مطالب
چقدر سی‌شارپ را می‌شناسیم؟!
هر چند که #C به عنوان یک زبان ساده برای درک و یادگیری شناخته میشود، گاهی رفتاری غیرمنتظره را حتی برای توسعه دهنده‌های با تجربه خواهد داشت. در این نوشته مروری بر بعضی از این رفتارها و توضیح دلایل پشت آن خواهیم کرد.

Value 

اگر مقدار null مدیریت نشود، میتواند باعث ایجاد نتایج نامطلوب، یا باعث از کار افتادن برنامه شود. شئ null به خودی خود مخرب نیست؛ اما اگر بخواهیم به یکی از متدها یا خاصیت‌های آن دسترسی داشته باشیم، با استثنای معروف NullReferenceException روبرو می‌شویم. برای در امان ماندن، باید همیشه اطمینان داشته باشیم که پیش از استفاده از امکانات شئ، ارجاع آن null نباشد. در قطعه کد زیر برخی از رفتارهای null value آورده شده:
// Behavior 1 
object obj = null;
bool objValueEqual = obj.Equals(null);

// Behavior 2 
object obj = null;
Type objType = obj.GetType();

// Behavior 3
string str = (string)null;
bool strType = str is string;

// Behavior 4
int num = 5;
Nullable<int> nullableNum = 5;
bool typeEqual = num.GetType() == nullableNum.GetType();

// Behavior 5
Type inType = typeof(int);
Type nullableIntType = typeof(Nullable<int>);
bool typeEqual = inType == nullableIntType;
  • در رفتار اول هرچند که متد Equals از شی null در دسترس است و با مقدار null مقایسه شده اما در زمان اجرا پیغام خطای NullReferenceException را خواهیم داشت. 
  • در رفتار دوم هم پیغام خطا را خواهیم داشت. شئ با مقدار null، در زمان اجرا هیچ نوعی را برنمیگرداند. 
  • در رفتار سوم هر چند که مقدار null صریحا به رشته تبدیل شده و برای چاپ متغیر str پیام خطایی را نخواهیم داشت، اما متغیر strType در خروجی، false خواهد بود. همانطور که در رفتار دوم گفته شد، شیء با مقدار null هیچ نوعی را برنمیگرداند. 
  • خروجی رفتار چهارم true خواهد بود. به این صورت که هر دو از نوع System.int32 خواهند بود.
  • در رفتار پنجم اگر از نوع‌ها، خروجی جداگانه بگیریم، خواهیم دیدکه نوع int از System.int32 و <Nullable<int از نوع System.Nullable`1[System.Int32] میباشند، در نتیجه خروجی false است. اشیای nullable بعد از اینکه مقداری مشخص را دریافت کردند، به صورت یک شیء غیر nullable رفتار خواهند کرد.

مدیریت مقادیر null در سربارگذاری متدها   

        static void Main(string[] args)
        {
            Console.WriteLine(Method(null));
            Console.ReadLine();
        }
        private static string Method(object obj)
        {
            return "Object parameter";
        }
        private static string Method(string str)
        {
            return "String parameter";
        }
در قطعه کد بالا، فراخوانی متد سربارگذاری شده با مقدار ورودی null، باعث اجرای متدی میشود که پارامتر ورودی آن از نوع رشته است. تا زمانیکه یکی از پارامترها بتواند به دیگری تبدیل شود، برنامه بدون خطا کامپایل خواهد شد. اما اگر هیچ تبدیل نوعی بین پارامترها وجود نداشته باشد، کد کامپایل نخواهد شد. بین متدهای سربارگذاری شده، متدی که نوع پارامتر آن مشخص‌تر است، فراخوانی میشود. برای اینکه متد خاصی را مجبور به اجرا کنیم، باید مقدار null را پیش از ارسال، به نوع پارامتر آن متد تبدیل کنید.(object)null

