مطالب
کش خروجی API در ASP.NET Core با Redis
در این مقاله نمی‌خواهیم به طور عمیقی وارد جزییاتی مثل توضیح Redis یا کش بشویم؛ فرض شده‌است که کاربر با این مفاهیم آشناست. به طور خلاصه کش کردن یعنی همیشه به دیتابیس یا هارددیسک برای گرفتن اطلاعاتی که می‌خواهیم و گرفتنش هم کند است، وصل نشویم و بجای آن، اطلاعات را در یک محل موقتی که گرفتنش خیلی سریعتر بوده قرار دهیم و برای استفاده به آنجا برویم و اطلاعات را با سرعت بالا بخوانیم. کش کردن هم دسته بندی‌های مختلفی دارد که بر حسب سناریوهای مختلفی که وجود دارد، کاربرد خود را دارند. مثلا ساده‌ترین کش در ASP.NET Core، کش محلی (In-Memory Cache) می‌باشد که اینترفیس IMemoryCache را اعمال می‌کند و نیازی به هیچ پکیجی ندارد و به صورت درونی در ASP.NET Core در دسترس است که برای حالت توسعه، یا حالتیکه فقط یک سرور داشته باشیم، مناسب است؛ ولی برای برنامه‌های چند سروری، نوع دیگری از کش که به اصطلاح به آن Distributed Cache می‌گویند، بهتر است استفاده شود. چند روش برای پیاده‌سازی با این ساختار وجود دارد که نکته مشترکشان اعمال اینترفیس واحد IDistributedCache می‌باشد. در نتیجه‌ی آن، تغییر ساختار کش به روش‌های دیگر، که اینترفیس مشابهی را اعمال می‌کنند، با کمترین زحمت صورت می‌گیرد. این روش‌ها به طور خیلی خلاصه شامل موارد زیر می‌باشند: 

1- Distributed Memory Cache: در واقع Distributed نیست و کش معمولی است؛ فقط برای اعمال اینترفیس IDistributedCache که امکان تغییر آن در ادامه‌ی توسعه نرم‌افزار میسر باشد، این روش توسط مایکروسافت اضافه شده‌است. نیاز به نصب پکیجی را ندارد و به صورت توکار در ASP.NET Core در دسترس است.
2- Distributed SQL Server Cache: کاربرد چندانی ندارد. با توجه به اینکه هدف اصلی از کش کردن، افزایش سرعت و عدم اتصال به دیتابیس است، استفاده از حافظه‌ی رم، بجای دیتابیس ترجیح داده می‌شود.
3- Distributed Redis Cache: استفاده از Redis که به طور خلاصه یک دیتابیس Key/Value در حافظه است. سرعت بالایی دارد و محبوب‌ترین روش بین برنامه‌نویسان است. برای اعمال آن در ASP.NET Core نیاز به نصب پکیج می‌باشد.

موارد بالا انواع زیرساخت و ساختار (Cache Provider) برای پیاده‌سازی کش می‌باشند. روش‌های مختلفی برای استفاده از این Cache Providerها وجود دارد. مثلا یک روش، استفاده مستقیم در کدهای درونی متد یا کلاسمان می‌باشد و یا در روش دیگر می‌توانیم به صورت یک Middleware این پروسه را مدیریت کنیم، یا در روش دیگر (که موضوع این مقاله است) از ActionFilterAttribute استفاده می‌کنیم. یکی از روش‌های جالب دیگر کش کردن، اگر از Entity Framework به عنوان ORM استفاده می‌کنیم، استفاده از سطح دوم کش آن (EF Second Level Cache) می‌باشد. EF دو سطح کش دارد که سطح اول آن توسط خود Context به صورت درونی استفاده می‌شود و ما می‌توانیم از سطح دوم آن استفاده کنیم. مزیت آن به نسبت روش‌های قبلی این است که نتیجه‌ی کوئری ما (که با عبارات لامبدا نوشته می‌شود) را کش می‌کند و علاوه بر امکان تنظیم زمان انقضا برای این کش، در صورت تغییر یک entity خاص (انجام عملیات Update/Insert/Delete) خود به خود، کش کوئری مربوط به آن entity پاک می‌شود تا با مقدار جدید آن جایگزین شود که روش‌های دیگر این مزیت را ندارند. در این مقاله قرار نیست در مورد این روش کش صحبت کنیم. استفاده از این روش کش به صورت توکار در EF Core وجود ندارد و برای استفاده از آن در صورتی که از EF Core قبل از ورژن 3 استفاده می‌کنید می‌توانید از پکیج  EFSecondLevelCache.Core  و در صورت استفاده از EF Core 3 از پکیج  EF Core Second Level Cache Interceptor  استفاده نمایید که در هر دو حالت می‌توان هم از Memory Cache Provider و هم از Redis Cache Provider استفاده نمود.

در این مقاله می‌خواهیم Responseهای APIهایمان را در یک پروژه‌ی Web API، به ساده‌ترین حالت ممکن کش کنیم. زیرساخت این کش می‌تواند هر کدام از موارد ذکر شده‌ی بالا باشد. در این مقاله از Redis برای پیاده‌سازی آن استفاده می‌کنیم که با نصب پکیج Microsoft.Extensions.Caching.StackExchangeRedis انجام می‌گیرد. این بسته‌ی نیوگت که متعلق به مایکروسافت بوده و روش پایه‌ی استفاده از Redis در ASP.NET Core است، اینترفیس IDistributedCache را اعمال می‌کند:
Install-Package Microsoft.Extensions.Caching.StackExchangeRedis

سپس اینترفیس IResponseCacheService را می‌سازیم تا از این اینترفیس به جای IDistributedCache استفاده کنیم. البته می‌توان از IDistributedCache به طور مستقیم استفاده کرد؛ ولی چون همه‌ی ویژگی‌های این اینترفیس را نمی‌خواهیم و هم اینکه می‌خواهیم serialize کردن نتایج API را در کلاسی که از این اینترفیس ارث‌بری می‌کند (ResponseCacheService) بیاوریم (تا آن را کپسوله‌سازی (Encapsulation) کرده باشیم تا بعدا بتوانیم مثلا بجای پکیج Newtonsoft.Json، از System.Text.Json برای serialize کردن‌ها استفاده کنیم):
public interface IResponseCacheService
    {
        Task CacheResponseAsync(string cacheKey, object response, TimeSpan timeToLive);
        Task<string> GetCachedResponseAsync(string cacheKey);
    }
یادآوری: Redis قابلیت ذخیره‌ی داده‌هایی از نوع آرایه‌ی بایت‌ها را دارد (و نه هر نوع دلخواهی را). بنابراین اینجا ما بجای ذخیره‌ی مستقیم نتایج APIهایمان (که ممکن نیست)، می‌خواهیم ابتدا آن‌ها را با serialize کردن به نوع رشته‌ای (که فرمت json دارد) تبدیل کنیم و سپس آن را ذخیره نماییم.

حالا کلاس ResponseCacheService که این اینترفیس را اعمال می‌کند می‌سازیم: 
    public class ResponseCacheService : IResponseCacheService, ISingletonDependency
    {
        private readonly IDistributedCache _distributedCache;

        public ResponseCacheService(IDistributedCache distributedCache)
        {
            _distributedCache = distributedCache;
        }

        public async Task CacheResponseAsync(string cacheKey, object response, TimeSpan timeToLive)
        {
            if (response == null) return;
            var serializedResponse = JsonConvert.SerializeObject(response);
            await _distributedCache.SetStringAsync(cacheKey, serializedResponse, new DistributedCacheEntryOptions
            {
                AbsoluteExpirationRelativeToNow = timeToLive
            });
        }

        public async Task<string> GetCachedResponseAsync(string cacheKey)
        {
            var cachedResponse = await _distributedCache.GetStringAsync(cacheKey);
            return string.IsNullOrWhiteSpace(cachedResponse) ? null : cachedResponse;
        }
    }
دقت کنید که اینترفیس IDistributedCache در این کلاس استفاده شده است. اینترفیس ISingletonDependency صرفا یک اینترفیس نشان گذاری برای اعمال خودکار ثبت سرویس به صورت Singleton می‌باشد (اینترفیس را خودمان ساخته‌ایم و آن را برای رجیستر راحت سرویس‌هایمان تنظیم کرده‌ایم). اگر نمی‌خواهید از این روش برای ثبت این سرویس استفاده کنید، می‌توانید به صورت عادی این سرویس را رجیستر کنید که در ادامه، در قسمت مربوطه به صورت کامنت شده آمده است.

حالا کدهای لازم برای رجیستر کردن Redis و تنظیمات آن را در برنامه اضافه می‌کنیم. قدم اول ایجاد یک کلاس POCO به نام RedisCacheSettings است که به فیلدی به همین نام در appsettings.json نگاشت می‌شود:
public class RedisCacheSettings
    {
        public bool Enabled { get; set; }
        public string ConnectionString { get; set; }
        public int DefaultSecondsToCache { get; set; }
    }

این فیلد را در appsettings.json هم اضافه می‌کنیم تا در استارتاپ برنامه، با مپ شدن به کلاس RedisCacheSettings، قابلیت استفاده شدن در تنظیمات Redis را داشته باشد. 
"RedisCacheSettings": {
      "Enabled": true,
      "ConnectionString": "192.168.1.107:6379,ssl=False,allowAdmin=True,abortConnect=False,defaultDatabase=0,connectTimeout=500,connectRetry=3",
      "DefaultSecondsToCache": 600
    },

  حالا باید سرویس Redis را در متد ConfigureServices، به همراه تنظیمات آن رجیستر کنیم. می‌توانیم کدهای مربوطه را مستقیم در متد ConfigureServices بنویسیم و یا به صورت یک متد الحاقی در کلاس جداگانه بنویسیم و از آن در ConfigureServices استفاده کنیم و یا اینکه از روش Installer برای ثبت خودکار سرویس و تنظیماتش استفاده کنیم. اینجا از روش آخر استفاده می‌کنیم. برای این منظور کلاس CacheInstaller را می‌سازیم: 
    public class CacheInstaller : IServiceInstaller
    {
        public void InstallServices(IServiceCollection services, AppSettings appSettings, Assembly startupProjectAssembly)
        {
            var redisCacheService = appSettings.RedisCacheSettings;
            services.AddSingleton(redisCacheService);

            if (!appSettings.RedisCacheSettings.Enabled) return;

            services.AddStackExchangeRedisCache(options =>
                options.Configuration = appSettings.RedisCacheSettings.ConnectionString);

            // Below code applied with ISingletonDependency Interface
            // services.AddSingleton<IResponseCacheService, ResponseCacheService>();
        }
    }

خب تا اینجا اینترفیس اختصاصی خودمان را ساختیم و Redis را به همراه تنظیمات آن، رجیستر کردیم. برای اعمال کش، چند روش وجود دارد که همانطور که گفته شد، اینجا از روش ActionFilterAttribute استفاده می‌کنیم که یکی از راحت‌ترین راه‌های اعمال کش در APIهای ماست. کلاس CachedAttribute را ایجاد می‌کنیم:
    [AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
    public class CachedAttribute : Attribute, IAsyncActionFilter
    {
        private readonly int _secondsToCache;
        private readonly bool _useDefaultCacheSeconds;
        public CachedAttribute()
        {
            _useDefaultCacheSeconds = true;
        }
        public CachedAttribute(int secondsToCache)
        {
            _secondsToCache = secondsToCache;
            _useDefaultCacheSeconds = false;
        }

        public async Task OnActionExecutionAsync(ActionExecutingContext context, ActionExecutionDelegate next)
        {
            var cacheSettings = context.HttpContext.RequestServices.GetRequiredService<RedisCacheSettings>();

            if (!cacheSettings.Enabled)
            {
                await next();
                return;
            }

            var cacheService = context.HttpContext.RequestServices.GetRequiredService<IResponseCacheService>();

            // Check if request has Cache
            var cacheKey = GenerateCacheKeyFromRequest(context.HttpContext.Request);
            var cachedResponse = await cacheService.GetCachedResponseAsync(cacheKey);

            // If Yes => return Value
            if (!string.IsNullOrWhiteSpace(cachedResponse))
            {
                var contentResult = new ContentResult
                {
                    Content = cachedResponse,
                    ContentType = "application/json",
                    StatusCode = 200
                };
                context.Result = contentResult;
                return;
            }

            // If No => Go to method => Cache Value
            var actionExecutedContext = await next();

            if (actionExecutedContext.Result is OkObjectResult okObjectResult)
            {
                var secondsToCache = _useDefaultCacheSeconds ? cacheSettings.DefaultSecondsToCache : _secondsToCache;
                await cacheService.CacheResponseAsync(cacheKey, okObjectResult.Value,
                    TimeSpan.FromSeconds(secondsToCache));
            }
        }

        private static string GenerateCacheKeyFromRequest(HttpRequest httpRequest)
        {
            var keyBuilder = new StringBuilder();
            keyBuilder.Append($"{httpRequest.Path}");
            foreach (var (key, value) in httpRequest.Query.OrderBy(x => x.Key))
            {
                keyBuilder.Append($"|{key}-{value}");
            }

            return keyBuilder.ToString();
        }
    }
در این کلاس، تزریق وابستگی‌های IResponseCacheService و RedisCacheSettings به روش خاصی انجام شده است و نمی‌توانستیم از روش Constructor Dependency Injection استفاده کنیم چون در این حالت می‌بایستی این ورودی در Controller مورد استفاده هم تزریق شود و سپس در اتریبیوت [Cached] بیاید که مجاز به اینکار نیستیم؛ بنابراین از این روش خاص استفاده کردیم. مورد دیگر فرمول ساخت کلید کش می‌باشد تا بتواند کش بودن یک Endpoint خاص را به طور خودکار تشخیص دهد که این متد در همین کلاس آمده است. 
 
