ی از این سرویس، با تزریق آن در سازنده‌ی یک کنترلر که نمونه‌های بیشتری از آن‌را در قسمت چهارم بررسی کردیم:
public class SupportController 
{ 
    // DefaultCustomerService will be injected here: 
    public SupportController(ICustomerService customerService) 
    { 
        // ... 
    } 
}
در اینجا کار وهله سازی DefaultCustomerService به صورت خودکار و راسا توسط IoC Container توکار برنامه صورت می‌گیرد و ما هیچگونه دخالتی را در آن نداریم. اما اگر در این بین نیاز باشد پس از وهله سازی DefaultCustomerService، یک خاصیت آن نیز بر اساس شرایط جاری مقدار دهی شود و حاصل نهایی در اختیار SupportController فوق قرار گیرد چه باید کرد؟
برای سفارشی سازی مراحل وهله سازی اشیاء توسط IoC Container توکار برنامه و امکان دخالت در آن، قابلیتی تحت عنوان «factory registration» نیز پیش بینی شده‌است که در ادامه آن‌را بررسی می‌کنیم.


Factory Registration چیست؟

اگر در اسمبلی Microsoft.Extensions.DependencyInjection.Abstractions و فضای نام Microsoft.Extensions.DependencyInjection آن به کلاس ServiceCollectionServiceExtensions که متدهای الحاقی مانند AddScoped را ارائه می‌کند، بیشتر دقت کنیم، تک تک این متدها امضاهای دیگری را نیز دارند:
namespace Microsoft.Extensions.DependencyInjection
{
    public static class ServiceCollectionServiceExtensions
    {
        public static IServiceCollection AddScoped<TService>(
     this IServiceCollection services) where TService : class;
        public static IServiceCollection AddScoped(
     this IServiceCollection services, Type serviceType, Type implementationType);
        public static IServiceCollection AddScoped(
     this IServiceCollection services, Type serviceType, 
 Func<IServiceProvider, object> implementationFactory);
        public static IServiceCollection AddScoped<TService, TImplementation>(this IServiceCollection services)
        public static IServiceCollection AddScoped(
     this IServiceCollection services, Type serviceType);
        public static IServiceCollection AddScoped<TService>(
     this IServiceCollection services, 
 Func<IServiceProvider, TService> implementationFactory) where TService : class;
        public static IServiceCollection AddScoped<TService, TImplementation>(
     this IServiceCollection services, 
 Func<IServiceProvider, TImplementation> implementationFactory)
// ...
    }
}
همانطور که ملاحظه می‌کنید، امضای تعدادی از این overloadها، دارای پارامترهایی از نوع Func نیز هست و هدف آن‌ها فراهم آوردن روشی برای سفارشی سازی مراحل وهله سازی سرویسی‌های بازگشتی از طریق سیستم تزریق وابستگی‌های برنامه است. توسط این پارامتر، پیش از وهله سازی سرویس درخواستی، IServiceProvider جاری یا همان root container را در اختیار شما قرار می‌دهد (اطلاعات بیشتر در مورد IServiceProvider را در قسمت دوم بررسی کردیم) و توسط آن می‌توان ابتدا وهله‌ای از سرویس یا سرویس‌های خاصی را دریافت کرد و پس از ترکیب و سفارشی سازی آن‌ها، در آخر یک object را بازگشت داد که در نهایت به عنوان وهله‌ی اصلی این سرویس درخواستی، در سراسر برنامه مورد استفاده قرار می‌گیرد. در ادامه با مثال‌هایی، کاربردهای این پارامتر از نوع Func، یا Implementation Factory را بررسی می‌کنیم.


مثال 1 : تزریق وابستگی‌ها در حالتیکه کلاس سرویس مدنظر دارای تعدادی پارامتر ثابت است

IoC Container توکار برنامه‌های NET Core.، به صورت خودکار وابستگی‌های تزریق شده‌ی در سازنده‌های سرویس‌های مختلف را تا هر چند سطح ممکن، به صورت خودکار وهله سازی می‌کند؛ به شرطی‌که این وابستگی‌های تزریق شده نیز خودشان سرویس بوده باشند و در تنظیمات ابتدایی آن ثبت و معرفی شده باشند. به عبارتی زمانیکه با سیستم تزریق وابستگی‌ها کار می‌کنیم، مهم نیست که نگران مقدار دهی پارامترهای سازنده‌ی تزریق شده‌ی در سازنده‌های سرویسی خاص باشیم. اما ... برای نمونه سرویس زیر را که یک رشته را در سازنده‌ی خود دریافت می‌کند درنظر بگیرید:
namespace CoreIocServices
{
    public interface IParameterizedService
    {
        string GetConstructorParameter();
    }

    public class ParameterizedService : IParameterizedService
    {
        private readonly string _connectionString;

        public ParameterizedService(string connectionString)
        {
            _connectionString = connectionString;
        }

        public string GetConstructorParameter()
        {
            return _connectionString;
        }
    }
}
اینبار دیگر نمی‌توان این سرویس را از طریق متداول زیر ثبت و معرفی کرد:
services.AddTransient<IParameterizedService, ParameterizedService>();
چون IoC Container نمی‌داند که چگونه و از کجا باید پارامتر رشته‌ای درخواستی در سازنده‌ی کلاس ParameterizedService را تامین کند. همچنین ثبت سرویس‌ها نیز در کلاس ServiceCollectionServiceExtensions معرفی شده‌ی در ابتدای بحث، به قید «where TService : class» محدود شده‌است. اینجا است که روش factory registration به کمک ما خواهد آمد تا بتوانیم مراحل وهله سازی این سرویس را سفارشی سازی کنیم:
services.AddTransient<IParameterizedService>(serviceProvider =>
{
   return new ParameterizedService("some value ....");
});
البته چون بدنه‌ی این Func، صرفا از یک return تشکیل شده‌است، معادل ساده شده‌ی زیر را هم می‌تواند داشته باشد:
services.AddTransient<IParameterizedService>(serviceProvider => new ParameterizedService("some value ...."));
اینبار در سراسر برنامه اگر سرویس IParameterizedService درخواست شود، وهله‌ای از کلاس ParameterizedService را با پارامتر سازنده‌ی "some value ...."، دریافت خواهد کرد.

در اینجا چون serviceProvider نیز در اختیار ما است، حتی می‌توان این مقدار را از سرویسی دیگر دریافت کرد و سپس مورد استفاده قرار داد:
services.AddTransient<IParameterizedService>(serviceProvider =>
{
   var config = serviceProvider.GetRequiredService<ITestService>().GetConfigValue();
   return new ParameterizedService(config);
});

نمونه‌ی دیگری از این دست، کار با IUrlHelper توکار ASP.NET Core است. این سرویس برای اینکه پاسخ درستی را ارائه دهد، نیاز به ActionContext جاری را دارد تا بتواند از طریق آن به تمام جزئیات اکشن متد یک کنترلر و درخواست رسیده دسترسی داشته باشد. در این حالت برای ساده سازی کار با آن، بهتر است تامین وابستگی‌های لحظه‌ای این سرویس را با سفارشی سازی نحوه‌ی وهله سازی آن، انجام دهیم، تا اینکه این قطعه کد تکراری را در هر جائیکه به IUrlHelper نیاز است، تکرار کنیم:
services.AddScoped<IUrlHelper>(serviceProvider =>
{
   var actionContext = serviceProvider.GetRequiredService<IActionContextAccessor>().ActionContext;
   var urlHelperFactory = serviceProvider.GetRequiredService<IUrlHelperFactory>();
   return urlHelperFactory.GetUrlHelper(actionContext);
});
اکنون اگر IUrlHelper را به سازنده‌ی یک کنترلر تزریق کنیم، دیگر نیازی به سه سطر نوشته‌ی تامین factory و action context آن نخواهد بود.


مثال 2: وهله سازی در صورت نیاز به وابستگی‌های یک سرویس، به کمک Lazy loading

فرض کنید دو سرویس را در سازنده‌ی سرویس دیگری تزریق کرده‌اید:
namespace Services
{
    public class OrderHandler : IOrderHandler
    {
        private readonly IAccounting _accounting;
        private readonly ISales _sales;
        public OrderHandler(IAccounting accounting, ISales sales)
        {
بعد در این کلاس، در یک متد، از سرویس accounting استفاده می‌شود و در متدی دیگر از سرویس sales. یعنی هرچند در زمان وهله سازی شیء OrderHandler هر دو وابستگی تزریق شده‌ی در سازنده‌ی آن نیز وهله سازی خواهند شد، اما در بسیاری از شرایط، بسته به متد مورد استفاده، فقط از یکی از آن‌ها استفاده می‌کنیم. اکنون این سؤال مطرح می‌شود که آیا می‌توان سربار وهله سازی تمام سازنده‌های این کلاس را به زمان استفاده‌ی از آن‌ها منتقل کرد؟ یعنی سرویس accounting تزریق شده فقط زمانی وهله سازی شود که واقعا قرار است از آن استفاده کنیم.
روش انجام یک چنین کارهایی با استفاده از کلاس Lazy اضافه شده‌ی به NET 4x. قابل انجام است:
   public class OrderHandlerLazy : IOrderHandler
    {
        public OrderHandlerLazy(Lazy<IAccounting> accounting, Lazy<ISales> sales)
        {
 و برای معرفی آن در اینجا می‌توان از روش factory registration استفاده کرد:
services.AddTransient<IOrderHandler, OrderHandlerLazy>();
services.AddTransient<IAccounting, Accounting>()
            .AddTransient(serviceProvider => new Lazy<IAccounting>(() => serviceProvider.GetRequiredService<IAccounting>()));
services.AddTransient<ISales, Sales>()
           .AddTransient(serviceProvider => new Lazy<ISales>(() => serviceProvider.GetRequiredService<ISales>()));
- در اینجا در ابتدا تمام سرویس‌ها (حتی آن‌هایی که قرار است به صورت Lazy استفاده شوند) یکبار به صورت متداولی معرفی می‌شوند.
- سپس سرویس‌هایی که قرار است به صورت Lazy نیز واکشی شوند، بار دیگر توسط روش factory registration با وهله سازی new Lazy از نوع سرویس مدنظر و فراهم آوردن پیاده سازی آن با استفاده از serviceProvider.GetRequiredService، مجددا معرفی خواهند شد.

پس از این تنظیمات، اگر سرویس IOrderHandler را از طریق سیستم تزریق وابستگی‌ها درخواست کنید، وابستگی‌های تزریق شده‌ی در سازنده‌ی آن فقط زمانی و در محلی وهله سازی می‌شوند که از طریق خاصیت Value شیء Lazy آن‌ها مورد استفاده قرار گرفته شده باشند.
مثال کامل IOrderHandler را از فایل پیوستی انتهای مطلب می‌توانید دریافت. اگر آن‌را اجرا کنید (برنامه‌ی کنسول آن‌را)، در خروجی آن، فقط اجرا شدن سازنده‌ی سرویسی را مشاهده می‌کنید که مورد استفاده قرار گرفته و نه وابستگی دومی که تزریق شده، اما استفاده نشده‌است.