رفتارهای ()Math.Round

var rounded = Math.Round(1.5); // 2
var rounded = Math.Round(2.5); // 2

var rounded = Math.Round(2.5, MidpointRounding.ToEven); // 2
var rounded = Math.Round(2.5, MidpointRounding.AwayFromZero); // 3

var value = 1.4f;
var rounded = Math.Round(value + 0.1f); // 1
متد Round از کلاس Math، ورودی را که عددی اعشاری است، گرد میکند. اگر مقدار اعشار کمتر از ۰.۵ باشد، به سمت پایین و اگر بیشتر از ۰.۵ باشد، به سمت بالا گرد میشود. اما اگر ورودی دقیقا مقدار اعشاری ۰.۵ را داشته باشد چطور؟ متد Round به صورت پیش‌فرض ورودی  را به نزدیکترین عدد زوج گرد میکند، به این دلیل خط‌های ۱ و ۲ از قطعه کد بالا، خروجی یکسان ۲ را خواهند داشت. این متد آرگومان دومی هم دارد که دو حالت MidpointRounding.ToEven و MidpointRounding.AwayFromZero را می‌توان برای آن مشخص کرد. ToEven همان رفتار پیش‌فرض متد است که ورودی را به نزدیکترین عدد زوج گرد میکند و از حالت AwayFromZero میشود برای گرد کردن ورودی به عدد بزرگتر استفاده کرد (خط ۵). 
در خط ۸ یک حالت خاص دیگر نیز داریم. انتظار میرود که خروجی، به نزدیکترین عدد زوج گرد شود و نتیجه ۲ باشد؛ مثل خط ۱، اما خروجی ۱ خواهد بود. وقتی ورودی‌ها را از نوع float در نظر بگیریم، مقدار 0.1f کمی کمتر از ۰.۱ خواهد بود و نتیجه محاسبه کمی کمتر از ۱.۵. برای پرهیز از این مسئله بهتر است ورودی متد Round را از نوع decimal در نظر بگیریم.
 

مقدار دهی اولیه کلاسها 

پیشنهاد میشود برای جلوگیری از وقوع استثناءها از مقدار دهی اولیه کلاسها در سازنده کلاس، بخصوص اگر سازنده استاتیک داشته باشیم، پرهیز کنیم. ترتیب مقدار دهی اولیه زمانیکه از یک کلاس یه وهله ساخته میشود، به قرار زیر است:
  • فیلدهای استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • سازنده استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • فیلدهایی از کلاس که در نمونه ساخته شده در دسترس قرار میگیرند.
  • سازنده کلاس که در زمان ایجاد یک نمونه از کلاس در دسترس قرار میگیرد.
در قطعه کد زیر اگر نمونه‌ای از کلاس FailingClass ساخته شود، انتظار میرود که خطای InvalidOperationException صادر شود؛ اما برنامه با خطای TypeInitializationException متوقف میشود. در واقع در زمان اجرا به صورت خودکار خطای TypeInitializationException، خطای InvalidOperationException را پوشش میدهد. اگر بجای  InvalidOperationException یک دستور ساده WriteLine داشته باشیم، سازنده کلاس FailingClass مجال کامل شدن را خواهد داشت. اما با خطایی که داخل سازنده صادر کرده‌ایم، سازنده کلاس بدون اینکه به طور کامل به پایان برسد، متوقف خواهد شد. 
    public static class Config
    {
        public static bool ThrowException { get; set; } = true;
    }

    public class FailingClass
    {
        static FailingClass()
        {
            if (Config.ThrowException)
            {
                throw new InvalidOperationException();
            }
        }
    }
حال که میدانیم خطای اصلی که در این مواقع صادر میشود چیست، شاید بخواهیم به روش زیر آن را مدیریت کنیم.
try
{
   var failedInstance = new FailingClass();
}
catch (TypeInitializationException) { }

Config.ThrowException = false;
var instance = new FailingClass();
اگر قطعه کد بالا را بدون بخش try  اجرا کنیم، برنامه ابتدا صدور خطا را false میکند و بدون مشکل از کلاس نمونه‌ای ساخته میشود. اما اگر بخش try را داشته باشیم، هر چند که خطا در بخش try گرفته میشود و تنظیم صدور خطا false است، باز هم در خط آخر و در زمان ایجاد یک نمونه از کلاس، پیام خطای TypeInitializationException خواهیم داشت. علت آن است که سازنده استاتیک کلاس فقط یک بار فراخوانی میشود و اگر در این فراخوانی خطایی رخ دهد، این خطا در اثر ایجاد سایر نمونه‌ها و یا استفاده مستقیم از کلاس، مجددا صادر خواهد شد. در نتیجه این کلاس تا زمانیکه پردازش آن در جریان است، غیرقابل استفاده خواهد بود. یک مثال دیگر از ترتیب فراخوانی‌ها را بررسی میکنیم.
public class BaseClass
{
    {
        public BaseClass()
        {
            VirtualMethod(1);
        }
        public virtual int VirtualMethod(int dividend)
        {
            return dividend / 1;
        }
    }