حالا ما می‌توانیم با استفاده از attributeی به نام  [Cached]  که روی APIهای از نوع HttpGet قرار می‌گیرد آن‌ها را براحتی کش کنیم. کلاس بالا هم طوری طراحی شده (با دو سازنده متفاوت) که در حالت استفاده به صورت [Cached] از مقدار زمان پیشفرضی استفاده می‌کند که در فایل appsettings.json تنظیم شده است و یا اگر زمان خاصی را مد نظر داشتیم (مثال 1000 ثانیه) می‌توانیم آن را به صورت  [(Cached(1000]  بیاوریم. کلاس زیر نمونه‌ی استفاده‌ی از آن می‌باشد:
[Cached]
[HttpGet]
public IActionResult Get()
  {
    var rng = new Random();
    var weatherForecasts = Enumerable.Range(1, 5).Select(index => new WeatherForecast
    {
      Date = DateTime.Now.AddDays(index),
      TemperatureC = rng.Next(-20, 55),
      Summary = Summaries[rng.Next(Summaries.Length)]
    })
      .ToArray();
    return Ok(weatherForecasts);
  }
بنابراین وقتی تنظیمات اولیه، برای پیاده‌سازی این کش انجام شود، اعمال کردن آن به سادگی قرار دادن یک اتریبیوت ساده‌ی [Cached] روی هر apiی است که بخواهیم خروجی آن را کش کنیم. فقط توجه نمایید که این روش فقط برای اکشن‌هایی که کد 200 را بر می‌گردانند، یعنی متد Ok را return می‌کنند (OkObjectResult) کار می‌کند. بعلاوه اگر از اتریبیوت ApiResultFilter یا مفهوم مشابه آن برای تغییر خروجی API به فرمت خاص استفاده می‌کنید، باید در آن تغییرات کوچکی را انجام دهید تا با این حالت هماهنگ شود. 
مطالب
ساخت ActionResult سفارشی
پیشتر با انواع ActionResult آشنا شدید. حال فرض کنید می‌خواهید نوعی رو برگردونید که براش ActionResult موجود نباشه مثلا RSS و یا فایل از نوع Excel و...
خوب، فرض کنید می‌خواهید اکشن متدی رو بنویسید که قراره نام یک فایل متنی رو بگیره و انو تو مروگر به کاربر نمایش بده.
برای اینکار از کلاس ActionResult، کلاس دیگه‌ی رو بنام TextResult به ارث می‌بریم و از این ActionResult سفارشی شده، در اکشن متد مربوطه استفاده می‌کنیم:
public class TextResult : ActionResult
{
    public string FileName { get; set; }
    public override void ExecuteResult(ControllerContext context)
    {
        var filePath = Path.Combine(context.HttpContext.Server.MapPath(@"~/Files/"), FileName);
        var data = File.ReadAllText(filePath);
        context.HttpContext.Response.Write(data);
    }
}
نحوه استفاده
    public ActionResult DownloadTextFile(string fileName)
    {
        return new TextResult { FileName = fileName };
    }
در واقع متد اصلی اینجا ExecuteResult هست که نتیجه‌ی کار یک اکشن رو می‌تونیم پردازش کنیم.
خوب، سوالی که اینجا پیش میاد اینه که چرا این همه کار اضافی، چرا از Return File  استفاده نمی‌کنی؟
    public ActionResult DownloadTextFile(string fileName)
    {
        var filePath = Path.Combine(HttpContext.Server.MapPath(@"~/Files/"), fileName);
        return File(filePath, "text");
    }
 یا کلا دلیل استفاده از ActionResult سفارشی چیه؟

  • جلوگیری از پیچیدگی و  تکرار کد
همیشه کار مثل مورد بالا راحت و کم کد! نیست.
به مثال زیر توجه کنید که قراره خروجی CSV  بهمون بده.
public class CsvActionResult : ActionResult
{
    public IEnumerable ModelListing { get; set; }

    public CsvActionResult(IEnumerable modelListing)
    {
        ModelListing = modelListing;
    }

    public override void ExecuteResult(ControllerContext context)
    {
        byte[] data = new CsvFileCreator().AsBytes(ModelListing);
        var fileResult = new FileContentResult(data, "text/csv")
        {
            FileDownloadName = "CsvFile.csv"
        };
        fileResult.ExecuteResult(context);
    }
}
و نحوه استفاده:
    public ActionResult ExportUsers()
    {
        IEnumerable<User> model = UserRepository.GetUsers();
        return new CsvActionResult(model);
    }
حال فرض کنید بخواهیم همه این کدها رو داخل اکشن متد داشته باشیم، یکم پیچیده میشه و یا فرض کنید کنترلر دیگه‌‌ای نیاز به خروجی CSV  داشته باشه، تکرار کد زیاد میشه.

  • راحت کردن گرفتن تست واحد از اکشن‌ها متدها
کاربرد ActionResult سفارشی تو تست واحد اینه که وابستگی‌های یک اکشن رو که Mock کردنش سخته می‌بریم داخل ActionResult و هنگام نوشتن تست واحد درگیر کار با اون وابستگی نمی‌شیم.
به مثال زیر توجه کنید که قراره برای اکشن Logout  تست واحد بنویسیم
ابتدا بردن وابستگی‌ها به خارج از اکشن به کمک ActionResult سفارشی
public class LogoutActionResult : ActionResult
{
    public RedirectToRouteResult ActionAfterLogout { get; set; }
    public LogoutActionResult(RedirectToRouteResult actionAfterLogout)
    {
        ActionAfterLogout = actionAfterLogout;
    }
    public override void ExecuteResult(ControllerContext context)
    {
        FormsAuthentication.SignOut();
        ActionAfterLogout.ExecuteResult(context);
    }
}
نحوه استفاده از ActionResult سفارشی
    public ActionResult Logout()
    {
        var redirect = RedirectToAction("Index", "Home");
        return new LogoutActionResult(redirect);
    }
و سپس نحوه تست واحد نوشتن
    [TestMethod]
    public void The_Logout_Action_Returns_LogoutActionResult()
    {
        //arrange
        var account = new AccountController();

        //act
        var result = account.Logout() as LogoutActionResult;

        //assert
        Assert.AreEqual(result.ActionAfterLogout.RouteValues["Controller"], "Home");
    }
خوب به راحتی ما میایم فراخوانی متد SignOut رو از داخل اکشن می‌کشیم بیرون و این کار از اجرای متد SignOut  از داخل اکشن متد جلوگیری می‌کنه و همچنین با این کار هنگام تست واحد نوشتن نیاز نیست با Mock  کردن کلاس FormsAuthentication سروکار داشته باشیم و فقط کافیه چک کنیم خروجی از نوع LogoutActionResult هست یا خیر و یا می‌تونیم ActionAfterLogout رو چک کنیم.

منابع و مراجع: + و +
 
مطالب
شروع به کار با EF Core 1.0 - قسمت 1 - برپایی تنظیمات اولیه
در ادامه‌ی سری «ارتقاء به ASP.NET Core 1.0» اگر بخواهیم مباحث اعتبارسنجی کاربران و ASP.NET Identity مخصوص آن‌را بررسی کنیم، نیاز است ابتدا مباحث Entity framework Core 1.0 را بررسی کنیم. به همین جهت در طی چند قسمت مباحث پایه‌ای کار با EF Core 1.0 را در ASP.NET Core 1.0، بررسی خواهیم کرد. بنابراین پیشنیاز ضروری این مباحث، مطالعه‌ی سری «ارتقاء به ASP.NET Core 1.0» است و در آن از مباحثی مانند چگونگی کار با فایل‌های کانفیگ جدید، تزریق وابستگی‌ها و سرویس‌ها، فعال سازی سرویس Logging، فعال سازی صفحات مخصوص توسعه دهنده‌ها و ... در ASP.NET Core 1.0 استفاده خواهد شد.


EF Core چیست؟

EF Core یک ORM یا object-relational mapper چندسکویی است که امکان کار با بانک‌های اطلاعاتی مختلف را از طریق اشیاء دات نتی میسر می‌کند. توسط آن قسمت عمده‌ی کدهای مستقیم کار با بانک‌های اطلاعاتی حذف شده و تبدیل به کدهای دات نتی می‌شوند. مزیت این لایه‌ی Abstraction اضافی (لایه‌ای بر روی کدهای مستقیم لایه ADO.NET زیرین)، امکان تعویض بانک اطلاعاتی مورد استفاده، تنها با تغییر کدهای آغازین برنامه‌است؛ بدون نیاز به تغییری در سایر قسمت‌های برنامه. همچنین کار با اشیاء دات نتی و LINQ، مزایایی مانند تحت نظر قرار گرفتن کدها توسط کامپایلر و برخورداری از ابزارهای Refactoring پیشرفته را میسر می‌کنند. به علاوه SQL خودکار تولیدی توسط آن نیز همواره پارامتری بوده و مشکلات حملات تزریق SQL در این حالت تقریبا به صفر می‌رسند (اگر مستقیما SQL نویسی نکنید و صرفا از LINQ استفاده کنید). مزیت دیگر همواره پارامتری بودن کوئری‌ها، رفتار بسیاری از بانک‌های اطلاعاتی با آن‌ها همانند رویه‌های ذخیره شده است که به عدم تولید Query plan‌های مجزایی به ازای هر کوئری رسیده منجر می‌شود که در نهایت سبب بالا رفتن سرعت اجرای کوئری‌ها و مصرف حافظه‌ی کمتری در سمت سرور بانک اطلاعاتی می‌گردد.


تفاوت EF Core با نگارش‌های دیگر Entity framework در چیست؟

سورس باز بودن
EF از نگارش‌های آخر آن بود که سورس باز شد؛ اما EF Core از زمان نگارش‌های پیش نمایش آن به صورت سورس باز در GitHub قابل دسترسی است.

چند سکویی بودن
EF Core برخلاف EF 6.x (آخرین نگارش مبتنی بر Full Framework آن)، نه تنها چندسکویی است و قابلیت اجرای بر روی Mac و لینوکس را نیز دارا است، به علاوه امکان استفاده‌ی از آن در انواع و اقسام برنامه‌های دات نتی مانند UWP یا Universal Windows Platform و Windows phone که پیشتر با EF 6.x میسر نبود، وجود دارد. لیست این نوع سکوها و برنامه‌های مختلف به شرح زیر است:
 • All .NET application (Console, ASP.NET 4, WinForms, WPF)
 • Mac and Linux applications (Mono)
 • UWP (Universal Windows Platform)
 • ASP.NET Core applications
 • Can use EF Core in Windows phone and Windows store app

افزایش تعداد بانک‌های اطلاعاتی پشتیبانی شده
در EF Full یا EF 6.x، هدف اصلی، تنها کار با بانک‌های اطلاعاتی رابطه‌‌ای بود و همچنین مایکروسافت صرفا نگارش‌های مختلف SQL Server را به صورت رسمی پشتیبانی می‌کرد و برای سایر بانک‌های اطلاعاتی دیگر باید از پروایدرهای ثالث استفاده کرد.
در EF Core علاوه بر افزایش تعداد پروایدرهای رسمی بانک‌های اطلاعاتی رابطه‌ای، پشتیبانی از بانک‌های اطلاعاتی NoSQL هم اضافه شده‌است؛ به همراه پروایدر ویژه‌‌ای به نام In Memory جهت انجام ساده‌تر Unit testing. کاری که با نگارش‌های پیشین EF به سادگی و از روز اول پشتیبانی نمی‌شد.

حذف و یا عدم پیاده سازی تعدادی از قابلیت‌های EF 6.x
اگر موارد فوق جزو مهم‌ترین مزایای کار با EF Core باشند، باید درنظر داشت که به علت حذف و یا تقلیل یافتن یک سری از ویژگی‌ها در NET Core.، مانند Reflection (جهت پشتیبانی از دات نت در سکوهای مختلف کاری و خصوصا پشتیبانی از حالتی که کامپایلر مخصوص برنامه‌های UWP نیاز دارد تمام نوع‌ها را همانند زبان‌های C و ++C، در زمان کامپایل بداند)، یک سری از قابلیت‌های EF 6.x مانند Lazy loading هنوز در EF Core پشتیبانی نمی‌شوند. لیست کامل و به روز شده‌ی این موارد را در اینجا می‌توانید مطالعه کنید.
بنابراین امکان انتقال برنامه‌های EF 6.x به EF Core 1.0 عموما وجود نداشته و نیاز به بازنویسی کامل دارند. هرچند بسیاری از مفاهیم آن با EF Code First یکی است.