مثال 3: چگونه بجای اینترفیس‌ها، یک وهله از کلاسی مشخص را از سیستم تزریق وابستگی‌ها درخواست کنیم؟

فرض کنید سرویسی را به صورت زیر به سیستم تزریق وابستگی‌ها معرفی کرده‌اید:
services.AddTransient<IMyDisposableService, MyDisposableService>();
در ادامه اگر سرویس IMyDisposableService را از این سیستم درخواست کنیم، برنامه بدون مشکل اجرا می‌شود؛ اما اگر خود MyDisposableService را تزریق کنیم چطور؟
public class AnotherController 
{ 
    public AnotherController(MyDisposableService customerService) 
    { 
        // ... 
    } 
}
در این حالت برنامه با استثنای زیر متوقف می‌شود و عنوان می‌کند که نمی‌داند چگونه باید این وابستگی تزریق شده را تامین کند:
An unhandled exception occurred while processing the request. 
InvalidOperationException: Unable to resolve service for type ‘MyDisposableService’ while attempting to activate ‘AnotherController’. 
Microsoft.Extensions.DependencyInjection.ActivatorUtilities.GetService(IServiceProvider sp, Type type, Type requiredBy, bool isDefaultParameterRequired)
این مورد را نیز می‌توان توسط factory registration به نحو زیر مدیریت کرد:
services.AddTransient<IMyDisposableService, MyDisposableService>();
services.AddTransient<MyDisposableService>(serviceProvider =>
serviceProvider.GetRequiredService<IMyDisposableService>() as MyDisposableService);
هر زمانیکه وهله‌ای از کلاس MyDisposableService درخواست شود، وهله‌ای از سرویس IMyDisposableService را بازگشت می‌دهیم.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: CoreDependencyInjectionSamples-06.zip
مطالب
آزمون واحد در MVVM به کمک تزریق وابستگی
یکی از خوبی‌های استفاده از Presentation Pattern‌ها بالا بردن تست پذیری برنامه و در نتیجه نگهداری کد می‌باشد.
MVVM الگوی محبوب برنامه نویسان WPF و Silverlight می‌باشد.  به صرف استفاده از الگوی MVVM نمی‌توان اطمینان داشت که ViewModel کاملا تست پذیری داریم. به عنوان مثلا اگر در ViewModel خود مستقیما DialogBox کنیم یا ارجاعی از View دیگری داشته باشیم نوشتن آزمون‌های واحد تقریبا غیر ممکن می‌شود. قبلا درباره‌ی این مشکلات و راه حل آن مطلب در سایت منتشر شده است : 
در این مطلب قصد داریم سناریویی را بررسی کنیم که ViewModel از Background Worker جهت انجام عملیات مانند دریافت داده‌ها استفاده می‌کند.
Background Worker کمک می‌کند تا اعمال طولانی در یک Thread دیگر اجرا شود در نتیجه رابط کاربری Freeze نمی‌شود.
به این مثال ساده توجه کنید : 
    public class BackgroundWorkerViewModel : BaseViewModel
    {
        private List<string> _myData;

        public BackgroundWorkerViewModel()
        {
            LoadDataCommand = new RelayCommand(OnLoadData);
        }

        public RelayCommand LoadDataCommand { get; set; }

        public List<string> MyData
        {
            get { return _myData; }
            set
            {
                _myData = value;
                RaisePropertyChanged(() => MyData);
            }
        }

        public bool IsBusy { get; set; }

        private void OnLoadData()
        {
            var backgroundWorker = new BackgroundWorker();
            backgroundWorker.DoWork += (sender, e) =>
                             {
                                 MyData = new List<string> {"Test"};
                                 Thread.Sleep(1000);
                             };
            backgroundWorker.RunWorkerCompleted += (sender, e) => { IsBusy = false; };
            backgroundWorker.RunWorkerAsync();
        }
    }

در این ViewModel با اجرای دستور LoadDataCommand داده‌ها از یک منبع داده دریافت می‌شود. این عمل می‌تواند چند ثانیه طول بکشد ، در نتیجه برای قفل نشدن رابط کاربر این عمل را به کمک Background Worker به صورت Async در پشت صحنه انجام شده است.
آزمون واحد این ViewModel اینگونه خواهد بود : 
    [TestFixture]
    public class BackgroundWorkerViewModelTest
    {
        #region Setup/Teardown

        [SetUp]
        public void SetUp()
        {
            _backgroundWorkerViewModel = new BackgroundWorkerViewModel();
        }

        #endregion

        private BackgroundWorkerViewModel _backgroundWorkerViewModel;

        [Test]
        public void TestGetData()
        {
              
            _backgroundWorkerViewModel.LoadDataCommand.Execute(_backgroundWorkerViewModel);

            Assert.NotNull(_backgroundWorkerViewModel.MyData);
            Assert.IsNotEmpty(_backgroundWorkerViewModel.MyData);
        }
    }

با اجرای این آزمون واحد نتیجه با آن چیزی که در زمان اجرا رخ می‌دهد متفاوت است و با وجود صحیح بودن کدها آزمون واحد شکست می‌خورد.
چون Unit Test به صورت همزمان اجرا می‌شود و برای عملیات‌های پشت صحنه صبر نمی‌کند در نتیحه این آزمون واحد شکست می‌خورد.

آزمون واحد شکست خورده

یک راه حل تزریق BackgroundWorker به صورت وابستگی به ViewModel می‌باشد. همانطور که قبلا اشاره شده یکی از مزایای استفاده از تکنیک‌های تزریق وابستگی  سهولت Unit testing می‌باشد.
در نتیجه یک Interface عمومی و 2  پیاده سازی همزمان و غیر همزمان جهت استفاده در برنامه‌ی واقعی و آزمون واحد تهیه می‌کنیم : 
   public interface IWorker
    {
        void Run(DoWorkEventHandler doWork);
        void Run(DoWorkEventHandler doWork, RunWorkerCompletedEventHandler onComplete);
    }
جهت استفاده در برنامه‌ی واقعی : 
    public class AsyncWorker : IWorker
    {
        public void Run(DoWorkEventHandler doWork)
        {
            Run(doWork, null);
        }

        public void Run(DoWorkEventHandler doWork, RunWorkerCompletedEventHandler onComplete)
        {
            var backgroundWorker = new BackgroundWorker();
            backgroundWorker.DoWork += doWork;
            if (onComplete != null)
                backgroundWorker.RunWorkerCompleted += onComplete;
            backgroundWorker.RunWorkerAsync();
            

        }
    }
جهت اجرا در آزمون واحد : 
    public class SyncWorker : IWorker
    {
        #region IWorker Members

        public void Run(DoWorkEventHandler doWork)
        {
            Run(doWork, null);
        }

        public void Run(DoWorkEventHandler doWork, RunWorkerCompletedEventHandler onComplete)
        {
            Exception error = null;
            var doWorkEventArgs = new DoWorkEventArgs(null);
            try
            {
                doWork(this, doWorkEventArgs);
            }
            catch (Exception ex)
            {
                error = ex;
                throw;
            }
            finally
            {
                onComplete(this, new RunWorkerCompletedEventArgs(doWorkEventArgs.Result, error, doWorkEventArgs.Cancel));
            }
        }

        #endregion
    }
در نتیجه ViewModel اینگونه تغییر خواهد کرد :
    public class BackgroundWorkerViewModel : BaseViewModel
    {
        private readonly IWorker _worker;
        private List<string> _myData;

        public BackgroundWorkerViewModel(IWorker worker)
        {
            _worker = worker;
            LoadDataCommand = new RelayCommand(OnLoadData);
        }

        public RelayCommand LoadDataCommand { get; set; }

        public List<string> MyData
        {
            get { return _myData; }
            set
            {
                _myData = value;
                RaisePropertyChanged(() => MyData);
            }
        }

        public bool IsBusy { get; set; }

        private void OnLoadData()
        {
            IsBusy = true; // view is bound to IsBusy to show 'loading' message.

            _worker.Run(
                (sender, e) =>
                    {
                        MyData = new List<string> {"Test"};
                        Thread.Sleep(1000);
                    },
                (sender, e) => { IsBusy = false; });
        }
    }

کلاس مربوطه به آزمون واحد را مطابق با تغییرات ViewModel :
    [TestFixture]
    public class BackgroundWorkerViewModelTest
    {
        #region Setup/Teardown

        [SetUp]
        public void SetUp()
        {
            _backgroundWorkerViewModel = new BackgroundWorkerViewModel(new SyncWorker());
        }

        #endregion

        private BackgroundWorkerViewModel _backgroundWorkerViewModel;

        [Test]
        public void TestGetData()
        {
              
            _backgroundWorkerViewModel.LoadDataCommand.Execute(_backgroundWorkerViewModel);

            Assert.NotNull(_backgroundWorkerViewModel.MyData);
            Assert.IsNotEmpty(_backgroundWorkerViewModel.MyData);
        }
    }

اکنون اگر Unit Test را اجرا کنیم نتیجه اینگونه خواهد بود :




 
مطالب
کار با کلیدهای اصلی و خارجی در EF Code first
در حین کار با ارتباطات بین اشیاء و جداول، دانستن یک سری از نکات می‌توانند در کم کردن تعداد رفت و برگشت‌های به سرور مؤثر واقع شده و نهایتا سبب بالا رفتن سرعت برنامه شوند. از این دست می‌توان به یک سری نکات ریز همراه با primary-keys و foreign-keys اشاره کرد که در ادامه به آن‌ها پرداخته خواهد شد.
در ابتدا کلا‌س‌های مدل و Context برنامه را به شکل زیر درنظر بگیرید:
using System;
using System.Data.Entity;
using System.Data.Entity.Migrations;

namespace TestKeys
{
    public class Bill
    {
        public int Id { get; set; }
        public decimal Amount { set; get; }
        public virtual Account Account { get; set; }
    }

    public class Account
    {
        public int Id { get; set; }
        public string Name { get; set; }
    }

    public class MyContext : DbContext
    {
        public DbSet<Bill> Bills { get; set; }
        public DbSet<Account> Accounts { get; set; }
    }

    public class Configuration : DbMigrationsConfiguration<MyContext>
    {
        public Configuration()
        {
            AutomaticMigrationsEnabled = true;
            AutomaticMigrationDataLossAllowed = true;
        }

        protected override void Seed(MyContext context)
        {
            var a1 = new Account { Name = "a1" };
            var a2 = new Account { Name = "a2" };

            var bill1 = new Bill { Amount = 100, Account = a1 };
            var bill2 = new Bill { Amount = 200, Account = a2 };

            context.Bills.Add(bill1);
            context.Bills.Add(bill2);
            base.Seed(context);
        }
    }

    public static class Test
    {
        public static void Start()
        {
            Database.SetInitializer(new MigrateDatabaseToLatestVersion<MyContext, Configuration>());
            using (var ctx = new MyContext())
            {
                var bill1 = ctx.Bills.Find(1);
                Console.WriteLine(bill1.Amount);
            }
        }
    }
}

در اینجا کلاس صورتحساب و حساب مرتبط به آن تعریف شده‌اند. سپس به کمک DbContext این دو کلاس در معرض دید EF Code first قرار گرفته‌اند و در کلاس Configuration نحوه آغاز بانک اطلاعاتی به همراه تعدادی رکورد اولیه مشخص شده است.


نحوه صحیح مقدار دهی کلید خارجی در EF Code first

تا اینجا یک روال متداول را مشاهده کردیم. اکنون سؤال این است که اگر بخواهیم اولین رکورد صورتحساب ثبت شده توسط متد Seed را ویرایش کرده و مثلا حساب دوم را به آن انتساب دهیم، بهینه‌ترین روش چیست؟ بهینه‌ترین در اینجا منظور روشی است که کمترین تعداد رفت و برگشت به بانک اطلاعاتی را داشته باشد. همچنین فرض کنید در صفحه ویرایش، اطلاعات حساب‌ها در یک Drop down list شامل نام و id آ‌ن‌ها نیز وجود دارد.

روش اول:
using (var ctx = new MyContext())
{
     var bill1 = ctx.Bills.Find(1);
     var a2 = new Account { Id = 2, Name = "a2" };
     bill1.Account = a2;
     ctx.SaveChanges();
}
این روش مخصوص تازه واردهای EF Code first است و آنطور که مدنظر آن‌ها است کار نمی‌کند.
به کمک متد Find اولین رکورد یافت شده و سپس بر اساس اطلاعات drop down در دسترس، یک شیء جدید حساب را ایجاد و سپس تغییرات لازم را اعمال می‌کنیم. در نهایت اطلاعات را هم ذخیره خواهیم کرد.
این روش به ظاهر کار می‌کنه اما حاصل آن ذخیره رکورد حساب سومی با id=3 در بانک اطلاعاتی است و سپس انتساب آن به اولین صورتحساب ثبت شده.
نتیجه: Id را دستی مقدار دهی نکنید؛ تاثیری ندارد. زیرا اطلاعات شیء جدید حساب، در سیستم tracking مرتبط با Context جاری وجود ندارد. بنابراین EF آن‌را به عنوان یک شیء کاملا جدید درنظر خواهد گرفت، صرفنظر از اینکه Id را به چه مقداری تنظیم کرده‌اید.

روش دوم:
using (var ctx = new MyContext())
{
    var bill1 = ctx.Bills.Find(1);
    var a2 = ctx.Accounts.Find(2);
    bill1.Account = a2;
    ctx.SaveChanges();
}
اینبار بر اساس Id دریافت شده از Drop down list، شیء حساب دوم را یافته و به صورتحساب اول انتساب می‌دهیم. این روش درست کار می‌کند؛ اما ... بهینه نیست. فرض کنید شیء جاری دارای 5 کلید خارجی است. آیا باید به ازای هر کلید خارجی یکبار از بانک اطلاعاتی کوئری گرفت؟
مگر نه این است که اطلاعات نهایی ذخیره شده در بانک اطلاعاتی متناظر با حساب صورتحساب جاری، فقط یک عدد بیشتر نیست. بنابراین آیا نمی‌شود ما تنها همین عدد متناظر را بجای دریافت کل شیء به صورتحساب نسبت دهیم؟
پاسخ: بله. می‌شود! ادامه آن در روش سوم.

روش سوم:
در اینجا بهترین کار و یکی از best practices طراحی مدل‌های EF این است که طراحی کلاس صورتحساب را به نحو زیر تغییر دهیم:
public class Bill
{
        public int Id { get; set; }
        public decimal Amount { set; get; }

        [ForeignKey("AccountId")]
        public virtual Account Account { get; set; }
        public int AccountId { set; get; }
}
به این ترتیب هم navigation property که سبب تعریف رابطه بین دو شیء و همچنین lazy loading اطلاعات آن می‌شود پابرجا خواهد بود و هم توسط خاصیت جدید AccountId که توسط ویژگی ForeignKey معرفی شده است، ویرایش اطلاعات آن دقیقا همانند کار با یک بانک اطلاعاتی واقعی خواهد شد.
اینبار به کمک خاصیت متناظر با کلید خارجی جدول، مقدار دهی و ویرایش کلید‌های خارجی یک شیء به سادگی زیر خواهد بود؛ خصوصا بدون نیاز به رفت و برگشت اضافی به بانک اطلاعاتی جهت دریافت اطلاعات متناظر با اشیاء تعریف شده به صورت navigation property :

using (var ctx = new MyContext())
{
    var bill1 = ctx.Bills.Find(1);
    bill1.AccountId = 2;
    ctx.SaveChanges();
}


وارد کردن یک شیء به سیستم Tracking

در قسمت قبل عنوان شد که Id را دستی مقدار دهی نکنید، چون تاثیری ندارد. سؤال: آیا می‌شود این شیء ویژه تعریف شده را به سیستم Tracking وارد کرد؟
پاسخ: بلی. به نحو زیر:
using (var ctx = new MyContext())
{
     var a2 = new Account { Id = 2, Name = "a2_a2" };
     ctx.Entry(a2).State = System.Data.EntityState.Modified;
     ctx.SaveChanges();
}
در اینجا شیء حساب دوم را به صورت دستی و بدون واکشی از بانک اطلاعاتی ایجاد کرده‌ایم. بنابراین از دیدگاه Context جاری هیچ ارتباطی به بانک اطلاعاتی نداشته و یک شیء جدید درنظر گرفته می‌شود (صرفنظر از Id آن). اما می‌توان این وضعیت را تغییر داد. فقط کافی است State آن‌را به نحوی که ملاحظه می‌کنید به Modified تغییر دهیم. اکنون اگر اطلاعات این شیء را ذخیره کنیم، دقیقا حساب با id=2 در بانک اطلاعاتی ویرایش خواهد شد و نه اینکه حساب جدیدی ثبت گردد.

 
مطالب
هاست سرویس های Asp.Net Web Api با استفاده از OWIN و TopShelf
زمانیکه از Template‌های پیش فرض تدارک دیده شده در VS.Net برای اپلیکیشن‌های وب خود استفاده می‌کنید، وب اپلیکیشن و سرور با هم یکپارچه هستند و تحت IIS  اجرا می‌شوند. به وسیله Owin می‌توان این دو مورد را بدون وابستگی به IIS به صورت مجزا اجرا کرد. در این پست قصد داریم سرویس‌های Web Api را در قالب یک Windows Service با استفاده از کتابخانه‌ی TopShelf هاست نماییم.
پیش نیاز ها:
»Owin چیست
»تبدیل برنامه‌های کنسول ویندوز به سرویس ویندوز ان تی

  برای شروع یک برنامه Console Application ایجاد کرده و اقدام به نصب پکیج‌های زیر نمایید:
Install-Package Microsoft.AspNet.WebApi.OwinSelfHost
Install-Package TopShelf

حال یک کلاس Startup برای پیاده سازی Configuration‌های مورد نیاز ایجاد می‌کنیم
در این قسمت می‌توانید تنظیمات زیر را پیاده سازی نمایید:
»سیستم Routing؛
»تنظیم  Dependency Resolver برای تزریق وابستگی کنترلر‌های Web Api؛
»تنظیمات hub‌های SignalR(در حال حاضر SignalR به صورت پیش فرض نیاز به Owin برای اجرا دارد)؛
»رجیستر کردن Owin Middleware‌های نوشته شده؛
»تغییر در Asp.Net PipeLine؛
»و...

public class Startup 
    {       
        public void Configuration(IAppBuilder appBuilder) 
        {          
            HttpConfiguration config = new HttpConfiguration(); 
            config.Routes.MapHttpRoute( 
                name: "DefaultApi", 
                routeTemplate: "api/{controller}/{id}", 
                defaults: new { id = RouteParameter.Optional } 
            ); 

            appBuilder.UseWebApi(config); 
        } 
    }
* به صورت پیش فرض نام این کلاس باید Startup و نام متد آن نیز باید Configuration باشد.

در این مرحله یک کنترلر Api به صورت زیر به پروژه اضافه نمایید:
public class ValuesController : ApiController 
    {        
        public IEnumerable<string> Get() 
        { 
            return new string[] { "value1", "value2" }; 
        } 
      
        public string Get(int id) 
        { 
            return "value"; 
        } 

        public void Post([FromBody]string value) 
        { 
        } 

        public void Put(int id, [FromBody]string value) 
        { 
        }        
    }
کلاسی به نام ServiceHost ایجاد نمایید و کد‌های زیر را در آن کپی کنید:
public class ServiceHost
    {     
        private IDisposable webApp;             

        public static string BaseAddress 
        {
            get
            {
                return "http://localhost:8000/";
            }
        }

        public void Start()
        {           
            webApp = WebApp.Start<Startup>(BaseAddress);          
        }

        public void Stop()
        {           
            webApp.Dispose();          
        }
    }
واضح است که متد Start در کلاس بالا با استفاده از متد Start کلاس WebApp، سرویس‌های Web Api را در آدرس مورد نظر هاست خواهد کرد. با فراخوانی متد Stop این سرویس‌ها نیز dispose خواهند شد.
در مرحله آخر باید شروع و توقف سرویس‌ها را تحت کنترل کلاس HostFactory کتابخانه TopShelf در آوریم. برای این کار کافیست کلاسی به نام ServiceHostFactory ایجاد کرده و کد‌های زیر را در آن کپی نمایید:
public class ServiceHostFactory
    {
        public static void Run()
        {
            HostFactory.Run( config =>
            {
                config.SetServiceName( "ApiServices" );
                config.SetDisplayName( "Api Services ]" );
                config.SetDescription( "No Description" );

                config.RunAsLocalService();

                config.Service<ServiceHost>( cfg =>
                {
                    cfg.ConstructUsing( builder => new ServiceHost() );

                    cfg.WhenStarted( service => service.Start() );
                    cfg.WhenStopped( service => service.Stop());
                } );
            } );
        }
    }
توضیح کد‌های بالا:
ابتدا با فراخوانی متد Run سرویس مورد نظر اجرا خواهد شد. تنظیمات نام سرویس و نام مورد نظر جهت نمایش  و همچنین توضیحات در این قسمت انجام می‌گیرد.
با استفاده از متد ConstructUsing عملیات وهله سازی از سرویس انجام خواهد گرفت. در پایان نیز متد Start  و Stop کلاس ServiceHost، به عنوان عملیات شروع و پایان سرویس ویندوز مورد نظر تعیین شد.

حال اگر در فایل Program پروژه، دستور زیر را فراخوانی کرده و برنامه را ایجاد کنید خروجی زیر قابل مشاهده است.
ServiceHostFactory.Run();

در حالیکه سرویس مورد نظر در حال اجراست، Browser را گشوده و آدرس http://localhost:8000/api/values/get را در AddressBar وارد کنید. خروجی زیر را مشاهده خواهید کرد:

مطالب
الگوی بازدیدکننده Visitor Pattern
این الگو یکی دیگر از الگوهای رفتاری است که به قاعده OCP یا Open Closed Principle کمک بسیاری می‌کند. این الگو برای زمانی مناسب است که ما سعی بر این داریم تا یک سری الگوریتم‌های متفاوت را بر روی یک سری از اشیاء پیاده سازی کنیم. به عنوان مثال تصور کنید که ما در یک سازمان افراد مختلفی را از مدیریت اصلی گرفته، تا ساده‌ترین کارمندان، داریم و برای محاسبه حقوق و مالیات و ... نیاز است تا برای هر کدام دستور العمل‌هایی را اجرا کنیم  و ممکن است در آینده تعداد این دستور العمل‌ها بالاتر هم برود.
در این مثال ما سه گروه Manager,Employee و Worker را داریم که می‌خواهیم با استفاده از این الگو برای هر کدام به طور جداگانه، حقوق و دستمزد و اضافه کاری را محاسبه کنیم. با توجه به اینکه فرمول هر یک جداست و این احتمال نیز وجود دارد که هر کدام خواص مخصوص به خود را داشته باشند که در دیگری وجود ندارد و در آینده این احتمال می‌رود که سمت جدید یا دستورالعمل‌های جدیدی اضافه شود، بهترین راه حل استفاده از الگوی Visitor است.

الگوی visitor دو بخش مهم دارد؛ یکی Element که قرار است کار روی آن انجام شود. مثل سمت‌های مختلف و دیگری Visitor هست که همان دستورالعمل‌هایی چون محاسبه حقوق و دستمزد و ... است که روی المان‌ها صورت می‌گیرد.
ابتدا برای هر کدام یک اینترفیس را با مشخصات زیر می‌سازیم:
 public interface IElement
    {
        void Accept(IElementVisitor visitor);
    }

    public interface IElementVisitor
    {
        void Visit(Manager manager);
        void Visit(Employee manager);
        void Visit(Worker manager);
    }
همانطور که می‌بینید در کلاس Visitor سه متد هستند که سه کلاس مدیر، کارمند و کارگر را که مشتق شده از اینترفیس Element هستند، به صورت آرگومان می‌پذیرند. توصیف هر کلاس المان به شرح زیر است:
 public class  Manager: IElement
    {
        public int WorkingHour = 8;
        public int Wife = 1;
        public int Children = 3;
        public int OffDays = 6;
        public int OverHours = 12;

        public void Accept(IElementVisitor visitor)
        {
            visitor.Visit(this);
        }
    }

public class Employee: IElement
    {
        public int WorkingHour = 8;
        public int Wife = 1;
        public int Children = 3;
        public int OffDays = 6;
        public int OverHours = 12;

        public void Accept(IElementVisitor visitor)
        {
            visitor.Visit(this);
        }
    }

public class Worker:IElement
    {
        public int WorkingHour = 8;
        public int Wife = 1;
        public int Children = 3;
        public int OffDays = 6;
        public int OverHours = 12;

        public void Accept(IElementVisitor visitor)
        {
            visitor.Visit(this);
        }
    }
ما اطلاعات هر کلاس را در این مثال، مشابه گذاشته‌ایم تا نتیجه فرمول را ببینیم. ولی هیچ الزامی به رعایت آن نیست.
حال وقت آن رسیده تا از روی کلاس Visitor، برای حقوق، دستمزد و اضافه کاری، کلاس‌های جدیدی را بسازیم:
 class SalaryCalculator:IElementVisitor
    {
        public void Visit(Manager manager)
        {
            var salary = manager.WorkingHour*10000;
            salary += manager.Wife*25000;
            salary += manager.Children*20000;
            salary -= manager.OffDays*5000;
            Console.WriteLine("Manager's Salary is " + salary);
        }