برپایی تنظیمات اولیه‌ی EF Core 1.0 در یک برنامه‌ی ASP.NET Core 1.0

برای نصب تنظیمات اولیه‌ی EF Core 1.0 در یک برنامه‌ی ASP.NET Core 1.0، جهت کار با مشتقات SQL Server (و SQL LocalDB) نیاز است سه بسته‌ی ذیل را نصب کرد (از طریق منوی Tools -> NuGet Package Manager -> Package Manager Console):
PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer
PM> Install-Package Microsoft.EntityFrameworkCore.Tools -Pre
PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer.Design
البته در این قسمت صرفا از بسته‌ی اول که جهت اتصال به SQL Server است استفاده می‌کنیم. بسته‌های دیگر را در قسمت‌های بعد، برای به روز رسانی اسکیمای بانک اطلاعاتی (مباحث Migrations) و مباحث scaffolding استفاده خواهیم کرد.
پس از اجرای سه دستور فوق، تغییرات مداخل فایل project.json برنامه به صورت ذیل خواهند بود:
{
    "dependencies": {
       // same as before
        "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0",
        "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final",
        "Microsoft.EntityFrameworkCore.SqlServer.Design": "1.0.0"
    }
}
این مداخلی که توسط نیوگت اضافه شده‌اند، نیاز به اصلاح دارند؛ به این صورت:
{
    "dependencies": {
       // same as before
        "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0",
        "Microsoft.EntityFrameworkCore.Tools": {
            "version": "1.0.0-preview2-final",
            "type": "build"
        },
        "Microsoft.EntityFrameworkCore.SqlServer.Design": {
            "version": "1.0.0",
            "type": "build"
        }
    },

    "tools": {
       // same as before
        "Microsoft.EntityFrameworkCore.Tools": {
            "version": "1.0.0-preview2-final",
            "imports": [
                "portable-net45+win8"
            ]
        }   
   }
}
نیاز است در قسمت dependencies مشخص کنیم که ابزارهای اضافه شده مخصوص build هستند و نه اجرای برنامه. همچنین قسمت tools را باید با Microsoft.EntityFrameworkCore.Tools مقدار دهی کرد تا بتوان از این ابزار در خط فرمان، جهت اجرای فرامین migrations استفاده کرد.
بنابراین از همین ابتدای کار، بدون مراجعه‌ی به Package Manager Console، چهار تغییر فوق را به فایل project.json اعمال کرده و آن‌را ذخیره کنید؛ تا کار به روز رسانی و نصب بسته‌ها، به صورت خودکار و همچنین صحیحی انجام شود.


فعال سازی صفحات مخصوص توسعه دهنده‌های EF Core 1.0

در مطلب «ارتقاء به ASP.NET Core 1.0 - قسمت 5 - فعال سازی صفحات مخصوص توسعه دهنده‌ها» با تعدادی از اینگونه صفحات آشنا شدیم. برای EF Core نیز بسته‌ی مخصوصی به نام Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore وجود دارد که امکان فعال سازی صفحه‌ی نمایش خطاهای بانک اطلاعاتی را میسر می‌کند. بنابراین ابتدا به فایل project.json مراجعه کرده و این بسته را اضافه کنید:
{
    "dependencies": {
       // same as before
        "Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore": "1.0.0"
    }
}
سپس می‌توان متد جدید UseDatabaseErrorPage را در متد Configure کلاس آغازین برنامه، فراخوانی کرد:
public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
   if (env.IsDevelopment())
   {
      app.UseDatabaseErrorPage();
   }
با فعال سازی این صفحه، اگر در حین توسعه‌ی برنامه و اتصال به بانک اطلاعاتی، خطایی رخ دهد، بجای مشاهده‌ی یک صفحه‌ی خطای عمومی (اگر UseDeveloperExceptionPage را فعال کرده باشید)، اینبار ریز جزئیات بیشتری را به همراه توصیه‌هایی از طرف تیم EF مشاهده خواهید کرد.


تعریف اولین Context برنامه و مشخص سازی رشته‌ی اتصالی آن


در این تصویر، زیر ساخت نگاشت‌های EF Core را مشاهده می‌کنید. در سمت چپ، ظرفی را داریم به نام DB Context که در برگیرنده‌ی Db Setها است. در سمت راست که بیانگر ساختار کلی یک بانک اطلاعاتی است، معادل این‌ها را مشاهده می‌کنیم. هر Db Set به یک جدول بانک اطلاعاتی نگاشت خواهد شد و متشکل است از کلاسی به همراه یک سری خواص که این‌ها نیز به فیلدها و ستون‌های آن جدول در سمت بانک اطلاعاتی نگاشت می‌شوند.
بنابراین برای شروع کار، پوشه‌ای را به نام Entities به پروژه اضافه کرده و سپس کلاس ذیل را به آن اضافه می‌کنیم:
namespace Core1RtmEmptyTest.Entities
{
    public class Person
    {
        public int PersonId { get; set; }
        public string FirstName { get; set; }
        public string LastName { get; set; }
    }
}
کلاس Person بیانگر ساختار جدول اشخاص بانک اطلاعاتی است. برای اینکه این کلاس را تبدیل و نگاشت به یک جدول کنیم، نیاز است آن‌را به صورت یک DbSet در معرض دید EF Core قرار دهیم و اینکار در کلاسی که از DbContex مشتق می‌شود، صورت خواهد گرفت:
using Microsoft.EntityFrameworkCore;

namespace Core1RtmEmptyTest.Entities
{
    public class ApplicationDbContext : DbContext
    {
        public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options) : base(options)
        {
        }

        public DbSet<Person> Persons { get; set; }
    }
}
بنابراین در ادامه کلاس جدید ApplicationDbContext را که از کلاس پایه DbContext مشتق می‌شود تعریف کرده و سپس کلاس Person را به صورت یک DbSet در معرض دید EF Core قرار می‌دهیم.
سازنده‌ی این کلاس نیز به نحو خاصی تعریف شده‌است. اگر به سورس‌های EF Core مراجعه کنیم، کلاس پایه‌ی DbContext دارای دو سازنده‌ی با و بدون پارامتر است:
protected DbContext()
   : this((DbContextOptions) new DbContextOptions<DbContext>())
{
}

public DbContext([NotNull] DbContextOptions options)
{
  // …
}
اگر از سازنده‌ی بدون پارامتر استفاده کنیم و برای مثال در کلاس ApplicationDbContext فوق، به طور کامل سازنده‌ی تعریف شده را حذف کنیم، باید به نحو ذیل تنظیمات بانک اطلاعاتی را مشخص کنیم:
using Microsoft.EntityFrameworkCore;

namespace Core1RtmEmptyTest.Entities
{
    public class ApplicationDbContext : DbContext
    {
        public DbSet<Person> Persons { get; set; }

        protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
        {
            optionsBuilder.UseSqlServer(@"... connection string ...");
        }
    }
}
در این حالت باید متد OnConfiguring را override و یا بازنویسی کنیم، تا بتوان از اول مشخص کرد که قرار است از پروایدر SQL Server استفاده کنیم و ثانیا رشته‌ی اتصالی به آن چیست.
اما چون در یک برنامه‌ی ASP.NET Core، کار ثبت سرویس مربوط به EF Core، در کلاس آغازین برنامه انجام می‌شود و در آنجا به سادگی می‌توان به خاصیت Configuration برنامه دسترسی یافت و توسط آن رشته‌ی اتصالی را دریافت کرد، مرسوم است از سازنده‌ی با پارامتر DbContext به نحوی که در ابتدا عنوان شد، استفاده شود.
بنابراین در ادامه، پس از مطالعه‌ی مطلب «ارتقاء به ASP.NET Core 1.0 - قسمت 7 - کار با فایل‌های config» به فایل appsettings.json مراجعه کرده و تنظیمات رشته‌ی اتصالی برنامه را به صورت ذیل در آن مشخص می‌کنیم:
{
    "ConnectionStrings": {
        "ApplicationDbContextConnection": "Data Source=(local);Initial Catalog=TestDbCore2016;Integrated Security = true"
    }
}
باید دقت داشت که نام این مداخل کاملا اختیاری هستند و در نهایت باید در کلاس آغازین برنامه به صورت صریحی مشخص شوند.
در اینجا به وهله‌ی پیش فرض SQL Server اشاره شده‌است؛ از حالت اعتبارسنجی ویندوزی SQL Server استفاده می‌شود و بانک اطلاعاتی جدیدی به نام TestDbCore2016 در آن مشخص گردیده‌است.

پس از تعریف رشته‌ی اتصالی، متد OnConfiguring را از کلاس ApplicationDbContext حذف کرده و از همان نگارش دارای سازنده‌ی با پارامتر آن استفاده می‌کنیم. برای اینکار به کلاس آغازین برنامه مراجعه کرده و توسط متد AddDbContext این Context را به سرویس‌های ASP.NET Core معرفی می‌کنیم:
    public class Startup
    {
        public IConfigurationRoot Configuration { set; get; }

        public Startup(IHostingEnvironment env)
        {
            var builder = new ConfigurationBuilder()
                                .SetBasePath(env.ContentRootPath)
                                .AddJsonFile("appsettings.json", reloadOnChange: true, optional: false)
                                .AddJsonFile($"appsettings.{env}.json", optional: true);
            Configuration = builder.Build();
        }

        public void ConfigureServices(IServiceCollection services)
        {
            services.AddSingleton<IConfigurationRoot>(provider => { return Configuration; });
            services.AddDbContext<ApplicationDbContext>(options =>
            {
                options.UseSqlServer(Configuration["ConnectionStrings:ApplicationDbContextConnection"]);
            });
در اینجا جهت یادآوری مطلب «ارتقاء به ASP.NET Core 1.0 - قسمت 7 - کار با فایل‌های config» نحوه‌ی وهله سازی خاصیت Configuration که در متد UseSqlServer مورد استفاده قرار گرفته‌است، نیز ذکر شده‌است.
بنابراین قسمت options.UseSqlServer را یا در اینجا مقدار دهی می‌کنید و یا از طریق بازنویسی متد OnConfiguring کلاس Context برنامه.


یک نکته: امکان تزریق IConfigurationRoot به کلاس Context برنامه وجود دارد

با توجه به اینکه Context برنامه را به صورت یک سرویس به ASP.NET Core معرفی کردیم، امکان تزریق وابستگی‌ها نیز در آن وجود دارد. یعنی بجای روش فوق، می‌توان IConfigurationRoot را به سازنده‌ی کلاس Context برنامه نیز تزریق کرد:
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace Core1RtmEmptyTest.Entities
{
    public class ApplicationDbContext : DbContext
    {
        private readonly IConfigurationRoot _configuration;

        public ApplicationDbContext(IConfigurationRoot configuration)
        {
            _configuration = configuration;
        }

        //public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options) : base(options)
        //{
        //}

        public DbSet<Person> Persons { get; set; }

        protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
        {
            optionsBuilder.UseSqlServer(_configuration["ConnectionStrings:ApplicationDbContextConnection"]);
        }
    }
}
با توجه به اینکه IConfigurationRoot در کلاس ConfigureServices به صورت Singleton، به مجموعه‌ی سرویس‌های برنامه معرفی شده‌است، از آن در تمام کلاس‌های برنامه که تحت نظر سیستم تزریق وابستگی‌های توکار ASP.NET Core هستند، می‌توان استفاده کرد.
در این حالت متد ConfigureServices کلاس آغازین برنامه، چنین شکلی را پیدا می‌کند و ساده می‌شود:
public void ConfigureServices(IServiceCollection services)
{
    services.AddDbContext<ApplicationDbContext>();


یک نکته: امکان تزریق ApplicationDbContext به تمام کلاس‌های برنامه وجود دارد

همینقدر که ApplicationDbContext را به عنوان سرویسی در ConfigureServices تعریف کردیم، امکان تزریق آن در اجزای مختلف یک برنامه‌ی ASP.NET Core نیز وجود دارد:
using System.Linq;
using Core1RtmEmptyTest.Entities;
using Microsoft.AspNetCore.Mvc;

namespace Core1RtmEmptyTest.Controllers
{
    public class TestDBController : Controller
    {
        private readonly ApplicationDbContext _ctx;

        public TestDBController(ApplicationDbContext ctx)
        {
            _ctx = ctx;
        }

        public IActionResult Index()
        {
            var name = _ctx.Persons.First().FirstName;
            return Json(new { firstName = name });
        }
    }
}
در اینجا نحوه‌ی تزریق DB Context برنامه را به یک کنترلر مشاهده می‌کنید. البته هرچند تزریق یک کلاس مشخص به این شکل، تزریق وابستگی‌ها نام ندارد و هنوز این کنترلر دقیقا وابسته‌است به پیاده سازی خاص کلاس ApplicationDbContext، اما ... در کل امکان آن هست.