        public void Visit(Employee employee)
        {
            var salary = employee.WorkingHour * 7000;
            salary += employee.Wife * 15000;
            salary += employee.Children * 10000;
            salary -= employee.OffDays * 6000;
            Console.WriteLine("Employee's Salary is " + salary);
        }

        public void Visit(Worker worker)
        {
            var salary = worker.WorkingHour * 6000;
            salary += worker.Wife * 5000;
            salary += worker.Children * 2000;
            salary -= worker.OffDays * 7000;
            Console.WriteLine("Worker's Salary is " + salary);
        }
    }

    class WageCalculator:IElementVisitor
    {
        public void Visit(Manager manager)
        {
            var wage = manager.OverHours*30000;
            Console.WriteLine("Employee's wage is " + wage);
        }

        public void Visit(Employee employee)
        {
            var wage = employee.OverHours * 20000;
            Console.WriteLine("Employee's wage is " + wage);
        }

        public void Visit(Worker worker)
        {
            var wage = worker.OverHours * 15000;
            Console.WriteLine("Employee's wage is " + wage);
        }
    }
اکنون نیاز است تا ارتباط بین المان‌ها و بازدید کننده‌ها را طوری برقرار کنیم که برای تغییر آن‌ها در آینده، مشکلی نداشته باشیم. به همین جهت یک کلاس جدید به نام سیستم مالی ایجاد می‌کنیم:
class FinancialSystem
    {
        private readonly IList<IElement> _elements;

        public FinanceSystem()
        {
            _elements=new List<IElement>();
        }

        public void Attach(IElement element)
        {
            _elements.Add(element);
        }

        public void Detach(IElement element)
        {
            _elements.Remove(element);
        }

        public void Accept(IElementVisitor visitor)
        {
            foreach (var element in _elements)
            {
                element.Accept(visitor);
            }
        }
    }
در این روش تمام المان‌ها را داخل یک لیست قرار داده و سپس با استفاده از متد Accept، یکی از کلاس‌های مشتق شده از Visitor را به آن نسبت می‌دهیم که وظیفه آن صدا زدن متد Accept درون المان هاست. وقتی متد Accept المان‌ها صدا زده شد، شیء، المان را به متد Visit در Visitor داده و فرمول را روی آن اجرا می‌کند.
بدنه اصلی:
IElement manager=new Manager();
IElement employee=new Employee();
IElement worker=new Worker();

var fine=new FinancialSystem();
fine.Attach(manager);
fine.Attach(employee);
fine.Attach(worker);

fine.Accept(new SalaryCalculator());
fine.Accept(new WageCalculator());
نتیجه خروجی:
Manager's Salary is 135000
Employee's Salary is 65000
Worker's Salary is 17000
Manager's wage is 360000
Employee's wage is 240000
Worker's wage is 180000
مطالب
درخت‌ها و گراف‌ها قسمت دوم
در قسمت قبلی ما به بررسی درخت و اصطلاحات فنی آن پرداختیم و اینکه چگونه یک درخت را پیمایش کنیم. در این قسمت مطلب قبل را با درخت‌های دودویی ادامه می‌دهیم.

درخت‌های دودویی Binary Trees
همه‌ی موضوعات و اصطلاحاتی را که در مورد درخت‌ها به کار بردیم، در مورد این درخت هم صدق می‌کند؛ تفاوت درخت دودویی با یک درخت معمولی این است که درجه هر گره نهایتا دو خواهد بود یا به عبارتی ضریب انشعاب این درخت 2 است. از آن جایی که هر گره در نهایت دو فرزند دارد، می‌توانیم فرزندانش را به صورت فرزند چپ Left Child و فرزند راست Right Child صدا بزنیم. به گره‌هایی که فرزند ریشه هستند اینگونه می‌گوییم که گره فرزند چپ با همه فرزندانش می‌شوند زیر درخت چپ Left SubTree و گره سمت راست ریشه با تمام فرزندانش زیر درخت راست Right SubTree صدا زده می‌شوند.

نحوه پیمایش درخت دودویی

این درخت پیمایش‌های گوناگونی دارد ولی سه تای آن‌ها اصلی‌تر و مهمتر هستند:

In-order یا LVR (چپ، ریشه، راست): در این حالت ابتدا گره‌های سمت چپ ملاقات (چاپ) می‌شوند و سپس ریشه و بعد گره‌های سمت راست.

Pre-Order یا VLR (ریشه، چپ، راست) : در این حالت ابتدا گره‌های ریشه ملاقات می‌شوند. بعد گره‌های سمت چپ و بعد گره‌های سمت راست.

Post_Order یا LRV (چپ، راست، ریشه ): در این حالت ابتدا گره‌های سمت چپ، بعد راست و نهایتا ریشه، ملاقات می‌شوند.

حتما متوجه شده‌اید که منظور از v در اینجا ریشه است و با تغییر و جابجایی مکان این سه حرف RLV میتوانید به ترکیب‌های مختلفی از پیمایش دست پیدا کنید.

اجازه دهید روی شکل بالا پیمایش LVR را انجام دهیم: همانطور که گفتیم باید اول گره‌های سمت چپ را خواند، پس از 17 به سمت 9 حرکت می‌کنیم و می‌بینیم که 9، خود والد است. پس به سمت 6 حرکت می‌کنیم و می‌بینیم که فرزند چپی ندارد؛ پس خود 6 را ملاقات می‌کنیم، سپس فرزند راست را هم بررسی می‌کنیم که فرزند راستی ندارد پس کار ما اینجا تمام است و به سمت بالا حرکت می‌کنیم. 9 را ملاقات می‌کنیم و بعد عدد 5 را و به 17 بر می‌گردیم. 17 را ملاقات کرده و سپس به سمت 15 می‌رویم و الی آخر ...

6-9-5-17-8-15-10

VLR:

17-9-6-5-15-8-10

LRV:

6-5-9-8-10-15-17


نحوه پیاده سازی درخت دودویی:

public class BinaryTree<T>
{
    /// <summary>مقدار داخل گره</summary>
    public T Value { get; set; }
 
    /// <summary>فرزند چپ گره</summary>
    public BinaryTree<T> LeftChild { get; private set; }
 
    /// <summary>فرزند راست گره</summary>
    public BinaryTree<T> RightChild { get; private set; }
   
    /// <summary>سازنده کلاس</summary>
    /// <param name="value">مقدار گره</param>
    /// <param name="leftChild">فرزند چپ</param>
    /// <param name="rightChild">فرزند راست
    /// </param>
    public BinaryTree(T value,
        BinaryTree<T> leftChild, BinaryTree<T> rightChild)
    {
        this.Value = value;
        this.LeftChild = leftChild;
        this.RightChild = rightChild;
    }
 
    /// <summary>سازنده بدون فرزند
    /// </summary>
    /// <param name="value">the value of the tree node</param>
    public BinaryTree(T value) : this(value, null, null)
    {
    }
 
    /// <summary>‏‏‎LVR پیمایش</summary>
    public void PrintInOrder()
    {
        // ملاقات فرزندان زیر درخت چپ
        if (this.LeftChild != null)
        {
            this.LeftChild.PrintInOrder();
        }
 
        // ملاقات خود ریشه
        Console.Write(this.Value + " ");
 
        // ملاقات فرزندان زیر درخت راست
        if (this.RightChild != null)
        {
            this.RightChild.PrintInOrder();
        }
    }
}
 
/// <summary>
/// نحوه استفاده از کلاس بالا
/// </summary>
public class BinaryTreeExample
{
    static void Main()
    {
        BinaryTree<int> binaryTree =
            new BinaryTree<int>(14,
                    new BinaryTree<int>(19,
                          new BinaryTree<int>(23),
                          new BinaryTree<int>(6,
                                  new BinaryTree<int>(10),
                                  new BinaryTree<int>(21))),
                    new BinaryTree<int>(15,
                          new BinaryTree<int>(3),
                          null));
 
        binaryTree.PrintInOrder();
        Console.WriteLine();
 
        // خروجی
        // 23 19 10 6 21 14 3 15
    }
}

تفاوتی که این کد با کد قبلی که برای یک درخت معمولی داشتیم، در این است که قبلا لیستی از فرزندان را داشتیم که با خاصیت Children شناخته می‌شدند، ولی در اینجا در نهایت دو فرزند چپ و راست برای هر گره وجود دارند. برای جست و جو هم از الگوریتم In_Order استفاده کردیم که از همان الگوریتم DFS آمده‌است. در آنجا هم ابتدا گره‌های سمت چپ به صورت بازگشتی صدا زده می‌شدند. بعد خود گره و سپس گره‌های سمت راست به صورت بازگشتی صدا زده می‌شدند.

برای باقی روش‌های پیمایش تنها نیاز است که این سه خط را جابجا کنید:

  // ملاقات فرزندان زیر درخت چپ
        if (this.LeftChild != null)
        {
            this.LeftChild.PrintInOrder();
        }
 
        // ملاقات خود ریشه
        Console.Write(this.Value + " ");
 
        // ملاقات فرزندان زیر درخت راست
        if (this.RightChild != null)
        {
            this.RightChild.PrintInOrder();
        }


درخت دودویی مرتب شده Ordered Binary Search Tree

تا این لحظه ما با ساخت درخت‌های پایه آشنا شدیم: درخت عادی یا کلاسیک و درخت دو دویی. ولی در بیشتر موارد در پروژه‌های بزرگ از این‌ها استفاده نمی‌کنیم چرا که استفاده از آن‌ها در پروژه‌های بزرگ بسیار مشکل است و باید به جای آن‌ها از ساختارهای متنوع دیگری از قبیل درخت‌های مرتب شده، کم عمق و متوازن و کامل و پر و .. استفاده کرد. پس اجازه دهید که مهمترین درخت‌هایی را که در برنامه نویسی استفاده می‌شوند، بررسی کنیم.

همان طور که می‌دانید برای مقایسه اعداد ما از علامتهای <>= استفاده می‌کنیم و اعداد صحیح بهترین اعداد برای مقایسه هستند. در درخت‌های جست و جوی دو دویی یک خصوصیت اضافه به اسم کلید هویت یکتا Unique identification  Key داریم که یک کلید قابل مقایسه است. در تصویر زیر ما دو گره با مقدارهای متفاوتی داریم که با مقایسه‌ی آنان می‌توانیم کوچک و بزرگ بودن یک گره را محاسبه کنیم. ولی به این نکته دقت داشته باشید که این اعداد داخل دایره‌ها، دیگر برای ما حکم مقدار ندارند و کلید‌های یکتا و شاخص هر گره محسوب می‌شوند.

خلاصه‌ی صحبت‌های بالا: در هر درخت دودویی مرتب شده، گره‌های بزرگتر در زیر درخت راست قرار دارند و گره‌های کوچکتر در زیر درخت چپ قرار دارند که این کوچکی و بزرگی بر اساس یک کلید یکتا که قابل مقایسه است استفاده می‌شود.

این درخت دو دویی مرتب شده در جست و جو به ما کمک فراوانی می‌کند و از آنجا که می‌دانیم زیر درخت‌های چپ مقدار کمتری دارند و زیر درخت‌های راست مقدار بیشتر، عمل جست و جو، مقایسه‌های کمتری خواهد داشت، چرا که هر بار مقایسه یک زیر درخت کنار گذاشته می‌شود.

برای مثال فکر کنید می‌خواهید عدد 13 را در درخت بالا پیدا کنید. ابتدا گره والد 19 را مقایسه کرده و از آنجا که 19 بزرگتر از 13 است می‌دانیم که 13 را در زیر درخت راست پیدا نمی‌کنیم. پس زیر درخت چپ را مقایسه می‌کنیم (بنابراین به راحتی یک زیر درخت از مقایسه و عمل جست و جو کنار گذاشته شد). سپس گره 11 را مقایسه می‌کنیم و از آنجا که 11 کوچکتر از 13 هست، زیر درخت سمت راست را ادامه می‌دهیم و چون 16 بزرگتر از 13 هست، زیر درخت سمت چپ را در ادامه مقایسه می‌کنیم که به 13 رسیدیم.

مقایسه گره‌هایی که برای جست و جو انجام دادیم:

19-11-16-13

درخت هر چه بزرگتر باشد این روش کارآیی خود را بیشتر نشان می‌دهد.

در قسمت بعدی به پیاده سازی کد این درخت به همراه متدهای افزودن و جست و جو و حذف می‌پردازیم.

مطالب
طراحی شیء گرا: OO Design Heuristics - قسمت اول
هدف از طراحی چیست؟

ما طراحی می‌کنیم تا علاوه بر نیاز‌های عملیاتی، به نیاز‌های غیر عملیاتی (Non Functional Requirements) نیز فکر کنیم؛ در حالیکه در زمان برنامه نویسی صرفا به Functionality فکر می‌کنیم.

کتاب Object Oriented Design Heuristics اولین کتاب در زمینه طراحی و توسعه شیء گرا می‌باشد. خواندن آن برای برنامه نویسان در هر رده ای که هستند، مفید خواهد بود و میتوانند از این Heuristicها (قواعد شهودی) به عنوان ابزاری برای تبدیل شدن به یک توسعه دهنده برتر، استفاده کنند.

در این کتاب بیشتر، بهبود طراحی شیء گرا هدف قرار داده شده‌است و در این راستا بیش از 60 دستورالعمل که هیچ وابستگی به زبان خاصی هم ندارند، ارائه شده است. قواعد شهودی در واقع قوانین سخت گیرانه‌ای نیستند. بلکه می‌توان آن‌ها را به عنوان یک مکانیزم هشدار در نظر گرفت که در زمان نیاز حتی میتوان آنها را نقض کرد.

پیشنهاد می‌کنم حداقل برای اینکه ادبیات فنی خود را سامان ببخشید و با ادبیات یکسانی باهم صحبت کنیم، این کتاب را مطالعه کنید.

Introduction to Classes and Objects

پارادایم شیء گرا از مفاهیم کلاس و آبجکت، به عنوان بلوک‌های ساختاری پایه‌ای در شکل گیری یک مدل سازگار و استوار برای تحلیل، طراحی و پیاده سازی نرم افزار، استفاده میکند.

این مفاهیم را با یک مثال واقعی، بهتر می‌توان شرح داد. یک اتاق پر از جمعیت را درنظر بگیرید؛ اگر شما می‌پرسیدید «چه تعداد از حاضرین در این اتاق می‌توانند یک ساعت زنگدار(alarm clock ) را با در دست داشتن تمام قطعات آن، بسازند؟» در بهترین حالت یک یا دو نفر تمایل داشتند دست خود را بالا ببرند. اگر در همین اتاق می‌پرسیدید، «چه تعداد از حاضرین در این اتاق می‌توانند یک ساعت زنگدار را برای ساعت 9 صبح تنظیم کنند؟» بدون شک بیشتر جمعیت تمایل داشتند دست خود را بالا ببرند.

آیا نامعقول نیست که این تعداد جمعیت زیاد، ادعا دارند که میتوانند از ساعت زنگدار استفاده کنند، درحالیکه حتی نمی‌توانند یک ساعت زنگدار بسازند؟ پاسخ بی درنگ برای این سوال «البته که نه! سوال شما نامعقول است» می‌باشد.

در دنیای واقعی خیلی چیزها هستند که ما میتوانیم از آنها استفاده کنیم، بدون آنکه دانشی درباره پیاده سازی آنها داشته باشیم؛ مانند: یخچال‌ها، اتومبیل‌ها، دستگاه‌های فتوکپی، کامپیوترها و غیره. چون آنها برای استفاده شدن از طریق واسط عمومی خودشان، تعریف و طراحی شده‌اند. لذا حتی بدون داشتن دانشی از پیاده سازی آنها، استفاده از آنها آسان می‌باشد. این واسط عمومی وابسته به دستگاه مورد نظر است. اما جزئیات پیاده سازی دستگاه را از دید کاربرانش پنهان میکند. این استراتژی طراحی، چیزی است که به سازنده اجازه می‌دهد بدون آنکه کاربران رنجیده شوند، با آزادی عمل، 60 مؤلفه کوچک استفاده شده در ساخت ساعت زنگدار را تعویض کند.

مثال دیگری از واسط عمومی در مقابل جزئیات پیاده سازی، میتواند در حوزه اتومبیل‌ها دیده شود. زمانیکه تولید کنندگان اتومبیل از سیستم‌های احتراق مکانیکی به سمت سیستم‌های احتراق الکترونیکی کوچ کردند، تعداد خیلی کمی از کاربران اتومبیل‌ها نگران این موضوع بودند. اما چرا؟ چون واسط عمومی آن‌ها مانند سابق ماند و تنها پیاده سازی تغییر کرد. فرض کنید که شما به قصد خرید اتومبیل به یک فروشنده اتومبیل مراجعه می‌کنید و فروشنده یک سوئیچ را به شما داده و از شما می‌خواهد برای تست آن را برانید. بعد از تلاشی که برای استارت زدن داشتید، فروشنده اعلام می‌کند که در این مدل برای استارت زدن باید ابتدا کاپوت را بالا زده و دکمه قرمز را فشار دهید. در این حالت، بدلیل اینکه واسط عمومی اتومبیل دستخوش تغییر بوده است، باعث ناراحتی شما خواهد شد.

این فلسفه، دقیقا یکی از ایده‌های پایه‌ای در پارادایم شیءگرا می‌باشد. تمام جزئیات پیاده سازی در سیستم شما باید در پشت یک واسط عمومی مستحکم و سازگار، از کاربران آنها پنهان باشد. نیاز کاربران، دانستن درباره واسط عمومی می‌باشد؛ اما هرگز مجاز به دیدن جزئیات پیاده سازی آنها نیستند. با این روش، پیاده ساز میتواند به هرشکلی که مناسب است، پیاده سازی را تغییر دهد؛ درحالیکه واسط عمومی مانند سابق می‌باشد. به عنوان مسافری که مکرر سفر میکنم، به شما اطمینان میدهم که استفاده از ساعت‌های زنگدار با وجود عدم اطلاع از پیاده سازی آنها، فواید عظیمی دارند. در هتل‌های زیادی که از دسته بندی‌های گسترده‌ای از ساعت‌ها مانند الکتریکی، قابل کوک (windup)، باتری خور، در هر دو مدل دیجیتال و آنالوگ استفاده میکنند، اقامت کرده‌ام. یکبار هم اتفاق نیفتاده‌است در حالیکه در هواپیما نشسته باشم، نگران این باشم که قادر نخواهم بود از ساعت زنگی اتاقم در هتل استفاده کنم.

بیشتر خوانندگان این کتاب، با وجود اینکه در نزدیکی آنها شاید ساعت زنگداری هم نباشد، ولی منظور بنده را با عبارت «ساعت زنگدار» متوجه شدند. به چه دلیل؟ شما در زندگی خودتان ساعت‌های زنگدار زیادی را می‌بینید و متوجه می‌شوید که همه آنها از یکسری خصوصیات مشترک مانند زمان، یک زمان هشدار و طراحی‌ای که مشخص میکند هشدار روشن یا خاموش است، بهره می‌برند. همچنین متوجه می‌شوید که همه ساعت‌های زنگداری که دیده‌اید امکان تنظیم کردن زمان، تنظیم زمان هشدار و روشن و خاموش کردن هشدار را به شما می‌دهند. در نتیجه، شما الان مفهومی را به نام «ساعت زنگدار» دارید که مفهومی را از داده و رفتار، در یک بسته بندی مرتب برای همه ساعت‌های زنگدار، تسخیر می‌کند. این مفهوم به عنوان یک Class (کلاس) شناخته می‌شود. یک ساعت زنگدار فیزیکی که شما در دست خود آن را نگه داشته‌اید، یک Object (وهله، Instance) ای از کلاس ساعت زنگدار می‌باشد. رابطه بین مفهوم کلاس و وهله، Instantiation Relationship (وهله سازی) نام دارد. به یک object، ساعت زنگدار وهله سازی شده (Instantiated) از کلاس ساعت زنگدار گفته می‌شود؛ در حالیکه از کلاس ساعت زنگدار به عنوان تعمیم (Generalization) از همه object‌های کلاس ساعت زنگدار که شما با آنها روبرو شده‌اید، یاد می‌شود. 

شکل 2.1 An Alarm Class and Its Objects 

شکل 2.1 An Alarm Class and Its Objects

 اگر من به شما می‌گفتم که ساعت زنگدارم از روی پاتختی (میز کوچک کنار تخت که دارای کشو می‌باشد) من پرید، من را گاز گرفت، سپس گربه‌ی همسایه را دنبال کرد، قطعا مرا دیوانه به حساب می‌آوردید. اگر به شما می‌گفتم که سگ من کارهای مشابه‌ای را انجام می‌دهد، کاملا منطقی می‌بود. چون نام یک کلاس تنها به مجموعه‌ای از خواص اشاره نمی‌کند، بلکه رفتارهای موجودیت (entity) را نیز مشخص می‌کند. این رابطه دوسویه بین داده و رفتار، اساس پارادایم شیء گرا می‌باشد.

یک object همیشه دارای 4 جنبه مهم زیر خواهد بود:
  • هویت خود (ممکن است آدرس آن در حافظه باشد) - its own identity
  • خواص کلاس خود (معمولا استاتیک) و مقادیر این خواص (معمولا پویا) - attributes of its class 
  • رفتار کلاس خود (از دید پیاده ساز) -  behavior of its class
  • واسط منتشر شده کلاس خود (از دید استفاده کننده) - published interface of its class

یک کلاس را  می توان با record definition (ساختار داده پایه، struct) و لیستی از عملیاتی که مجاز به کار بر روی این record definition هستند، پیاده سازی کرد. در زبان‌های رویه‌ای (Procedural) یافتن وابستگی داده‌ها در یک تابع معین، آسان می‌باشد. این کار را می‌توان به سادگی با بررسی کردن جزئیات پیاده سازی تابع و مشاهده نوع داده پارامترهای آن، مقادیر بازگشتی و متغییرهای محلی‌ای که تعریف شده‌اند، انجام داد. اگر قصد شما پیدا کردن وابستگی‌های تابعی بر روی یک داده می‌باشد، باید همه کد را بررسی کرده و به دنبال توابعی باشید که به داده شما وابسته هستند. در مدل شیء گرا، هر دو نوع وابستگی (داده به رفتار و رفتار به داده) به راحتی در دسترس می‌باشند. وهله‌ها، متغیرهایی از یک نوع داده کلاس هستند. جزئیات داخلی آنها باید فقط برای لیست توابع مرتبط با کلاس‌هایشان آشکار باشد. این محدودیت دسترسی به جزئیات داخلی وهله‌ها، Information Hiding نامیده می‌شود. اختیاری بودن این بحث در خیلی از زبان‌های شیء گرا ما را به سمت اولین قاعده شهودی هدایت می‌کند.

قاعده شهودی 2.1 
همه داده‌ها باید در داخل کلاس خود پنهان شده باشند. (All data should be hidden within its class)

با نقض این قاعده، امکان نگهداری را هم از دست می‌دهید. اجبار به پنهان کردن اطلاعات در مراحل طراحی و پیاده سازی، بخش عظیمی از فواید پارادایم شیء گرا می‌باشد. اگر داده به صورت عمومی تعریف شده باشد، تشخیص اینکه کدام بخش از عملیات (functionality) سیستم به آن داده وابسته است، سخت و مشکل خواهد بود. در واقع، نگاشت تغییرات داده به عملیات سیستم، همانند طراحی و پیاده سازی در دنیای action-oriented می‌باشد. ما مجبور می‌شویم برای تشخیص اینکه کدام عملیات به داده مورد نظر ما وابسته است، تمام عملیات سیستم را بررسی کنیم، تا به این ترتیب متوجه شویم.

برخی اوقات، یک توسعه دهنده استدلال می‌کند «نیاز دارم این بخش از داده را عمومی تعریف کنم زیرا ....» در این وضعیت، توسعه دهنده باید از خود سوال کند «کاری که تلاش دارم با این داده انجام دهم چیست و چرا کلاس این عملیات را خودش برای من انجام نمی‌دهد؟» در همه موارد  این کلاس است که به سادگی عملیات ضروری را فراموش کرده‌است. کمی بر روی شکل 2.2 فکر کنید. توسعه دهنده به صورت تصادفی فکر کرده است که عضو byte_offset را برای مجاز ساختن دسترسی تصادفی I/O، به صورت عمومی تعریف کند. اما چیزی که واقعا برای انجام این کار به آن نیاز داشت، تعریف یک operation بود (در زبان سی، توابع fseek و ftell برای ممکن کردن دسترسی تصادفی I/O، موجود هستند).