در این حالت پس از اجرای برنامه، خطای ذیل را مشاهده خواهیم کرد:


علت اینجا است که هنوز این بانک اطلاعاتی ایجاد نشده‌است و همچنین ساختار جداول را به آن منتقل نکرده‌ایم که این موارد را در قسمت‌های بعدی مرور خواهیم کرد.
مطالب
با HttpHandler بیشتر آشنا شوید
در  مقاله قبل توضیح دادیم که وظیفه httphandler رندر و پردازش خروجی یک درخواست هست؛ حالا در این مقاله قصد داریم که مفهوم httphandler را بیشتر بررسی کنیم.

HttpHandler
برای تهیه‌ی یک httphandler، باید کلاسی را بر اساس اینترفیس IHttpHandler پیاده سازی کنیم و بعدا آن را در web.config برنامه معرفی کنیم. برای پیاده سازی این اینترفیس، به یک متد به اسم ProcessRequest با یک پارامتر از نوع HttpContext و یک پراپرتی به اسم IsReusable نیاز داریم که مقدار برگشتی این پراپرتی را false بگذارید؛ بعدا خواهم گفت چرا اینکار را می‌کنیم. نحوه‌ی پیاده‌سازی یک httphandler به شکل زیر است:
public class MyHttpHandler : IHttpHandler
{
    public void ProcessRequest(HttpContext context)
    {        
    }

    public bool IsReusable
    {
        get { return false; }
    }
}
با استفاده از شیء context می‌توان به دو شیء httpresponse و httprequest دسترسی داشت. تکه کد زیر مثالی است در مورد نحوه‌ی تغییر در محتوای سایت:
public class MyHttpHandler : IHttpHandler
{
    public void ProcessRequest(HttpContext context)
    {
        HttpResponse response = context.Response;
        HttpRequest request = context.Request;

        response.Write("Every Page has a some text like this");
    }

    public bool IsReusable
    {
        get { return false; }
    }
}
بگذارید همین کد ساده را در وب کانفیگ معرفی کنیم:
<system.web>
  <httpHandlers>
      <add verb="*" path="*.aspx" type="MyHttpHandler"/>
  </httpHandlers>
</system.web>
اگر نسخه IIS شما همانند نسخه‌ی من باشد، نباید هیچ تغییری مشاهده کنید؛ زیرا کد بالا فقط در مورد نسخه‌ی IIS6 صدق می‌کند و برای نسخه‌های IIS 7 به بعد باید به شیوه زیر عمل کنید:
<configuration>
  <system.web>
    <httpHandlers>

  <add name="myhttphandler" verb="*" path="*.aspx" type="MyHttpHandler"/>

    </httpHandlers>
  </system.web>
</configuration>
خروجی نهایی باید تنها این متن باشد: Every Page has a some text like this 
گزینه Type که نام کلاس می‌باشد و اگر کلاس داخل یک فضای نام قرار گرفته باشد، باید اینطور نوشت : namespace.ClassName  
گزینه verb شامل مقادیری چون Get,Post,Head,Putو Delete می‌باشد و httphandler را فقط برای این نوع درخواست‌ها اجرا می‌کند و در صورتیکه بخواهید چندتا از آن‌ها را استفاده کنید، با , از هم جدا می‌شوند. مثلا Get,post و درصورتیکه همه‌ی گزینه‌ها را بخواهید علامت * را میتوان استفاده کرد. 
 گزینه‌ی path این امکان را به شما می‌دهد که مسیر و نوع فایل‌هایی را که قصد دارید روی آن‌ها فقط اجرا شود، مشخص کنید و ما در قطعه کد بالا گفته‌ایم که تنها روی فایل‌هایی با پسوند aspx اجرا شود و چون مسیری هم ذکر نکردیم برای همه‌ی مسیرها قابل اجراست. یکی از مزیت‌های دادن پسوند این است که می‌توانید پسوندهای اختصاصی داشته باشید. مثلا پسوند RSS برای فیدهای وب سایتتان. بسیاری از برنامه نویسان به جای استفاده از صفحات aspx از ashx استفاده می‌کنند که به مراتب سبک‌تر از aspx هست و شامل بخش ui نمی‌شود و نتیجه خروجی آن بر اساس کدی که می‌نویسید مشخص می‌شود که میتواند صفحه متنی یا عکس یا xml یا ... باشد. در اینجا در مورد ساخت صفحات ashx توضیح داده شده است. 

  IHttpHandlerFactory
کار این اینترفیس پیاده سازی یک کلاس است که خروجی آن یک کلاس از نوع IHttpHandler هست. اگر دقت کنید در مثال‌های قبلی ما برای معرفی یک هندلر در وب کانفیگ یک سری path را به آن میدادیم و برای نمونه aspx.* را معرفی می‌کردیم؛ یعنی این هندلر را بر روی همه‌ی فایل‌های aspx اجرا کن و اگر دو یا چند هندلر در وب کانفیگ معرفی کنیم و برای همه مسیر aspx را قرار بدهیم، یعنی همه این هندلرها باید روی صفحات aspx اجرا گردند ولی در httphandlerfactory، ما چند هندلر داریم و میخواهیم فقط یکی از آن‌ها بر روی صفحات aspx انجام بگیرد، پس ما یک هندلرفکتوری را برای صفحات aspx معرفی می‌کنیم و در حین اجرا تصمیم می‌گیریم که کدام هندلر را ارسال کنیم.
اجازه بدهید نوشتن این نوع کلاس را آغاز کنیم،ابتدا دو هندلر به نام‌های httphandler1 و httphandler2 می‌نویسیم :
public class MyHttpHandler1 :IHttpHandler
{
   
    public void ProcessRequest(HttpContext context)
    {
        HttpResponse response = context.Response;
        response.Write("this is httphandler1");
    }

    public bool IsReusable
    {
        get { return false; }
    }
}

public class MyHttpHandler2 : IHttpHandler
{

    public void ProcessRequest(HttpContext context)
    {
        HttpResponse response = context.Response;
        response.Write("this is httphandler2");
    }

    public bool IsReusable
    {
        get { return false; }
    }
}
سپس کلاس MyFactory را بر اساس اینترفیس IHttpFactory پیاده سازی می‌کنیم و باید دو متد برای آن صدا بزنیم؛ یکی که هندلر انتخابی را بر میگرداند و دیگری هم برای رها کردن یا آزادسازی یک هندلر هست که در این مقاله کاری با آن نداریم. عموما GC دات نت در این زمینه کارآیی خوبی دارد. در قسمت هندلرهای غیرهمزمان به طور مختصر خواهیم گفت که GC چطور آن‌ها را مدیریت می‌کند. کد زیر نمونه کلاسی است که توسط IHttpFactory پیاده سازی شده است:
public class MyFactory : IHttpHandlerFactory
{
    public IHttpHandler GetHandler(HttpContext context, string requestType, string url, string pathTrasnlated)
    {
        
    }

    public void ReleaseHandler(IHttpHandler handler)
    {
        
    }
}
در متد GetHandler چهار آرگومان وجود دارند که به ترتیب برای موارد زیر به کار می‌روند:
 Context یک شی از کلاس httpcontext که دسترسی ما را برای اشیاء سروری چون response,request,session و... فراهم می‌کند.
 RequestType  مشخص می‌کند که درخواست صفحه به چه صورتی است. این گزینه برای مواردی است که verb بیش از یک مورد را حمایت می‌کند. برای مثال دوست دارید یک هندلر را برای درخواست‌های Get ارسال کنید و هندلر دیگر را برای درخواست‌های نوع Post
 URL مسیر مجازی virtual Path صفحه صدا زده شده 
 PathTranslated مسیر فیزیکی صفحه درخواست کننده را ارسال می‌کند. 
متد GetHandler را بدین شکل می‌نویسیم و میخواهیم همه صفحات aspx هندلر شماره یک را انتخاب کنند و صفحات aspx که نامشان با t شروع می‌شوند، هندلر  شماره دو را انتخاب کند:
 public IHttpHandler GetHandler(HttpContext context, string requestType, string url, string pathTrasnlated)
    {
        string handlername = "MyHttpHandler1";
        if(url.Substring(url.LastIndexOf("/")+1).StartsWith("t"))
        {
            handlername = "MyHttpHandler2";
        }

        try
        {
            return (IHttpHandler) Activator.CreateInstance(Type.GetType(handlername));
        }
        catch (Exception e) 
        {
            throw new HttpException("Error: " + handlername, e);
        }
    }

    public void ReleaseHandler(IHttpHandler handler)
    {
        
    }
}
شی Activator که برای ساخت اشیاء با انتخاب بهترین constructor موجود بر اساس یک نوع Type مشخص به کار می‌رود و خروجی Object را می‌گرداند؛ با یک تبدیل ساده، خروجی به قالب اصلی خود باز میگردد. برای مطالعه بیشتر در مورد این کلاس به اینجا و اینجا مراجعه کنید.
نحوه‌ی تعریف factory در وب کانفیگ مانند قبل است و فقط باید در Type به جای نام هندلر نام فکتوری را نوشت. برنامه را اجرا کنید تا نتیجه آن را ببینیم:
تصویر زیر نتیجه صدا زده شدن فایل default.aspx است:

تصویر زیر نتیجه صدا زده شدن فایل Tours_List.aspx است:

AsyncHttpHandlers
برای اینکه کار این اینترفیس را درک کنید بهتر هست اینجا را مطالعه کنید. در اینجا به خوبی تفاوت متدهای همزمان و غیرهمزمان توضیح داده شده است.
متن زیر خلاصه‌ترین و بهترین توضیح برای این پرسش است، چرا غیرهمزمان؟
در اعمالی که disk I/O و یا network I/O دارند، پردازش موازی و اعمال async به شدت مقیاس پذیری سیستم را بالا می‌برند. به این ترتیب worker thread جاری (که تعداد آن‌ها محدود است)، سریعتر آزاد شده و به worker pool بازگشت داده می‌شود تا بتواند به یک درخواست دیگر رسیده سرویس دهد. در این حالت می‌توان با منابع کمتری، درخواست‌های بیشتری را پردازش کرد. 
موقعی که اینترفیس IHttpAsyncHandler را ارث بری کنید (این اینترفیس نیز از IHttpHandler ارث بری کرده است و دو متد اضافه‌تر دارد)، باید دو متد دیگر را نیز پیاده سازی کنید:
 public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback callback, object obj)
    {
        
    }

    public void EndProcessRequest(IAsyncResult result)
    {
        
    }
پراپرتی ISResuable هم موقعی که true برگشت بدهد، باعث می‌شود pooling فعال شده و این هندلر در حافظه باقی بماند و تمامی درخواست‌ها از طریق همین یک نمونه اجرا شوند.
به زبان ساده‌تر، این پراپرتی می‌گوید اگر چندین درخواست از طرف کلاینت‌ها برسد، توسط یک نمونه یا instance از هندلر پردازش خواهند شد؛ چون به طور پیش فرض موقعی که تمام درخواست‌های از pipeline بگذرند، هندلر‌ها توسط httpapplication در یک لیست بازیافت قرار گرفته و همه‌ی آن‌ها با null مقداردهی می‌شوند تا از حافظه پاک شوند ولی اگر این پراپرتی true برگرداند، هندلر مربوطه نال نشده و برای پاسخگویی به درخواست‌های بعدی در حافظه خواهد ماند.
مهمترین مزیت این گزینه، این می‌باشد که کاآیی سیستم را بالا می‌برد و اشیا کمتری به GC پاس می‌شوند. ولی یک عیب هم دارد که این تردهایی که ایجاد می‌کند، امنیت کمتری دارند و باید توسط برنامه نویس این امنیت بالاتر رود. این پراپرتی را در مواقعی که با هندلرهای همزمان کار می‌کنید برابر با false بگذارید چون این گزینه بیشتر بر روی هندلرهای غیرهمزمان اثر دارد و هم اینکه بعضی‌ها توصیه می‌کنند که false بگذارید چون GC مدیریت خوبی در مورد هندلرها دارد و هم این که ارزش یافتن باگ در کد را ندارد.
بر میگردیم سراغ کد نویسی هندلر غیر همزمان. در آخرین قطعه کد نوشته شده، ما دو متد دیگر را پیاده سازی کردیم که یکی از آن‌ها BeginProcessRequest  است و خروجی آن کلاسی است که از اینترفیس IAsyncResult  ارث بری کرده است. پس یک کلاس با ارث بری از این اینترفیس می‌نویسیم و در این کلاس نیاز است که 4 پراپرتی را پیاده سازی کنیم که این کلاس به شکل زیر در خواهد آمد:
public class AsynchOperation : IAsyncResult
{
    private bool _completed;
    private Object _state;
    private AsyncCallback _callback;
    private HttpContext _context;

    bool IAsyncResult.IsCompleted { get { return _completed; } }
    WaitHandle IAsyncResult.AsyncWaitHandle { get { return null; } }
    Object IAsyncResult.AsyncState { get { return _state; } }
    bool IAsyncResult.CompletedSynchronously { get { return false; } }
}
متدهای private اجباری نیستند؛ ولی برای ذخیره مقادیر get و set نیاز است. همانطور که از اسامی آن‌ها پیداست مشخص است که برای چه کاری ساخته شده اند.
خب اجازه بدهید یک تابع سازنده به آن برای مقداردهی اولیه این متغیرهای خصوصی داشته باشیم:
   public AsynchOperation(AsyncCallback callback, HttpContext context, Object state)
    {
        _callback = callback;
        _context = context;
        _state = state;
        _completed = false;
    }
همانطور که می‌بینید موارد موجود در متد BeginProcessRequest را تحویل می‌گیریم تا اطلاعات درخواستی مربوطه را داشته باشیم و مقدار _Completed را هم برابر با false قرار می‌دهیم. سپس نوبت این می‌رسد که ما درخواست را در صف pool قرار دهیم. برای همین تکه کد زیر را اضافه می‌کنیم: 
   public void StartAsyncWork()
    {
        ThreadPool.QueueUserWorkItem(new WaitCallback(StartAsyncTask),null);
    }
با اضافه شدن درخواست به صف، هر موقع درخواست‌های قبلی تمام شوند و callback خودشان را ارسال کنند، نوبت درخواست‌های جدیدتر هم میرسد. StartAsyncTask هم متدی است که وظیفه‌ی اصلی پردازش درخواست را به دوش دارد و موقعی که نوبت درخواست برسد، کدهای این متد اجرا می‌گردد که ما در اینجا مانند مثال اول روی صفحه چیزی نوشتیم:
 private void StartAsyncTask(Object workItemState)
    {