مراقب توسعه دهنده‌هایی که جسورانه می‌گویند: «ما می‌توانیم این بخش از داده را تغییر دهیم، زیرا هیچوقت تغییر نخواهد کرد!» باشید. طبق قانون برنامه نویسی مورفی، اولین بخشی که نیاز به تغییر خواهد داشت همین بخش از داده است.

شکل 2.2 Accidental Public Data   

 Accidental Public Data

به عنوان مثال دیگر برای روشن‌تر شدن بحث، کلاس Point را که پیاده سازی آن به روش مختصات دکارتی می‌باشد، در نظر بگیرید. یک طراح بی‌تجربه ممکن است دلیل تراشی کند که ما می‌توانیم داده‌های  X و Y را به صورت عمومی تعریف کنیم؛ چرا که هیچ موقع تغییر نخواهند کرد. فرض کنید نیاز جدیدی مبنی بر اینکه پیاده سازی Point به ناچار باید از دکارتی به قطبی تغییر کند، به دست شما برسد. به این صورت استفاده کنندگان از این کلاس Point نیز باید تغییر کنند. حال اگر داده‌ها پنهان بودند و عمومی نبودند، در نتیجه فقط لازم بود پیاده ساز‌های این کلاس، کد خود را تغییر دهند.

شکل 2.3  The danger of public data 

 خطر داده‌های عمومی

مطالب
آشنایی با الگوی طراحی Decorator
این بار مثال را با شیرینی و کیک پیش می‌بریم.
فرض کنید شما قصد پخت کیک و نان را دارید. طبیعی است که برای اینکار یک واسط را تعریف کرده و عمل «پختن» را در آن اعلام می‌کنید تا هر کلاسی که قصد پیاده سازی این واسط را داشت، «پختن» را انجام دهد. در ادامه یک کلاس بنام کیک ایجاد خواهید کرد و شروع به پخت آن می‌کنید.
خوب احتمالا الان کیک آماده‌است و می‌توانید آن‌را میل کنید! ولی یک سؤال. تکلیف شخصی که کیک با روکش کاکائو دوست دارد و شمایی که کیک با روکش میوه‌ای دوست دارید چیست؟ این را چطور در پخت اعمال کنیم؟ یا منی که نان کنجدی می‌خواهم و شمایی که نان برشته‌ی غیر کنجدی می‌خواهید چطور؟
احتمالا می‌خواهید سراغ ارث بری رفته و سناریوهای این چنینی را پیاده سازی کنید. ولی در مورد ارث بری، اگر کلاس sealed (NotInheritable) باشه چطور؟
احتمالا همین دو تا سؤال کافی‌است تا در پاسخ بگوئیم، گره‌ی کار، با الگوی Decorator باز می‌شود و همین دو تا سؤال کافی‌است تا اعلام کنیم که این الگو، از جمله الگوهای بسیار مهم و پرکاربرد است.
در ادامه سناریوی خود را با کد ذیل جلو می‌بریم:
public interface IBakery
    {
        string Bake();
        double GetPrice();
    }
    public class Cake: IBakery
    {
        public string Bake() { return "Cake baked"; }
        public double GetPrice() { return 2000; }
    }
    public class Bread: IBakery
    {
        public string Bake() { return "Bread baked"; }
        public double GetPrice() { return 100; }
    }
در کد فوق فرض کرده‌ام که شما می‌خواهید محصول خودتان را بفروشید و برای آن یک متد GetPrice نیز گذاشته‌ام. خوب در ابتدا واسطی تعریف شده و متدهای Bake و GetPrice اعلام شده‌اند. سپس کلاس‌های Cake و Bread پیاده سازی‌های خودشان را انجام دادند.
در ادامه باید مخلفاتی را که روی کیک و نان می‌توان اضافه کرد، پیاده نمود.
 public abstract class Decorator : IBakery
    {
        private readonly IBakery _bakery;
        protected string bake = "N/A";
        protected double price = -1;

        protected Decorator(IBakery bakery) { _bakery= bakery; }
        public virtual string Bake() { return _bakery.Bake() + "/" + bake; }
        public double GetPrice() { return _bakery.GetPrice() + price; }
    }
    public class Type1 : Decorator
    {
        public Type1(IBakery bakery) : base(bakery) { bake= "Type 1"; price = 1; }
    }
    public class Type2 : Decorator
    {
        private const string bakeType = "special baked";
        public Type2(IBakery bakery) : base(bakery) { name = "Type 2"; price = 2; }
        public override string Bake() { return base.Bake() + bakeType ; }
    }
در کد فوق یک کلاس انتزاعی ایجاد و متدهای پختن و قیمت را پیاده سازی کردیم؛ همچنین کلاس‌های Type1 و Type2 را که من فرض کردم کلاس‌هایی هستند برای اضافه کردن مخلفات به کیک و نان. در این کلاس‌ها در متد سازنده، یک شیء از نوع IBakery می‌گیریم که در واقع این شیء یا از نوع Cake هست یا از نوع Bread و مشخص می‌کند روی کیک می‌خواهیم مخلفاتی را اضافه کنیم یا بر روی نان. کلاس Type1 روش پخت و قیمت را از کلاس انتزاعی پیروی می‌کند، ولی کلاس Type2 روش پخت خودش را دارد.
با بررسی اجمالی در کدهای فوق مشخص می‌شود که هرگاه بخواهیم، می‌توانیم رفتارها و الحاقات جدیدی را به کلاس‌های Cake و Bread، اضافه کنیم؛ بدون آنکه کلاس اصلی آنها تغییر کند. حال شما شاید در پیاده سازی این الگو از کلاس انتزاعی Decorator هم استفاده نکنید.
با این حال شیوه‌ی استفاده از این کدها هم بصورت زیر خواهد بود:
 Cake cc1 = new Cake();
 Console.WriteLine(cc1.Bake() + " ," + cc1.GetPrice());

 Type1 cd1 = new Type1 (cc1);
 Console.WriteLine(cd1.Bake() + " ," + cd1.GetPrice());

 Type2 cd2 = new Type2(cc1);
 Console.WriteLine(cd2.Bake() + " ," + cd2.GetPrice());
ابتدا یک کیک را پختیم در ادامه Type1 را به آن اضافه کردیم که این باعث می‌شود قیمتش هم زیاد شود و در نهایت Type2 را هم به کیک اضافه کردیم و حالا کیک ما آماده است.
مطالب
شروع به کار با EF Core 1.0 - قسمت 7 - بررسی رابطه‌ی One-to-Many
در مطلب «شروع به کار با EF Core 1.0 - قسمت 4 - کار با بانک‌های اطلاعاتی از پیش موجود»، نحوه‌ی مهندسی معکوس ساختار جداول و ارتباطات یک بانک اطلاعاتی از پیش موجود را به روش Code First بررسی کردیم. با توجه به رسمی بودن این ابزار، می‌توان از آن برای یافتن معادل‌های سمت بانک اطلاعاتی، در EF Core نیز استفاده کرد. برای مثال بررسی کرد، درک EF Core از بانک اطلاعاتی طراحی شده چیست و هر چند در آن مطلب عنوان شد که می‌توان با پارامتر data-annotations-- ، خروجی نهایی را بر اساس روش data-annotations، بجای Fluent API به دست آورد، اما در مطلب «شروع به کار با EF Core 1.0 - قسمت 5 - استراتژهای تعیین کلید اصلی جداول و ایندکس‌ها» مشاهده کردیم که بسیاری از تنظیمات پیشرفته‌ی EF Core، اساسا معادل data-annotation ایی ندارند. بنابراین بهتر است این پارامتر را فعال سازی نکنید.


تنظیمات روابط یک به چند در EF Core

همان اسکریپت ابتدای مطلب «شروع به کار با EF Core 1.0 - قسمت 4 - کار با بانک‌های اطلاعاتی از پیش موجود» را درنظر بگیرید. رابطه‌ی تعریف شده‌ی در آن از نوع one-to-many است: یک بلاگ که می‌تواند چندین مطلب را داشته باشد.


اگر EF Core را وادار به تولید نگاشت‌های Code First معادل آن کنیم، به این خروجی‌ها خواهیم رسید:
الف) با استفاده از روش Fluent API
دستور استفاده شده برای مهندسی معکوس بانک اطلاعاتی نمونه:
 dotnet ef dbcontext scaffold "Data Source=(local);Initial Catalog=BloggingCore2016;Integrated Security = true" Microsoft.EntityFrameworkCore.SqlServer -o Entities --context MyDBDataContext --verbose
با خروجی:
using System;
using System.Collections.Generic;

namespace Core1RtmEmptyTest.Entities
{
    public partial class Blog
    {
        public Blog()
        {
            Post = new HashSet<Post>();
        }

        public int BlogId { get; set; }
        public string Url { get; set; }

        public virtual ICollection<Post> Post { get; set; }
    }
}

using System;
using System.Collections.Generic;

namespace Core1RtmEmptyTest.Entities
{
    public partial class Post
    {
        public int PostId { get; set; }
        public string Content { get; set; }
        public string Title { get; set; }

        public virtual Blog Blog { get; set; }
        public int BlogId { get; set; }
    }
}

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;

namespace Core1RtmEmptyTest.Entities
{
    public partial class MyDBDataContext : DbContext
    {
        protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
        {
            optionsBuilder.UseSqlServer(@"Data Source=(local);Initial Catalog=BloggingCore2016;Integrated Security = true");
        }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Blog>(entity =>
            {
                entity.Property(e => e.Url).IsRequired();
            });

            modelBuilder.Entity<Post>(entity =>
            {
                entity.HasOne(d => d.Blog)
                    .WithMany(p => p.Post)
                    .HasForeignKey(d => d.BlogId);
            });
        }

        public virtual DbSet<Blog> Blog { get; set; }
        public virtual DbSet<Post> Post { get; set; }
    }
}

نحوه‌ی تشخیص خودکار روابط

EF Core به صورت پیش فرض، روابط را بر اساس ارجاعات بین کلاس‌ها تشخیص می‌دهد. در اینجا به خاصیت Blog نام navigation property را می‌دهند:
 public virtual Blog Blog { get; set; }
و به خاصیت Post نیز Collection navigation property می‌گویند:
 public virtual ICollection<Post> Post { get; set; }
در اینجا اگر تنها دو navigation property، در کلاس‌های به هم مرتبط شده، یافت شوند، به صورت خودکار به عنوان دو سر رابطه تنظیم می‌شوند. اگر بیشتر از یک navigation property در کلاسی وجود داشت، هیچ رابطه‌ای به صورت خودکار تشکیل نشده و باید ابتدا و انتهای روابط را به صورت دستی مشخص نمود.


نحوه‌ی تشخیص خودکار کلیدهای خارجی
اگر در یک طرف رابطه‌ی تشخیص داده شده، خاصیتی با یکی از سه نام زیر وجود داشت:
<primary key property name>
<navigation property name><primary key property name>
<principal entity name><primary key property name>
آنگاه این خاصیت به صورت خودکار به عنوان کلید خارجی تنظیم می‌شود. در رابطه‌ی فوق Blog از نوع principal است (پدر رابطه) و Post از نوع dependent (فرزند رابطه).
برای مثال در رابطه‌ی فوق، نام خاصیت BlogId دقیقا بر اساس همان الگوی <primary key property name> طرف دیگر رابطه‌است:
  public virtual Blog Blog { get; set; }
  public int BlogId { get; set; }
بنابراین به صورت خودکار به عنوان کلید خارجی درنظر گرفته می‌شود.

تا اینجا اگر مطلب را دنبال کرده باشید به این نتیجه خواهید رسید که دو کلاس فوق، اساسا نیازی به هیچ نوع تنظیم Fluent و یا Data annotations ایی برای برقراری ارتباط یک به چند ندارند. چون روابط بین آن‌ها بر اساس خواص راهبری (navigation property) و همچنین الگوی <primary key property name>، به صورت خودکار قابل تشخیص و تنظیم است. به علاوه ... در هر طرف رابطه، فقط یک navigation property وجود دارد و نیازی به تنظیم دستی سر دیگر رابطه نیست.


استفاده از Fluent API برای تنظیم رابطه‌ی One-to-Many

در تنظیمات فوق، در متد OnModelCreating، ذکر صریح این روابط را صرفا جهت از بین بردن هرگونه ابهامی مشاهده می‌کنید:
modelBuilder.Entity<Post>(entity =>
{
    entity.HasOne(d => d.Blog)
             .WithMany(p => p.Post)
             .HasForeignKey(d => d.BlogId);
});
از هر طرفی که شروع می‌کنید، متدهای HasOne و یا HasMany، مشخص کننده‌ی navigation property هستند که در سمت موجودیت معرفی شده قرار دارند. در اینجا چون کار با موجودیت Post شروع شده‌است، متد HasOne به خاصیت راهبری در همان سمت و به خاصیت Blog آن اشاره می‌کند.
مرحله‌ی بعد، مشخص کردن سر دیگر رابطه (inverse navigation) است. این‌کار توسط یکی از متدهای WithOne و یا WithMany انجام می‌شود.
متدهایی که اسامی فرد دارند مانند HasOne/WithOne به یک navigation property ساده اشاره می‌کنند.
متدهایی که اسامی جمع دارند مانند HasMany/WithMany به collection navigation properties اشاره خواهند کرد.
متد HasForeignKey نیز برای ذکر صریح کلید خارجی بکار رفته‌است.


ب) با استفاده از روش data-annotations
دستور استفاده شده برای مهندسی معکوس بانک اطلاعاتی نمونه:
 dotnet ef dbcontext scaffold "Data Source=(local);Initial Catalog=BloggingCore2016;Integrated Security = true" Microsoft.EntityFrameworkCore.SqlServer -o Entities --context MyDBDataContext --verbose -a
با خروجی:
using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace Core1RtmEmptyTest.Entities
{
    public partial class Blog
    {
        public Blog()
        {
            Post = new HashSet<Post>();
        }

        public int BlogId { get; set; }

        [Required]
        public string Url { get; set; }

        [InverseProperty("Blog")]
        public virtual ICollection<Post> Post { get; set; }
    }
}

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace Core1RtmEmptyTest.Entities
{
    public partial class Post
    {
        public int PostId { get; set; }
        public string Content { get; set; }
        public string Title { get; set; }

        [ForeignKey("BlogId")]
        [InverseProperty("Post")]
        public virtual Blog Blog { get; set; }
        public int BlogId { get; set; }
    }
}

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;

namespace Core1RtmEmptyTest.Entities
{
    public partial class MyDBDataContext : DbContext
    {
        protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
        {
            optionsBuilder.UseSqlServer(@"Data Source=(local);Initial Catalog=BloggingCore2016;Integrated Security = true");
        }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
        }

        public virtual DbSet<Blog> Blog { get; set; }
        public virtual DbSet<Post> Post { get; set; }
    }
}
همانطور که در توضیحات روش Fluent API عنوان شد، این مدل خاص، چون دقیقا بر اساس پیش فرض‌های EF Core طراحی شده‌است، نیازی به هیچگونه تنظیم اضافه‌تری ندارد. اما اگر کلید خارجی، مطابق سه الگویی که عنوان شد، قابل تشخیص نباشد، باید آن‌را در روش data annotations توسط ویژگی ForeignKey، به نحو صریحی مشخص کرد:
  [ForeignKey("BlogId")]
  [InverseProperty("Post")]
  public virtual Blog Blog { get; set; }
  public int BlogId { get; set; }
همچنین اگر بیش از یک خاصیت راهبری (navigation property) وجود داشت، ذکر InverseProperty نیز ضروری است تا مشخص شود سر دیگر این رابطه دقیقا کدام است.
در این حالت (داشتن بیش از یک خاصیت راهبری)، باید ویژگی InverseProperty را نیز به سر دوم رابطه، اعمال کرد.
   [InverseProperty("Blog")]
  public virtual ICollection<Post> Post { get; set; }

مطالب تکمیلی

علت virtual بودن خواص راهبری تولید شده

اگر دقت کنید، EF Core کدی را که تولید کرده‌است، به همراه خاصیت‌هایی virtual است:
public virtual Blog Blog { get; set; }
در اینجا تمام خاصیت‌های راهبری virtual تعریف شده‌اند. علت آن، به پیاده سازی مباحث AOP بر می‌گردد. زمانیکه خاصیتی به صورت virtual تعریف می‌شود، EF core می‌تواند آن‌را توسط یک شیء پروکسی شفاف احاطه کند. این پروکسی‌ها دو هدف را دنبال می‌کند:
الف) پیاده سازی lazy loading (بارگذاری خودکار اعضای مرتبط (همان خواص راهبری) با اولین دسترسی به آن‌ها)
ب) پیاده سازی change tracking

مبحث lazy loading فعلا در EF Core 1.0 پشتیبانی نمی‌شود. اما change tracking آن فعال است.
بنابراین اگر مشاهده کردید خواص راهبری به صورت virtual تعریف شده‌اند، علت آن فعال سازی lazy loading است و اگر سایر خواص به صورت virtual تعریف شده‌اند، هدف اصلی آن بهبود عملکرد سیستم change tracking است.
همچنین اگر دقت کرده باشید، نوع مجموعه‌ها نیز ICollection ذکر شده‌است. این مورد نیز یکی دیگر از پیش فرض‌های توکار EF Core است؛ در جهت تشکیل پروکسی‌ها بر روی خواص راهبری مجموعه‌ای (علاوه بر virtual تعریف کردن آن‌ها). عنوان شده‌است که اگر برای مثال از List استفاده کنید (پیاده سازی اینترفیس) یا هر اینترفیس دیگری که از ICollection  مشتق شده‌است، این پروکسی‌ها تشکیل نخواهند شد.


واکشی اعضای به هم مرتبط

همانطور که عنوان شد، نگارش اول EF Core برخلاف EF 6.x از Lazy loading پشتیبانی نمی‌کند. البته این مساله در کل مورد مثبتی است؛ خصوصا در برنامه‌های وب! چون استفاده‌ی نادرست از Lazy loading که به select n+1 نیز مشهور است، سبب رفت و برگشت‌های بی‌شماری به بانک اطلاعاتی می‌شود و عموم برنامه نویس‌های وب باید مدام توسط برنامه‌های Profiler بررسی کنند که آیا این مساله رخ داده‌است یا خیر. فعلا EF Core از این مشکل در امان است!
اما ... اگر به روش کار EF 6.x عادت کرده باشید، قطعه کد ذیل:
 var firstPost = context.Post.First();
Console.WriteLine(firstPost.Blog.Url);
چنین خطایی را صادر می‌کند:
 System.NullReferenceException
Object reference not set to an instance of an object.
علت اینجا است که چون Lazy loading غیرفعال است (هنوز در EF Core 1.0 پیاده سازی نشده‌است)، اولین دسترسی به شیء Blog، سبب وهله سازی خودکار آن نشده و این شیء نال است. به همین جهت استثنای فوق را مشاهده می‌کنیم.
برای رفع این مشکل باید توسط متد Include، سبب لغو عملیات Lazy loading و واکشی صریح Blog مرتبط شویم که اصطلاحا به آن eager loading می‌گویند:
 var firstPost = context.Post.Include(x => x.Blog).First();
Console.WriteLine(firstPost.Blog.Url);

نکته‌ای در مورد سطوح بارگذاری اعضای به هم مرتبط در EF Core

متد Include ایی را که تا اینجا مشاهده کردید، با EF 6.x تفاوتی ندارد. برای مثال اگر شیء Blog حاوی خواص راهبری Posts و همچنین Owner باشد، برای بارگذاری این اعضای مرتبط، می‌توان همانند قبل، متدهای Include را پشت سر هم ذکر کرد:
var blogs = context.Blogs
                              .Include(blog => blog.Posts)
                              .Include(blog => blog.Owner)
                              .ToList();
اما فرض کنید خاصیت Post، دارای یک خاصیت راهبری دیگری به نام Author نیز باشد و می‌خواهیم این خاصیت هم بارگذاری شود:
var blogs = context.Blogs
                              .Include(blog => blog.Posts)
                                      .ThenInclude(post => post.Author)
                              .ToList();
روش انجام چنین کاری در EF Core، توسط متد الحاقی جدید ThenInclude است. ابتدا لیست Blogها عنوان شده‌است. سپس در این لیست علاقمند به واکشی تمام مطالب این بلاگ‌ها هم بوده‌ایم. به علاوه در این مطالب، نیاز است خاصیت Author آن‌ها نیز از پیش مقدار دهی شده و قابل دسترسی باشد. به همین جهت برای دسترسی به چندین سطح مختلف از متد ThenInclude کمک گرفته شده‌است.
همچنین در اینجا امکان ذکر زنجیروار متدهای ThenInclude هم هست:
var blogs = context.Blogs
                              .Include(blog => blog.Posts)
                                 .ThenInclude(post => post.Author)
                                        .ThenInclude(author => author.Photo)
                              .ToList();
در این مثال یک سطح دیگر جلو رفته و شیء Photo مربوط به شیء Author را هم واکشی کرده‌ایم.
به علاوه امکان ذکر چندین ریشه و چندین زیر ریشه هم وجود دارند:
var blogs = context.Blogs
                              .Include(blog => blog.Posts)
                                  .ThenInclude(post => post.Author)
                                      .ThenInclude(author => author.Photo)
                              .Include(blog => blog.Owner)
                                    .ThenInclude(owner => owner.Photo)
                              .ToList();

یک نکته: متد Include تنها زمانی درنظر گرفته خواهد شد که نوع خروجی نهایی کوئری، دقیقا از نوع موجودیتی باشد که با آن شروع به کار کرده‌ایم. برای مثال اگر در این بین یک Select اضافه شود و فقط تنها تعدادی از خواص Blog واکشی شوند، از تمام Includeهای ذکر شده صرفنظر می‌شود؛ مانند کوئری ذیل:
var blogs = context.Blogs
                              .Include(blog => blog.Posts)
                              .Select(blog => new
                               {
                                  Id = blog.BlogId,
                                  Url = blog.Url
                               })
                               .ToList();


تنظیمات حذف آبشاری در رابطه‌ی one-to-many

زمانیکه در رابطه‌ی one-to-many قسمت principal (والد رابطه) و یا همان Blog در مثال جاری حذف می‌شود، سه اتفاق برای فرزندان آن میسر خواهند بود:
الف) Cascade : در این حالت ردیف‌های فرزندان وابسته نیز حذف خواهند شد.
باید دقت داشت که حالت Cascade فقط برای موجودیت‌هایی اعمال می‌شود که توسط Context بارگذاری شده و در آن وجود دارند. اگر می‌خواهید سایر موجودیت‌های مرتبط نیز با این روش حذف شوند، باید در سمت دیتابیس نیز تنظیماتی مانند ON DELETE CASCADE زیر نیز وجود داشته باشند:
 CONSTRAINT [FK_Post_Blog_BlogId] FOREIGN KEY ([BlogId]) REFERENCES [Blog] ([BlogId]) ON DELETE CASCADE
و اگر با EF Core بانک اطلاعاتی خود را ایجاد می‌کنید (مباحث مهاجرت‌ها)، این تنظیم به صورت خودکار اعمال خواهد شد؛ اگر DeleteBehavior را به نحو ذیل مشخص کرده باشید:
modelBuilder.Entity<Post>()
                    .HasOne(p => p.Blog)
                    .WithMany(b => b.Posts)
                    .OnDelete(DeleteBehavior.Cascade);
ب) SetNull: در این حالت فرزندان وابسته حذف نمی‌شوند و تنها کلید خارجی آن‌ها به نال تنظیم می‌شود.
ج) Restrict: هیچ تغییری بر روی فرزندان رابطه رخ نمی‌دهد.