        _context.Response.Write("<p>Completion IsThreadPoolThread is " + Thread.CurrentThread.IsThreadPoolThread + "</p>\r\n");

        _context.Response.Write("Hello World from Async Handler!");
        _completed = true;
        _callback(this);
    }
دو خط اول اطلاعات را چاپ کرده و در خط سوم متغیر _completed را true کرده و در آخر این درخواست را فراخوانی مجدد می‌کنیم تا بگوییم که کار این درخواست پایان یافته‌است؛ پس این درخواست را از صف بیرون بکش و درخواست بعدی را اجرا کن.
نهایتا کل این کلاس را در متد BeginProcessRequest  صدا بزنید:
context.Response.Write("<p>Begin IsThreadPoolThread is " + Thread.CurrentThread.IsThreadPoolThread + "</p>\r\n");
        AsynchOperation asynch = new AsynchOperation(callback, context, obj);
        asynch.StartAsyncWork();
        return asynch;
کل کد مربوطه : (توجه:کدها از داخل سایت msdn برداشته شده است و اکثر کدهای موجود در نت هم به همین قالب می‌نویسند)
public class MyHttpHandler : IHttpAsyncHandler
{
    public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback callback, object obj)
    {
        context.Response.Write("<p>Begin IsThreadPoolThread is " + Thread.CurrentThread.IsThreadPoolThread + "</p>\r\n");
        AsynchOperation asynch = new AsynchOperation(callback, context, obj);
        asynch.StartAsyncWork();
        return asynch;
    }

    public void EndProcessRequest(IAsyncResult result)
    {
        
    }
    public void ProcessRequest(HttpContext context)
    {
       throw new InvalidOperationException(); 

    }

    public bool IsReusable
    {
        get { return false; }
    }
}

public class AsynchOperation : IAsyncResult
{
    private bool _completed;
    private Object _state;
    private AsyncCallback _callback;
    private HttpContext _context;

    bool IAsyncResult.IsCompleted { get { return _completed; } }
    WaitHandle IAsyncResult.AsyncWaitHandle { get { return null; } }
    Object IAsyncResult.AsyncState { get { return _state; } }
    bool IAsyncResult.CompletedSynchronously { get { return false; } }

    public AsynchOperation(AsyncCallback callback, HttpContext context, Object state)
    {
        _callback = callback;
        _context = context;
        _state = state;
        _completed = false;
    }


    public void StartAsyncWork()
    {
        
        ThreadPool.QueueUserWorkItem(new WaitCallback(StartAsyncTask),null);

    }
    private void StartAsyncTask(Object workItemState)
    {

        _context.Response.Write("<p>Completion IsThreadPoolThread is " + Thread.CurrentThread.IsThreadPoolThread + "</p>\r\n");

        _context.Response.Write("Hello World from Async Handler!");
        _completed = true;
        _callback(this);
    }

آشنایی با فایل ASHX
در مطالب بالاتر به فایل‌های Ashx اشاره کردیم. این فایل به نام Generic Web Handler شناخته می‌شوند و می‌توانید با Add New Item این نوع فایل‌ها را اضافه کنید. این فایل شامل هیچ UI ایی نمی‌باشد و فقط شامل بخش کد می‌باشد. برای همین نسبت به aspx سبک‌تر بوده و شامل یک directive به اسم  WebHandler@ است.
مایکروسافت در MSDN نوشته است که httphandler‌ها در واقع فرآیندهایی هستند (به این فرایندها بیشتر End Point می‌گویند) که در پاسخ به درخواست‌های رسیده شده توسط asp.net application اجرا می‌شوند و بیشترین درخواست هایی هم که می‌رسد از نوع صفحات Aspx می‌باشد و موقعی که کاربری درخواست صفحه‌ی aspx می‌کند هندلرهای مربوط به page اجرا می‌شوند.
در متن بالا به خوبی روشن هست که ashx به دلیل نداشتن UI، تعداد کمتری از handlerها را در مسیر Pipeline قرار می‌دهند و اجرای آن‌ها سریعتر است. غیر از این دو هندلر aspx و ashx، هندلر توکار دیگری چون asmx که مختص وب سرویس هست و axd مربوط به اعمال trace نیز وجود دارند.

در این لینک که در بالاتر هم درج شده بود یک نمونه هندلر برای نمایش تصویر نوشته است. اگر تصاویرتان را بدین صورت اجرا کنید می‌توان جلوی درخواست‌های رسیده از وب سایت‌های دیگر را سد کرد. برای مثال یک نفر مطالب شما را کپی می‌کند و در داخل وبلاگ یا وب سایتش می‌گذارد و شما در اینجا درخواست‌های رسیده خارج از وب سایت خود را لغو خواهید کرد و تصاویر کپی شده نمایش داده نخواهند شد.
مطالب
تنظیمات کش توزیع شده‌ی مبتنی بر SQL Server در ASP.NET Core
ASP.NET Core به همراه زیر ساختی‌است جهت خارج کردن امکانات Caching درون حافظه‌ای آن از سرور جاری و انتقال آن به سرورهای دیگر جهت کاهش بار سرور و برنامه. این کش توزیع شده را می‌توان به عنوان زیرساختی برای مدیریت سشن‌ها، مدیریت اطلاعات کش و همچنین مدیریت کوکی‌های حجیم ASP.NET Core Identity نیز بکار گرفت. برای مثال بجای ارسال یک کوکی حجیم بالای 5 کیلوبایت به کلاینت، فقط ID رمزنگاری شده‌ی آن‌را ارسال کرد و اصل کوکی را در داخل دیتابیس ذخیره و بازیابی نمود. این مساله هم مقیاس پذیری برنامه را افزایش خواهد داد و هم امنیت آن‌را با عدم ارسال اصل محتوای کوکی به سمت کلاینت‌ها و یا ذخیره سازی اطلاعات سشن‌ها در بانک اطلاعاتی، مشکلات راه اندازی مجدد برنامه را به طور کامل برطرف می‌کنند و در این حالت بازیابی Application pool و یا کرش برنامه و یا ری استارت شدن کل سرور، سبب از بین رفتن سشن‌های کاربران نخواهند شد. بنابراین آشنایی با نحوه‌ی راه اندازی این امکانات، حداقل از بعد امنیتی بسیار مفید هستند؛ حتی اگر سرور ذخیره کننده‌ی این اطلاعات، همان سرور و بانک اطلاعاتی اصلی برنامه باشند.


پیشنیازهای کار با کش توزیع شده‌ی مبتنی بر SQL Server

برای کار با کش توزیع شده‌ی با قابلیت ذخیره سازی در یک بانک اطلاعاتی SQL Server، نیاز است دو بسته‌ی ذیل را به فایل project.json برنامه اضافه کرد:
{
    "dependencies": {
        "Microsoft.Extensions.Caching.SqlServer": "1.1.0"
    },
    "tools": {
        "Microsoft.Extensions.Caching.SqlConfig.Tools": "1.1.0-preview4-final"
    }
}
وابستگی که در قسمت dependencies ذکر شده‌است، کلاس‌های اصلی کار با کش توزیع شده را به برنامه اضافه می‌کند. ذکر وابستگی قسمت tools، اختیاری است و کار آن، ایجاد جدول مورد نیاز برای ذخیره سازی اطلاعات، در یک بانک اطلاعاتی SQL Server می‌باشد.


ایجاد جدول ذخیره سازی اطلاعات کش توزیع شده به کمک ابزار sql-cache

پس از افزودن و بازیابی ارجاعات فوق، با استفاده از خط فرمان، به پوشه‌ی جاری برنامه وارد شده و دستور ذیل را صادر کنید:
 dotnet sql-cache create "Data Source=(localdb)\MSSQLLocalDB;Initial Catalog=sql_cache;Integrated Security=True;" "dbo" "AppSqlCache"
توضیحات:
- در اینجا می‌توان هر نوع رشته‌ی اتصالی معتبری را به انواع و اقسام بانک‌های SQL Server ذکر کرد. برای نمونه در مثال فوق این رشته‌ی اتصالی به یک بانک اطلاعاتی از پیش ایجاد شده‌ی LocalDB اشاره می‌کند. نام دلخواه این بانک اطلاعاتی در اینجا sql_cache ذکر گردیده و نام دلخواه جدولی که قرار است این اطلاعات را ثبت کند AppSqlCache تنظیم شده‌است و dbo، نام اسکیمای جدول است:


در اینجا تصویر ساختار جدولی را که توسط ابزار dotnet sql-cache ایجاد شده‌است، مشاهده می‌کنید. اگر خواستید این جدول را خودتان دستی ایجاد کنید، یک چنین کوئری را باید بر روی دیتابیس مدنظرتان اجرا نمائید:
CREATE TABLE AppSqlCache (
    Id                         NVARCHAR (449)  COLLATE SQL_Latin1_General_CP1_CS_AS NOT NULL,
    Value                      VARBINARY (MAX) NOT NULL,
    ExpiresAtTime              DATETIMEOFFSET  NOT NULL,
    SlidingExpirationInSeconds BIGINT          NULL,
    AbsoluteExpiration         DATETIMEOFFSET  NULL,
    CONSTRAINT pk_Id PRIMARY KEY (Id)
);

CREATE NONCLUSTERED INDEX Index_ExpiresAtTime
    ON AppSqlCache(ExpiresAtTime);


ایجاد جدول ذخیره سازی اطلاعات کش توزیع شده به کمک ابزار Migrations در EF Core

زیر ساخت کش توزیع شده‌ی مبتنی بر SQL Server هیچگونه وابستگی به EF Core ندارد و تمام اجزای آن توسط Async ADO.NET نوشته شده‌اند. اما اگر خواستید قسمت ایجاد جدول مورد نیاز آن‌را به ابزار Migrations در EF Core واگذار کنید، روش کار به صورت زیر است:
- ابتدا یک کلاس دلخواه جدید را با محتوای ذیل ایجاد کنید:
    public class AppSqlCache
    {
        public string Id { get; set; }
        public byte[] Value { get; set; }
        public DateTimeOffset ExpiresAtTime { get; set; }
        public long? SlidingExpirationInSeconds { get; set; }
        public DateTimeOffset? AbsoluteExpiration { get; set; }
    }
- سپس تنظیمات ایجاد جدول متناظر با آن را به نحو ذیل تنظیم نمائید:
    public class MyDBDataContext : DbContext
    {
        public virtual DbSet<AppSqlCache> AppSqlCache { get; set; }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<AppSqlCache>(entity =>
            {
                entity.ToTable(name: "AppSqlCache", schema: "dbo");
                entity.HasIndex(e => e.ExpiresAtTime).HasName("Index_ExpiresAtTime");
                entity.Property(e => e.Id).HasMaxLength(449);
                entity.Property(e => e.Value).IsRequired();
            });
        }
    }
به این ترتیب این جدول جدید به صورت خودکار در کنار سایر جداول برنامه ایجاد خواهند شد.
البته این مورد به شرطی است که بخواهید از یک دیتابیس، هم برای برنامه و هم برای ذخیره سازی اطلاعات کش استفاده کنید.