یک نکته: به صورت پیش فرض اگر رابطه‌ی one-to-many، به Required تنظیم شود، حالت حذف آن cascade خواهد بود. در غیراینصورت برای حالت‌های Optional، حالت SetNull تنظیم می‌گردد:
modelBuilder.Entity<Post>()
                    .HasOne(p => p.Blog)
                    .WithMany(b => b.Posts)
                    .IsRequired();
در اینجا ذکر صریح متد IsRequired به این معنا است که مقدار دهی کلید خارجی سر دیگر رابطه، اجباری است.
به علاوه باید دقت داشت، همان مباحث «تعیین اجباری بودن یا نبودن ستون‌ها در EF Core» در قسمت قبل، در اینجا هم صادق است. برای مثال چون BlogId (کلید خارجی در کلاس Post) از نوع int است و نال پذیر نیست، بنابراین از دیدگاه EF Core یک فیلد اجباری درنظر گرفته می‌شود. به همین جهت است که در کدهای تولید شده‌ی توسط EF Core در ابتدای بحث، ذکر متد IsRequired و یا OnDelete را مشاهده نمی‌کنید.
بنابراین اگر می‌خواهید حالت SetNull را فعال کنید، باید این کلید خارجی را نیز نال پذیر و به صورت int? BlogId ذکر کنید تا optional درنظر گرفته شود.
مطالب
مفاهیم برنامه نویسی ـ مروری بر کلاس و شیء
من قصد دارم در قالب چند مطلب برخی از مفاهیم پایه و مهم برنامه نویسی را که پیش نیازی برای درک اکثر مطالب موجود در وب سایت است به زبان ساده بیان کنم تا دایره افرادی که می‌توانند از مطالب ارزشمند این وب سایت استفاده کنند وسعت بیشتری پیدا کند. لازم به توضیح است از آنجا که علاقه ندارم اینجا تبدیل به نسخه فارسی MSDN یا کتاب آنلاین آموزش برنامه نویسی شود این سری آموزش‌ها بیشتر شامل مفاهیم کلیدی خواهند بود.
این مطلب به عنوان اولین بخش از این سری مطالب منتشر می‌شود.

هدف این نوشته بررسی جزییات برنامه نویسی در رابطه با کلاس و شیء نیست. بلکه دریافتن چگونگی شکل گرفتن ایده شیء گرایی و علت مفید بودن آن است.

مشاهده مفاهیم شیء گرایی در پیرامون خود

حتماً در دنیای برنامه نویسی شیء گرا بارها با کلمات کلاس و شیء روبرو شده اید. درک صحیح از این مفاهیم بسیار مهم و البته بسیار ساده است. کار را با یک مثال شروع می‌کنیم. به تصویر زیر نگاه کنید.
 



در سمت راست بخشی از نقشه یک ساختمان و در سمت چپ ساختمان ساخته شده بر اساس این نقشه را می‌بینید. ساختمان همان شیء است. و نقشه ساختمان کلاس آن است چراکه امکان ایجاد اشیائی که تحت عنوان ساختمان طبقه بندی (کلاس بندی) می‌شوند را فراهم می‌کند. به همین سادگی. کلاس‌ها طرح اولیه، نقشه یا قالبی هستند که جزییات یک شی را توصیف می‌کنند.
حتماً با من موافق هستید اگر بگویم:
  • در نقشه ساختمان نمی‌توانید زندگی کنید اما در خود ساختمان می‌توانید.
  • از روی یک نقشه می‌توان به تعداد دلخواه ساختمان ساخت.
  • هنگامی که در یک ساختمان زندگی می‌کنید نیازی نیست تا دقیقاً بدانید چگونه ساخته شده و مثلاً سیم کشی یا لوله کشی‌های آن چگونه است! تنها کافیست بدانید برای روشن شدن لامپ باید کلید آن را بزنید.
  • ساختمان دارای ویژگی هایی مانند متراژ، ضخامت دیوار، تعداد پنجره و ابعاد هر یک و ... است که در هنگام ساخت و بر اساس اطلاعات موجود در نقشه تعیین شده اند.
  • ساختمان دارای کارکرد هایی است. مانند بالا و پایین رفتن آسانسور و یا باز و بسته شدن درب پارکینگ. هر یک از این کارکرد‌ها نیز بر اساس اطلاعات موجود در نقشه پیاده سازی و ساخته شده اند.
  • ساختمان تمام اجزای لازم برای اینکه از آن بتوانیم استفاده کنیم و به عبارتی در آن بتوانیم زندگی کنیم را در خود دارد.
در محیط پیرامون ما تقریباً هر چیزی را می‌توان در یک دیدگاه شیء تصور کرد. به عبارتی هر چیزی که بتوانید به صورت مستقل در ذهن بیاورید و سپس برخی ویژگی‌ها و رفتارها یا کارکردهای آن‌را برشمارید تا آن چیز را قابل شناسایی کند شیء است. مثلاً من به شما می‌گویم موجودی چهار پا دارد، مو... مو... می‌کند و شیر می‌دهد و ... . شما خواهید گفت گاو! و نمی‌گویید گربه. چرا؟ چون توانستید در ذهن خود موجودیتی را به صورت مستقل تصور کنید و از روی ویژگی‌ها و رفتارش آن‌را دقیقاً شناسایی کنید.
سوال: کلاس یا نقشه ایجاد گاو چیست؟ اگر از من بپرسید خواهم گفت طرح اولیه گاو هم ممکن است وجود داشته باشد البته در اختیار خداوند و با سطح دسترسی ملکوت!
اتومبیل، تلویزیون و ... همگی مثال هایی از اشیاء پیرامون ما در دنیای واقعی هستند که حتماً می‌توانید کلاس یا نقشه ایجاد آن‌ها را نیز بدست آورید و یا ویژگی‌ها و کارکرد‌های آن‌ها را برشمارید.

مفاهیم شیء گرایی در مهندسی نرم افزار

مفاهیمی که تاکنون در مورد دنیای واقعی مرور کردیم همان چیزی است که در دنیای برنامه نویسی ـ به عقیده من دنیای واقعی‌تر از دنیای واقعی ـ با آن سر و کار داریم. علت این امر آن است که اصولاً ایده روش برنامه نویسی شیء گرا با مشاهده محیط پیرامون ما به وجود آمده است.
برای نوشتن برنامه جهت حل یک مسئله بزرگ باید بتوان آن مسئله را به بخش‌های کوچکتری تقسیم نمود. در این رابطه مفهوم شیء و کلاس با همان کیفیتی که در محیط پیرامون ما وجود دارد به صورت مناسبی امکان تقسیم یه مسئله بزرگ به بخش‌های کوچکتر را فراهم می‌کند. و سبب می‌شود هماهنگی و تقارن و تناظر خاصی بین اشیاء برنامه و دنیای واقعی بوجود آید که یکی از مزایای اصلی روش شیء گراست.
از آنجا که در یک برنامه اصولاً همه چیز و همه مفاهیم در قالب کدها و دستورات برنامه معنا دارد، کلاس و شیء نیز چیزی بیش از قطعاتی کد نیستند. قطعه کد هایی که بسته بندی شده اند تا تمام کار مربوط به هدفی که برای آن‌ها در نظر گرفته شده است را انجام دهند.
همان طور که در هر زبان برنامه نویسی دستوراتی برای کارهای مختلف مانند تعریف یک متغیر یا ایجاد یک حلقه و ... در نظر گرفته شده است، در زبان‌های برنامه نویسی شیء گرا نیز دستوراتی وجود دارد تا بتوان قطعه کدی را بر اساس مفهوم کلاس بسته بندی کرد.
به طور مثال قطعه کد زیر را در زبان برنامه نویسی سی شارپ در نظر بگیرید.
class Player
{
   public string Name;
   public int Age;
   public void Walk()
   {
      // کدهای مربوط به پیاده سازی راه رفتن
   }
   public void Run()
   {
      // کدهای مربوط به پیاده سازی دویدن
   }
}
در این قطعه کد با استفاده از کلمه کلیدی class در زبان سی شارپ کلاسی ایجاد شده است که دارای دو ویژگی نام و سن و دو رفتار راه رفتن و دویدن است.
این کلاس به چه دردی می‌خورد؟ کجا می‌توانیم از این کلاس استفاده کنیم؟
پاسخ این است که این کلاس ممکن است برای ما هیچ سودی نداشته باشد و هیچ کجا نتوانیم از آن استفاده کنیم. اما بیایید فرض کنیم برنامه نویسی هستیم که قصد داریم یک بازی فوتبال بنویسیم. به جای آنکه قطعات کد مجزایی برای هر یک از بازیکنان و کنترل رفتار و ویژگی‌های آنان بنویسیم با اندکی تفکر به این نکته پی می‌بریم که همه بازیکنان مشترکات بسیاری دارند و به عبارتی در یک گروه یا کلاس قابل دسته بندی هستند. پس سعی می‌کنیم نقشه یا قالبی برای بازیکن‌ها ایجاد کنیم که دربردارنده ویژگی‌ها و رفتارهای آن‌ها باشد.
همان طور که در نقشه ساختمان نمی‌توانیم زندگی کنیم این کلاس هم هنوز آماده انجام کارهای واقعی نیست. چراکه برخی مقادیر هنوز برای آن تنظیم نشده است. مانند نام بازیکن و سن و ....
و همان طور که برای سکونت لازم است ابتدا یک ساختمان از روی نقشه ساختمان بسازیم برای استفاده واقعی از کلاس یاد شده نیز باید از روی آن شیء بسازیم. به این فرآیند وهله سازی یا نمونه سازی نیز می‌گویند. یک زبان برنامه نویسی شیء گرا دستوراتی را برای وهله سازی نیز در نظر گرفته است. در C# کلمه کلیدی new این وظیفه را به عهده دارد.
Player objPlayer = new Player();
objPlayer.Name = “Ali Karimi”;
objPlayer.Age = 30;
objPlayer.Run();
وقتی فرآیند وهله سازی صورت می‌گیرد یک نمونه یا شیء از آن کلاس در حافظه ساخته می‌شود که در حقیقت می‌توانید آنرا همان کدهای کلاس تصور کنید با این تفاوت که مقداردهی‌های لازم صورت گرفته است. به دلیل تعیین مقادیر لازم، حال شیء تولید شده می‌تواند به خوبی اعمال پیش بینی شده را انجام دهد. توجه نمایید در اینجا پیاده سازی داخلی رفتار دویدن و اینکه مثلاً در هنگام فراخوانی آن چه کدی باید اجرا شود تا تصویر یک بازیکن در حال دویدن در بازی نمایش یابد مد نظر و موضوع بحث ما نیست. بحث ما چگونگی سازماندهی کد‌ها توسط مفهوم کلاس و شیء است. همان طور که مشاهده می‌کنید ما تمام جزییات بازیکن‌ها را یکبار در کلاس پیاده سازی کرده ایم اما به تعداد دلخواه می‌توانیم از روی آن بازیکن‌های مختلف را ایجاد کنیم. همچنین به راحتی رفتار دویدن یک بازیکن را فراخوانی میکنیم بدون آنکه پیاده سازی کامل آن در اختیار و جلوی چشم ما باشد.
تمام آنچه که بازیکن برای انجام امور مربوط به خود نیاز دارد در کلاس بازیکن کپسوله می‌شود. بدیهی است در یک برنامه واقعی ویژگی‌ها و رفتارهای بسیار بیشتری باید برای کلاس بازیکن در نظر گرفته شود. مانند پاس دادن، شوت زدن و غیره.
به این ترتیب ما برای هر برنامه می‌توانیم مسئله اصلی را به تعدادی مسئله کوچکتر تقسیم کنیم و وظیفه حل هر یک از مسائل کوچک را به یک شیء واگذار کنیم. و بر اساس اشیاء تشخیص داده شده کلاس‌های مربوطه را بنویسیم. برنامه نویسی شیء گرا سبب می‌شود تا مسئله توسط تعدادی شیء که دارای نمونه‌های متناظری در دنیای واقعی هستند حل شود که این امر زیبایی و خوانایی و قابلیت نگهداری و توسعه برنامه را بهبود می‌دهد.
احتمالاً تاکنون متوجه شده اید که برای نگهداری ویژگی‌های اشیاء از متغیر‌ها و برای پیاده سازی رفتارها یا کارکرد‌های اشیاء از توابع استفاده میکنیم.
با توجه به این که هدف این مطلب بررسی مفهوم شیء گرائی بود و نه جزییات برنامه نویسی، بنابراین بیان برخی مفاهیم در این رابطه را که بیشتر در مهندسی نرم افزار معنا دارند تا در دنیای واقعی در مطالب بعدی بررسی می‌کنیم.