معرفی تنظیمات رشته‌ی اتصالی و نام جدول ذخیره سازی اطلاعات کش به برنامه

پس از ایجاد جدول مورد نیاز جهت ذخیره سازی اطلاعات کش، اکنون نیاز است این اطلاعات را به برنامه معرفی کرد. برای این منظور به کلاس آغازین برنامه مراجعه کرده و متد الحاقی AddDistributedSqlServerCache را بر روی مجموعه‌ی سرویس‌های موجود فراخوانی کنید؛ تا سرویس‌های این کش توزیع شده نیز به برنامه معرفی شوند:
public void ConfigureServices(IServiceCollection services)
{
    services.AddDistributedSqlServerCache(options =>
    {
        options.ConnectionString = @"Data Source=(localdb)\MSSQLLocalDB;Initial Catalog=sql_cache;Integrated Security=True;";
        options.SchemaName = "dbo";
        options.TableName = "AppSqlCache";
    });
باتوجه به توزیع شده بودن این کش، هیچ الزامی ندارد که ConnectionString ذکر شده‌ی در اینجا با رشته‌ی اتصالی مورد استفاده‌ی توسط EF Core یکی باشد (هرچند مشکلی هم ندارد).


آزمایش کش توزیع شده‌ی تنظیمی با فعال سازی سشن‌ها

سشن‌ها را همانند نکات ذکر شده‌ی در مطلب «ارتقاء به ASP.NET Core 1.0 - قسمت 16 - کار با Sessions» فعال کنید و سپس مقداری را در آن بنویسید:
public IActionResult Index()
{
   HttpContext.Session.SetString("User", "VahidN");
   return Json(true);
}

public IActionResult About()
{
   var userContent = HttpContext.Session.GetString("User");
   return Json(userContent);
}
اکنون از جدول AppSqlCache کوئری بگیرید:


همانطور که مشاهده می‌کنید، سیستم سشن اینبار بجای حافظه، به صورت خودکار از جدول بانک اطلاعاتی SQL Server تنظیم شده‌، برای ذخیره سازی اطلاعات خود استفاده کرده‌است.


کار با کش توزیع شده از طریق برنامه نویسی

همانطور که در مقدمه‌ی بحث نیز عنوان شد، استفاده‌ی از زیر ساخت کش توزیع شده منحصر به استفاده‌ی از آن جهت ذخیره سازی اطلاعات سشن‌ها نیست و از آن می‌توان جهت انواع و اقسام سناریوهای مختلف مورد نیاز استفاده کرد. در این حالت روش دسترسی به این زیر ساخت، از طریق اینترفیس IDistributedCache است. زمانیکه متد AddDistributedSqlServerCache را فراخوانی می‌کنیم، در حقیقت کار ثبت یک چنین سرویسی به صورت خودکار انجام خواهد شد:
 services.Add(ServiceDescriptor.Singleton<IDistributedCache, SqlServerCache>());
به عبارتی کلاس SqlServerCache به صورت singleton به مجموعه‌ی سرویس‌های برنامه اضافه شده‌است و برای دسترسی به آن تنها کافی است اینترفیس IDistributedCache را به کنترلرها و یا سرویس‌های برنامه تزریق و از امکانات آن استفاده کنیم.

در اینجا یک نمونه از این تزریق وابستگی و سپس استفاده‌ی از متدهای Set و Get اینترفیس IDistributedCache را مشاهده می‌کنید:
using System;
using System.Text;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Caching.Distributed;
 
namespace Core1RtmEmptyTest.Controllers
{
    public class CacheTestController : Controller
    {
        readonly IDistributedCache _cache;
        public CacheTestController(IDistributedCache cache)
        {
            _cache = cache;
        }
 
        public IActionResult SetCacheData()
        {
            var time = DateTime.Now.ToLocalTime().ToString();
            var cacheOptions = new DistributedCacheEntryOptions
            {
                AbsoluteExpiration = DateTime.Now.AddYears(1)
 
            };
            _cache.Set("Time", Encoding.UTF8.GetBytes(time), cacheOptions);
            return View();
        }
 
        public IActionResult GetCacheData()
        {
            var time = Encoding.UTF8.GetString(_cache.Get("Time"));
            ViewBag.data = time;
            return View();
        }
 
        public bool RemoveCacheData()
        {
            _cache.Remove("Time");
            return true;
        }
    }
}
در ابتدای بحث که ساختار جدول ذخیره سازی اطلاعات کش را بررسی کردیم، فیلد value آن یک چنین نوعی را دارد:
  Value  VARBINARY (MAX) NOT NULL,
که در سمت کدهای دات نتی، به شکل آرایه‌ای از بایت‌ها قابل بیان است.
  public byte[] Value { get; set; }
به همین جهت متد Set آن مقدار مدنظر را به صورت آرایه‌ای از بایت‌ها قبول می‌کند.
در این حالت اگر برنامه را اجرا و مسیر http://localhost:7742/CacheTest/SetCacheData را فراخوانی کنیم، اطلاعات ذخیره شده‌ی با کلید Test را می‌توان در بانک اطلاعاتی مشاهده کرد:



Tag helper مخصوص کش توزیع شده

در ASP.NET Core، می‌توان از یک Tag Helper جدید به نام distributed-cache برای کش سمت سرور توزیع شده‌ی محتوای قسمتی از یک View به نحو ذیل استفاده کرد:
<distributed-cache name="MyCacheItem2" expires-sliding="TimeSpan.FromMinutes(30)">
    <p>From distributed-cache</p>
    @DateTime.Now.ToString()
</distributed-cache>
که اطلاعات آن در بانک اطلاعاتی به نحو ذیل ذخیره می‌شود:


در اینجا name به صورت هش شده به صورت کلید کش مورد استفاده قرار می‌گیرد. سپس محتوای تگ distributed-cache رندر شده، تبدیل به آرایه‌ای از بایت‌ها گردیده و در بانک اطلاعاتی ذخیره می‌گردد.
ذکر name در اینجا اجباری است و باید دقت داشت که چون به عنوان کلید بازیابی کش مورد استفاده قرار خواهد گرفت، نباید به اشتباه در قسمت‌های دیگر برنامه با همین نام وارد شود. در غیر اینصورت دو قسمتی که name یکسانی داشته باشند، یک محتوا را نمایش خواهند داد.
مطالب
پیاده سازی INotifyPropertyChanged با استفاده از Unity Container
AOP یکی از فناوری‌های مرتبط با توسعه نرم افزار محسوب می‌شود که توسط آن می‌توان اعمال مشترک و متداول موجود در برنامه را در یک یا چند ماژول مختلف قرار داد (که به آن‌ها Aspects نیز گفته می‌شود) و سپس آن‌ها را به مکان‌های مختلفی در برنامه متصل ساخت. عموما Aspects، قابلیت‌هایی را که قسمت عمده‌ای از برنامه را تحت پوشش قرار می‌دهند، کپسوله می‌کنند. اصطلاحا به این نوع قابلیت‌های مشترک، تکراری و پراکنده مورد نیاز در قسمت‌های مختلف برنامه، Cross cutting concerns نیز گفته می‌شود؛ مانند اعمال ثبت وقایع سیستم، امنیت، مدیریت تراکنش‌ها و امثال آن. با قرار دادن این نیازها در Aspects مجزا، می‌توان برنامه‌ای را تشکیل داد که از کدهای تکراری عاری است.

پیاده سازی INotifyPropertyChanged یکی از این مسائل می‌باشد که می‌توان آن را در یک Aspect محصور و در ماژول‌های مختلف استفاده کرد.

مسئله:
کلاس زیر مفروض است:
public class Foo
{
        public virtual int Id { get; set; }

        public virtual string Name { get; set; }
}
اکنون می‌خواهیم  کلاس Foo را به INotifyPropertyChanged مزین، و  یک Subscriber به قسمت set پراپرتی‌های کلاس‌ تزریق کنیم.

راه حل:
ابتدا پکیچ‌های Unity را از Nuget دریافت کنید:
PM> Install-Package Unity.Interception
این پکیچ وابستگی‌های خود را که Unity و CommonServiceLocator هستند نیز دریافت می‌کند.

حال یک Interceptor که اینترفیس IInterceptionBehavior را پیاده سازی می‌کند، می‌نویسیم:
namespace NotifyPropertyChangedInterceptor.Interceptions
{
    using System;
    using System.Collections.Generic;
    using System.ComponentModel;
    using System.Reflection;
    using Microsoft.Practices.Unity.InterceptionExtension;

    class NotifyPropertyChangedBehavior : IInterceptionBehavior
    {
        private event PropertyChangedEventHandler PropertyChanged;

        private readonly MethodInfo _addEventMethodInfo =
            typeof(INotifyPropertyChanged).GetEvent("PropertyChanged").GetAddMethod();

        private readonly MethodInfo _removeEventMethodInfo =
            typeof(INotifyPropertyChanged).GetEvent("PropertyChanged").GetRemoveMethod();

        
        public IMethodReturn Invoke(IMethodInvocation input, GetNextInterceptionBehaviorDelegate getNext)
        {
            if (input.MethodBase == _addEventMethodInfo)
            {
                return AddEventSubscription(input);
            }

            if (input.MethodBase == _removeEventMethodInfo)
            {
                return RemoveEventSubscription(input);
            }
            
            if (IsPropertySetter(input))
            {
                return InterceptPropertySet(input, getNext);
            }
            
            return getNext()(input, getNext);
        }

        public bool WillExecute
        {
            get { return true; }
        }

        public IEnumerable<Type> GetRequiredInterfaces()
        {
            yield return typeof(INotifyPropertyChanged);
        }

        private IMethodReturn AddEventSubscription(IMethodInvocation input)
        {
            var subscriber = (PropertyChangedEventHandler)input.Arguments[0];
            PropertyChanged += subscriber;

            return input.CreateMethodReturn(null);
        }

        private IMethodReturn RemoveEventSubscription(IMethodInvocation input)
        {
            var subscriber = (PropertyChangedEventHandler)input.Arguments[0];
            PropertyChanged -= subscriber;

            return input.CreateMethodReturn(null);
        }

        private bool IsPropertySetter(IMethodInvocation input)
        {
            return input.MethodBase.IsSpecialName && input.MethodBase.Name.StartsWith("set_");
        }

        private IMethodReturn InterceptPropertySet(IMethodInvocation input, GetNextInterceptionBehaviorDelegate getNext)
        {
            var propertyName = input.MethodBase.Name.Substring(4);

            var subscribers = PropertyChanged;
            if (subscribers != null)
            {
                subscribers(input.Target, new PropertyChangedEventArgs(propertyName));
            }

            return getNext()(input, getNext);
        }
    }
}

متد Invoke : این متد Behavior مورد نظر را پردازش می‌کند (در اینجا، تزریق یک Subscriber در قسمت set پراپرتی ها).
متد GetRequiredInterfaces : یک روش است برای یافتن کلاس هایی که با اینترفیس IInterceptionBehavior مزین شده‌اند.
پراپرتی WillExecute : ابن پراپرتی به Unity می‌گوید که این Behavior اعمال شود یا نه. اگر مقدار برگشتی آن false باشد، متد Invoke اجرا نخواهد شد.
همانطور که در متد Invoke مشاهد می‌کنید، شرط هایی برای افزودن و حذف یک  Subscriber و چک کردن متد set نوشته شده و در غیر این صورت کنترل به متد بعدی داده می‌شود.

اتصال Interceptor به کلاس ها
در ادامه Unity را برای ساخت یک نمونه از کلاس پیکربندی می‌کنیم:
var container = new UnityContainer();

container.RegisterType<Foo, Foo>(
                new AdditionalInterface<INotifyPropertyChanged>(),
                new Interceptor<VirtualMethodInterceptor>(),
                new InterceptionBehavior<NotifyPropertyChangedBehavior>())
                .AddNewExtension<Interception>();
توسط متد RegisterType یک Type را با پیکربندی دلخواه به Unity معرفی می‌کنیم. در اینجا به ازای درخواست Foo (اولین پارامتر جنریک)، یک Foo (دومین پارامتر جنریک ) برگشت داده می‌شود. این متد تعدادی InjetctionMember (بصورت params) دریافت می‌کند که در این مثال سه InjetctionMember  به آن پاس داه شده است:
  • Interceptor : اطلاعاتی در مورد IInterceptor و نحوه‌ی Intercept یک شیء را نگه داری می‌کند. در اینجا از  VirtualMethodInterceptor برای تزریق کد استفاده شده.
  • InterceptionBehavior : این کلاس Behavior مورد نظر را به کلاس تزریق می‌کند.
  • AddintionalInterface  : کلاس target را مجبور به پیاده سازی اینترفیس دریافتی از پارامتر می‌کند.  اگر کلاس behavior، متد  GetRequiredInterfaces  اینترفیس INotifyPropertyChanged را برمی گرداند، نیازی نیست از AddintionalInterface در پارامتر متد فوق استفاده کنید. 

نکته :
کلاس VirtualMethodInterceptor فقط اعضای virtual را تحت تاثیر قرار می‌دهد.
اکنون نحوه‌ی ساخت یک نمونه از کلاس Foo به شکل زیر است:
var foo = container.Resolve<Foo>();
(foo as INotifyPropertyChanged).PropertyChanged += FooPropertyChanged;
private void FooPropertyChanged (object sender, PropertyChangedEventArgs e)
 {
      // Do some things.......
 }

نکته‌ی تکمیلی
طبق مستندات MSDN، کلاس VirtualMethodInterceptor  یک کلاس جدید مشتق شده از کلاس target (در اینجا Foo) می‌سازد. بنابراین اگر کلاس‌های شما دارای Data annotation و یا در کلاس‌های Mapper یک ORM استفاده شده‌اند (مانند کلاس‌های لایه Domain)، بجای  VirtualMethodInterceptor  از TransparentProxyInterceptor استفاده کنید.
سرعت اجرای VirtualMethodInterceptor سریعتر است ؛ اما به یاد داشته که برای استفاده از  TransparentProxyInterceptor  باید کلاس target از کلاس MarshalByRefObject ارث بری کند.
مطالب
قابلیت Templated Razor Delegate
Razor دارای قابلیتی با نام Templated Razor Delegates است. همانطور که از نام آن مشخص است، یعنی Razor Template هایی که Delegate هستند. در ادامه این قابلیت را با ذکر چند مثال توضیح خواهیم داد.
مثال اول:
می‌خواهیم تعدادی تگ li را در خروجی رندر کنیم، این کار را می‌توانیم با استفاده از Razor helpers نیز به این صورت انجام دهیم:
@helper ListItem(string content) {
 <li>@content</li>
}
<ul>
 @foreach(var item in Model) {
 @ListItem(item)
 }
</ul>
همین کار را می‌توانیم توسط Templated Razor Delegate به صورت زیر نیز انجام دهیم:
@{
 Func<dynamic, HelperResult> ListItem = @<li>@item</li>;
}
<ul>
 @foreach(var item in Model) {
 @ListItem(item)
 }
</ul>
برای اینکار از نوع Func استفاده خواهیم کرد. این Delegate یک پارامتر را می‌پذیرد. این پارامتر می‌تواند از هر نوعی باشد. در اینجا از نوع dynamic استفاده کرده‌ایم. خروجی این Delegate نیز یک HelperResult است. همانطور که مشاهده می‌کنید آن را برابر با الگویی که قرار است رندر شود تعیین کرده‌ایم. در اینجا از یک پارامتر ویژه با نام item استفاده شده است. نوع این پارامتر dynamic است؛ یعنی همان مقداری که برای پارامتر ورودی Func انتخاب کردیم. در نتیجه پارامتر ورودی یعنی رشته item جایگزین item@ درون Delegate خواهد شد.
در واقع دو روش فوق خروجی یکسانی را تولید میکنند. برای حالت‌هایی مانند کار با آرایه‌ها و یا Enumerations بهتر است از روش دوم استفاده کنید؛ از این جهت که نیاز به کد کمتری دارد و نگهداری آن خیلی از روش اول ساده‌تر است.

مثال دوم:
اجازه دهید یک مثال دیگر را بررسی کنیم. به طور مثال معمولاً در یک فایل Layout برای بررسی کردن وجود یک section از کدهای زیر استفاده می‌کنیم:
<header>  
    @if (IsSectionDefined("Header"))  
    {  
        @RenderSection("Header")  
    }  
    else  
    {  
        <div>Default Content for Header Section</div>  
    }  
</header>
روش فوق به درستی کار خواهد کرد اما می‌توان آن را با یک خط کد، درون ویو نیز نوشت. در واقع می‌توانیم با استفاده از Templated Razor Delegate یک متد الحاقی برای کلاس ViewPage بنویسیم؛ به طوریکه یک محتوای پیش‌فرض را برای حالتی که section خاصی وجود ندارد، نمایش دهد:
public static HelperResult RenderSection(this WebViewPage page, string name,  
    Func<dynamic, HelperResult> defaultContent)  
{  
    if (page.IsSectionDefined(name))  
    {  
        return page.RenderSection(name);  
    }  
    return defaultContent(null);  
}
بنابراین درون ویو می‌توانیم از متد الحاقی فوق به این صورت استفاده کرد:
<header>  
   @this.RenderSection("Header", @<div>Default Content for Header Section</div>)  
</header>
نکته: جهت بوجود نیامدن تداخل با نمونه اصلی RenderSection درون ویو، از کلمه this استفاده کرده‌ایم.

مثال سوم: شبیه‌سازی کنترل Repeater:
یکی از ویژگی‌های جذاب WebForm کنترل Repeater است. توسط این کنترل به سادگی می‌توانستیم یکسری داده را نمایش دهیم؛ این کنترل در واقع یک کنترل DataBound و همچنین یک Templated Control است. یعنی در نهایت کنترل کاملی بر روی Markup آن خواهید داشت. برای نمایش هر آیتم خاص داخل لیست می‌توانستید از ItemTemplate استفاده کنید. همچنین می‌توانستید از AlternatingItemtemplate استفاده کنید. یا اگر می‌خواستید هر آیتم را با چیزی از یکدیگر جدا کنید، می‌توانستید از SeparatorTemplate استفاده کنید. در این مثال می‌خواهیم همین کنترل را در MVC شبیه‌سازی کنیم.
به طور مثال ویوی Index ما یک مدل از نوع IEnumerable<string> را دارد: 
@model IEnumerable<string>  
@{  
    ViewBag.Title = "Test";  
}
و اکشن متد ما نیز به این صورت اطلاعات را به ویوی فوق پاس میدهد: 
public ActionResult Index()  
{  
    var names = new string[]  
    {  
        "Vahid Nasiri",  
        "Masoud Pakdel",  
        ...  
     };  
  
    return View(names);  
}
 اکنون در ویوی Index می‌خواهیم هر کدام از اسامی فوق را نمایش دهیم. اینکار را می‌توانیم درون ویو با یک حلقه‌ی foreach و بررسی زوج با فرد بودن ردیف‌ها انجام دهیم اما کد زیادی را باید درون ویو بنویسیم. اینکار را می‌توانیم درون یک متد الحاقی نیز انجام دهیم. بنابراین یک متد الحاقی برای HtmlHelper به صورت زیر خواهیم نوشت: 
public static HelperResult Repeater<T>(this HtmlHelper html,  
    IEnumerable<T> items,  
    Func<T, HelperResult> itemTemplate,  
    Func<T, HelperResult> alternatingitemTemplate = null,  
    Func<T, HelperResult> seperatorTemplate = null)  
{  
    return new HelperResult(writer =>  
    {  
        if (!items.Any())  
        {  
            return;  
        }  
        if (alternatingitemTemplate == null)  
        {  
            alternatingitemTemplate = itemTemplate;  
        }  
        var lastItem = items.Last();  
        int ii = 0;  
        foreach (var item in items)  
        {  
           var func = ii % 2 == 0 ? itemTemplate : alternatingitemTemplate;  
           func(item).WriteTo(writer);  
           if (seperatorTemplate != null && !item.Equals(lastItem))  
           {  
               seperatorTemplate(item).WriteTo(writer);  
           }  
           ii++;  
        }  
    });  
}
توضیح کدهای فوق:
خوب، همانطور که ملاحظه می‌کنید متد را به صورت Generic تعریف کرده‌ایم، تا بتواند با انواع نوع‌ها به خوبی کار کند. زیرا ممکن است لیستی از اعداد را داشته باشیم. از آنجائیکه این متد را برای کلاس HtmlHelper می‌نویسیم، پارامتر اول آن را از این نوع می‌گیریم. پارامتر دوم آن، آیتم‌هایی است که می‌خواهیم نمایش دهیم. پارامتر‌های بعدی نیز به ترتیب برای ItemTemplate، AlternatingItemtemplate و SeperatorItemTemplate تعریف شده‌اند و از نوع Delegate با پارامتر ورودی T و خروجی HelperResult هستند. در داخل متدمان یک HelperResult را برمیگردانیم. این کلاس یک Action را از نوع TextWriter از ورودی می‌پذیرد. اینکار را با ارائه یک Lambda Expression با نام writer انجام می‌دهیم. در داخل این Delegate به تمام منطقی که برای نمایش یک آیتم نیاز هست دسترسی داریم. 
ابتدا بررسی کرده‌ایم که آیا آیتم برای نمایش وجود دارد یا خیر. سپس اگر AlternatingItemtemplate برابر با null بود همان ItemTemplate را در خروجی نمایش خواهیم داد. مورد بعدی دسترسی به آخرین آیتم در Collection است. زیرا بعد از هر آیتم باید یک SeperatorItemTemplate را در خروجی نمایش دهیم. سپس توسط یک حلقه درون آیتم‌ها پیمایش میکنیم و ItemTemplate و  AlternatingItemtemplate را توسط متغیر func از یکدیگر تشخیص می‌دهیم و در نهایت درون ویو به این صورت از متد الحاقی فوق استفاده می‌کنیم: 
@Html.Repeater(Model, @<div>@item</div>, @<p>@item</p>, @<hr/>)
متد الحاقی فوق قابلیت کار با انواع ورودی‌ها را دارد به طور مثال مدل زیر را در نظر بگیرید:
public class Product
{
        public int Id { set; get; }
        public string Name { set; get; }
}
می‌خواهیم اطلاعات مدل فوق را در ویوی مربوط درون یک جدول نمایش دهیم، می‌توانیم به این صورت توسط متد الحاقی تعریف شده اینکار را به این صورت انجام دهیم:
<table>
    <tr>
        <td>Id</td>
        <td>Name</td>
    </tr>
    @Html.Repeater(Model, @<tr><td>@item.Id</td><td>@item.Name</td></tr>)
</table>

مطالب
استفاده از Data Annotations جهت تعریف خواص ستون‌ها در PdfReport
در مطلب «تولید پویای ستون‌ها در PdfReport» عنوان شد که ذکر قسمت MainTableColumns و تمام تعاریف مرتبط با آن در PdfReports اختیاری است. همچنین به کمک متد MainTableAdHocColumnsConventions می‌توان بر اساس نوع‌های داده‌ای، بر روی نحوه نمایش ستون‌ها تاثیر گذاشت. برای مثال هرجایی DateTime مشاهده شد، به صورت خودکار تبدیل به تاریخ شمسی شود.
روش دیگری که این روزها در اکثر فریم‌های دات نتی مرسوم شده است، استفاده از Data Annotations جهت انتساب یک سری متادیتا به خاصیت‌های تعریف شده کلاس‌ها است. برای مثال ASP.NET MVC از این قابلیت زیاد استفاده می‌کند (در تولید پویای کد، یا اعتبار سنجی‌های سمت سرور و کاربر).
به همین جهت برای سازگاری بیشتر PdfReport با مدل‌های اینگونه فریم ورک‌ها، اکثر ویژگی‌ها و Data Annotations متداول را نیز می‌توان در PdfReport بکار برد. همچنین تعدادی ویژگی سفارشی نیز تعریف شده است، که در ادامه به بررسی آن‌ها خواهیم پرداخت.

آشنایی با مدل‌های بکار رفته در مثال جاری:
using System.ComponentModel;

namespace PdfReportSamples.Models
{
    public enum JobTitle
    {
        [Description("Grunt")]
        Grunt,

        [Description("Programmer")]
        Programmer,

        [Description("Analyst Programmer")]
        AnalystProgrammer,

        [Description("Project Manager")]
        ProjectManager,

        [Description("Chief Information Officer")]
        ChiefInformationOfficer,
    }
}
در اینجا یک enum، جهت تعیین سمت شغلی تعریف شده است. برای اینکه بتوان خروجی مطلوبی را در گزارشات شاهد بود، می‌توان از ویژگی Description، جهت تعیین مقدار نمایشی آن‌ها نیز استفاده کرد و این تعاریف در PdfReport خوانده و اعمال می‌شوند.
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using PdfReportSamples.Models;
using PdfRpt.Aggregates.Numbers;
using PdfRpt.ColumnsItemsTemplates;
using PdfRpt.Core.Contracts;
using PdfRpt.Core.Helper;
using PdfRpt.DataAnnotations;

namespace PdfReportSamples.DataAnnotations
{
    public class Person
    {
        [IsVisible(false)]
        public int Id { get; set; }

        [DisplayName("User name")]
        //Note: If you don't specify the ColumnItemsTemplate, a new TextBlockField() will be used automatically.
        [ColumnItemsTemplate(typeof(TextBlockField))]
        public string Name { get; set; }

        [DisplayName("Job title")]
        public JobTitle JobTitle { set; get; }

        [DisplayName("Date of birth")]
        [DisplayFormat(DataFormatString = "{0:MM/dd/yyyy}")]
        public DateTime DateOfBirth { get; set; }

        [DisplayName("Date of death")]
        [DisplayFormat(NullDisplayText = "-", DataFormatString = "{0:MM/dd/yyyy}")]
        public DateTime? DateOfDeath { get; set; }

        [DisplayFormat(DataFormatString = "{0:n0}")]
        [CustomAggregateFunction(typeof(Sum))]
        public int Salary { get; set; }

        [IsCalculatedField(true)]
        [DisplayName("Calculated Field")]
        [DisplayFormat(DataFormatString = "{0:n0}")]
        [AggregateFunction(AggregateFunction.Sum)]
        public string CalculatedField { get; set; }

        [CalculatedFieldFormula("CalculatedField")]
        public static Func<IList<CellData>, object> CalculatedFieldFormula =
                                                    list =>
                                                    {
                                                        if (list == null) return string.Empty;
                                                        var salary = (int)list.GetValueOf<Person>(x => x.Salary);
                                                        return salary * 0.8;
                                                    };//Note: It's a static field, not a property.
    }
}
مدل فوق جهت مقدار دهی اطلاعات یک شخص تعریف شده است.
- اگر قصد ندارید خاصیتی در این بین، در گزارشات ظاهر شود، از ویژگی IsVisible با مقدار false استفاده کنید.
- از ویژگی DisplayName جهت تعیین برچسب‌های سرستون‌ها استفاده خواهد شد.
- ذکر ویژگی ColumnItemsTemplate اختیاری است و اگر عنوان نشود به صورت خودکار از TextBlockField استفاده خواهد شد. اما اگر نیاز به استفاده از قالب‌های ستون‌های سفارشی و یا حتی قالب‌های پیش فرض دیگری که متنی نیستند، وجود دارد، می‌توانید از ویژگی ColumnItemsTemplate به همراه نوع کلاس مورد نظر استفاده نمائید. کلاس‌های پیش فرض قالب‌های ستون‌ها در PdfReport در پوشه Lib\ColumnsItemsTemplates سورس آن قرار دارند.
- برای تعیین نحوه فرمت اطلاعات در اینجا می‌توان از ویژگی DisplayFormat استفاده کرد. این ویژگی در اسمبلی System.ComponentModel.DataAnnotations.dll دات نت تعریف شده است؛ که در اینجا نمونه‌ای از استفاده از آن‌را برای تعیین نحوه نمایش تاریخ، ملاحظه می‌کنید. توسط این ویژگی حتی می‌توان مشخص ساخت (توسط پارامتر NullDisplayText) که اگر اطلاعاتی null بود، بجای آن چه عبارتی نمایش داده شود.
- اگر علاقمند به اعمال تابعی تجمعی به ستونی خاص هستید، از ویژگی CustomAggregateFunction استفاده کنید. پارامتر آن نوع کلاس تابع مورد نظر است. یک سری تابع تجمعی پیش فرض در فضای نام PdfRpt.Aggregates.Numbers قرار دارند. البته امکان تهیه انواع سفارشی آن‌ها نیز پیش بینی شده است که در قسمت‌های بعد به آن خواهیم پرداخت.
- امکان تعریف خواص محاسباتی نیز پیش بینی شده است. برای این منظور دو کار را باید انجام داد:
الف) ویژگی IsCalculatedField را با مقدار true بر روی خاصیت مورد نظر اعمال کنید.
ب) هم نام خاصیت محاسباتی افزوده شده به کلاس جاری، ویژگی CalculatedFieldFormula را بر روی یک فیلد استاتیک عمومی در آن کلاس به نحوی که ملاحظه می‌کنید (مطابق امضای فیلد CalculatedFieldFormula فوق)، تعریف نمائید. (علت این است که نمی‌توان توسط ویژگی‌ها از delegates استفاده کرد و این محدودیت ذاتی وجود دارد)


در ادامه کدهای منبع داده فرضی مثال جاری ذکر شده است:
using System;
using System.Collections.Generic;
using PdfReportSamples.Models;

namespace PdfReportSamples.DataAnnotations
{
    public static class PersonnelDataSource
    {
        public static IList<Person> CreatePersonnelList()
        {
            return new List<Person>
            {
                new Person
                {
                    Id = 1,
                    Name = "Edward",
                    DateOfBirth = new DateTime(1900, 1, 1),
                    DateOfDeath = new DateTime(1990, 10, 15),
                    JobTitle = JobTitle.ChiefInformationOfficer,
                    Salary = 5000
                },
                new Person
                {
                    Id = 2,
                    Name = "Margaret", 
                    DateOfBirth = new DateTime(1950, 2, 9), 
                    DateOfDeath = null,
                    JobTitle = JobTitle.AnalystProgrammer,
                    Salary = 4000
                },
                new Person
                {
                    Id = 3,
                    Name = "Grant", 
                    DateOfBirth = new DateTime(1975, 6, 13), 
                    DateOfDeath = null,
                    JobTitle = JobTitle.Programmer,
                    Salary = 3500
                }
            };
        }
    }
}
در پایان، نحوه استفاده از منبع داده فوق جهت تامین یک گزارش، به نحو زیر می‌باشد:
using System;
using PdfRpt.Core.Contracts;
using PdfRpt.FluentInterface;

namespace PdfReportSamples.DataAnnotations
{
    public class DataAnnotationsPdfReport
    {
        public IPdfReportData CreatePdfReport()
        {
            return new PdfReport().DocumentPreferences(doc =>
            {
                doc.RunDirection(PdfRunDirection.LeftToRight);
                doc.Orientation(PageOrientation.Portrait);
                doc.PageSize(PdfPageSize.A4);
                doc.DocumentMetadata(new DocumentMetadata { Author = "Vahid", Application = "PdfRpt", Keywords = "Test", Subject = "Test Rpt", Title = "Test" });
            })
             .DefaultFonts(fonts =>
             {
                 fonts.Path(Environment.GetEnvironmentVariable("SystemRoot") + "\\fonts\\tahoma.ttf",
                                  Environment.GetEnvironmentVariable("SystemRoot") + "\\fonts\\verdana.ttf");
             })
             .PagesFooter(footer =>
             {
                 footer.DefaultFooter(printDate: DateTime.Now.ToString("MM/dd/yyyy"));
             })
             .PagesHeader(header =>
             {
                 header.DefaultHeader(defaultHeader =>
                 {
                     defaultHeader.ImagePath(AppPath.ApplicationPath + "\\Images\\01.png");
                     defaultHeader.Message("new rpt.");
                     defaultHeader.RunDirection(PdfRunDirection.LeftToRight);
                 });
             })
             .MainTableTemplate(template =>
             {
                 template.BasicTemplate(BasicTemplate.ClassicTemplate);
             })
             .MainTablePreferences(table =>
             {
                 table.ColumnsWidthsType(TableColumnWidthType.FitToContent);
             })
             .MainTableDataSource(dataSource =>
             {
                 dataSource.StronglyTypedList(PersonnelDataSource.CreatePersonnelList());
             })
             .MainTableEvents(events =>
             {
                 events.DataSourceIsEmpty(message: "There is no data available to display.");
             })
             .MainTableSummarySettings(summary =>
             {
                 summary.OverallSummarySettings("Total");
                 summary.PageSummarySettings("Page Summary");
                 summary.PreviousPageSummarySettings("Pervious Page Summary");
             })
             .MainTableAdHocColumnsConventions(adHocColumns =>
             {
                 adHocColumns.ShowRowNumberColumn(true);
                 adHocColumns.RowNumberColumnCaption("#");
             })
             .Export(export =>
             {
                 export.ToExcel();
                 export.ToXml();
             })
             .Generate(data => data.AsPdfFile(AppPath.ApplicationPath + "\\Pdf\\DataAnnotationsSampleRpt.pdf"));
        }
    }
}
همانطور که مشخص است، از ذکر متد MainTableColumns به علت استفاده از DataAnnotations صرفنظر شده و PdfReport این تعاریف را بر اساس ویژگی‌های خواص کلاس شخص دریافت می‌کند. تنها از متد MainTableAdHocColumnsConventions جهت مشخص سازی اینکه نیاز به نمایش ستون ردیف می‌باشد، استفاده کرده‌ایم.


مطالب
آشنایی با Refactoring - قسمت 14

در بسیاری از زبان‌های برنامه نویسی امکان null بودن Reference types وجود دارد. به همین جهت مرسوم است پیش از استفاده از آن‌ها، بررسی شود آیا شیء مورد استفاده نال است یا خیر و سپس برای مثال متد یا خاصیت مرتبط با آن فراخوانی گردد؛ در غیر اینصورت برنامه با یک استثناء خاتمه خواهد یافت.
مشکلی هم که با این نوع بررسی‌ها وجود دارد این است که پس از مدتی کد موجود را تبدیل به مخزنی از انبوهی از if و else ها خواهند کرد که هم درجه‌ی پیچیدگی متدها را افزایش می‌دهند و هم نگهداری ‌آن‌ها را در طول زمان مشکل می‌سازند. برای حل این مساله، الگوی استانداردی وجود دارد به نام null object pattern؛ به این معنا که بجای بازگشت دادن null و یا سبب بروز یک exception شدن، بهتر است واقعا مطابق شرایط آن متد یا خاصیت، «هیچ‌کاری» را انجام نداد. در ادامه، توضیحاتی در مورد نحوه‌ی پیاده سازی این «هیچ‌کاری» را انجام ندادن، ارائه خواهد شد.


الف) حین معرفی خاصیت‌ها از محافظ استفاده کنید.

برای مثال اگر قرار است خاصیتی به نام Name را تعریف کنید که از نوع رشته‌ است، حالت امن آن رشته بجای null بودن، «خالی» بودن است. به این ترتیب مصرف کننده مدام نگران این نخواهد بود که آیا الان این Name نال است یا خیر. مدام نیاز نخواهد داشت تا if و else بنویسد تا این مساله را چک کند. نحوه پیاده سازی آن هم ساده است و در ادامه بیان شده است:

private string name = string.Empty;
public string Name
{
    get { return this.name; }
    set
    {
        if (value == null)
        {
            this.name = "";
            return;
        }
        this.name = value;
    }
}

دقیقا در زمان انتساب مقداری به این خاصیت، بررسی می‌شود که آیا مثلا null است یا خیر. اگر بود، همینجا و نه در کل برنامه، مقدار آن «خالی» قرار داده می‌شود.

ب) سعی کنید در متدها تا حد امکان null بازگشت ندهید.

برای نمونه اگر متدی قرار است لیستی را بازگشت دهد:

public IList<string> GetCultures()
{
//...
}

و حین تهیه این لیست، عضوی مطابق منطق پیاده سازی آن یافت نشد، null را بازگشت ندهید؛ یک new List خالی را بازگشت دهید. به این ترتیب مصرف کننده دیگری نیازی به بررسی نال بودن خروجی این متد نخواهد داشت.


ج) از متدهای الحاقی بجای if و else استفاده کنید.

پیاده سازی حالت الف زمانی میسر خواهد بود که طراح اصلی ما باشیم و کدهای برنامه کاملا در اختیار ما باشند. اما در شرایطی که امکان دستکاری کدهای یک کتابخانه پایه را نداریم چه باید کرد؟ مثلا دسترسی به تعاریف کلاس XElement دات نت فریم ورک را نداریم (یا حتی اگر هم داریم، تغییر آن تا زمانیکه در کدهای پایه اعمال نشده باشد، منطقی نیست). در این حالت می‌شود یک یا چند extension method را طراحی کرد:

public static class LanguageExtender
{
public static string GetSafeStringValue(this XElement input)
{
return (input == null) ? string.Empty : input.Value;
}

public static DateTime GetSafeDateValue(this XElement input)
{
return (input == null) ? DateTime.MinValue : DateTime.Parse(input.Value);
}
}

به این ترتیب می‌توان امکانات کلاس پایه‌‌ای را بدون نیاز به دسترسی به کدهای اصلی آن مطابق نیاز‌های خود تغییر و توسعه داد.


نظرات مطالب
افزودن یک DataType جدید برای نگه‌داری تاریخ خورشیدی - 3
[Column(TypeName = "xml")]  
public string XmlValue { get; set; }  
  
[NotMapped]  
public XElement XmlValueWrapper  
{  
    get { return XElement.Parse(XmlValue); }  
    set { XmlValue = value.ToString(); }  
}

روش عمومی کار با نوع‌های خاصی که در EF تعریف نشدن، استفاده از ویژگی Column و مشخص کردن Type آن است؛ مانند مثالی که در بالا ملاحظه می‌کنید. البته این نوع خاص، در سمت کدها باید به صورت رشته تعریف شود. مثلا از سال 2005 به این طرف فیلد XML به SQL Server اضافه شده. اما نمی‌شود ازش در EF به همون شکل XML استفاده کرد. باید تبدیلش کنی به String تا قابل استفاده بشه. یک نمونه دیگرش نوع خاص Spatial هست که در نگارش‌های اخیر SQL Server اضافه شده (geography و geometry). این مورد فقط از EF 5.0 به بعد پشتیبانی توکاری ازش ارائه شده. یا برای hierarchyID در EF معادلی وجود نداره. برای تعریف این مورد نیز در یک مدل باید از string استفاده کرد.

بعد اگر این نوع خاص (که الان به صورت رشته دریافت شده) قابل نگاشت به نوعی مشخص در سمت کدهای برنامه بود (یعنی صرفا یک رشته ساده نبود) مثلا می‌شود از ویژگی NotMapped برای تبدیل آن و تعریف آن به شکل یک فیلد محاسباتی استفاده کرد.