    public class DerivedClass : BaseClass
    {
        int divisor;
        public DerivedClass()
        {
            divisor = 1;
        }
        public override int VirtualMethod(int dividend)
        {
            return base.VirtualMethod(dividend / divisor);
        }
    }
در قطعه کد بالا هر چند که همه چیز درست به نظر میرسد، اما اگر از کلاس DerivedClass نمونه‌ای ساخته شود، با پیام خطای DivideByZeroException مواجه میشویم. علت این مشکل ترتیب مقدار دهی اولیه در کلاسهای فرزند است. ابتدا فیلدهای کلاس فرزند مقدار دهی میشوند و بعد فیلدهای کلاس پایه، بعد سازنده کلاس پایه فراخوانی میشود و پس از آن سازنده کلاس فرزند. ترتیب فراخوانی‌ها به همین جا محدود نمیشود. 
در مثال بالا متد VirtualMethod که در سازنده کلاس پایه فراخوانی شده، پیش از این که کد داخل خود را اجرا کند، متد VirtualMethod را در کلاس فرزند، فراخوانی میکند و کلاس فرزند مجالی را برای مقدار دهی متغیر divisor، در سازنده خود نخواهد داشت. در نتیجه مقدار این متغیر در متد VirtualMethod صفر خواهد ماند و باعث صدور استثناء میشود. برای پرهیز از چنین مشکلاتی بهتر است فیلدهای یک کلاس به صورت مستقیم مقدار دهی اولیه بشوند. مقدار دهی اولیه و یا فراخوانی متدهای virtual در سازنده کلاس‌ها میتواند باعث بروز رفتارهای پیش بینی نشده‌ای شوند.

چند ریختی 

 چند ریختی قابلیتی است برای کلاسهای متفاوت تا بتوانند یک اینترفیس مشابه را به صورت‌های مختلفی پیاده‌سازی کنند. اما قطعه کد زیر قاعده چند ریختی را نقض میکند. 
 class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method();
            result = ((BaseClass)instance).Method();
            Console.WriteLine(instance + " -> " + result); // Derived Class ...  -> Method in BaseClass
            Console.ReadLine();

        }
    }

    public class BaseClass
    {
        public virtual string Method()
        {
            return "Method in BaseClass";
        }
    }

    public class DerivedClass : BaseClass
    {
        public override string ToString()
        {
            return "Derived Class ... ";
        }

        public new string Method()
        {
            return "Method in DerivedClass";
        }
    }
در خروجی کنسول هرچند که Instance همچنان وهله‌ای از DerivedClass است اما به دلیل تبدیل در خط ۷، Method کلاس DerivedClass به وسیله کلاس پایه پنهان شده و Method کلاس پایه فراخوانی میشود. در قطعه کد زیر حالت مشابه‌ای را که در بالا داشتیم، برای interface‌ها دیده میشود.
class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method(); // -> Method in DerivedClass
            result = ((IInterface)instance).Method(); // -> Method belonging to IInterface
            Console.WriteLine(result);
            Console.ReadLine();
        }
    }

    public interface IInterface
    {
        string Method();
    }

    public class DerivedClass : IInterface
    {
        public string Method()
        {
            return "Method in DerivedClass";
        }
        string IInterface.Method()
        {
            return "Method belonging to IInterface";
        }
}
هرچند که به نظر میرسد دلیلی برای استفاده از روشهای گفته شده وجود ندارد، اما اگر بخواهیم بیش از یک پیاده‌سازی را برای یک متد در یک کلاس داشته باشیم، میتواند مورد توجه قرار گیرد. بخصوص اگر نیاز باشد که پیاده‌سازی دوم خودش به طور مستقلی در کلاسی دیگر استفاده شود.

Iterators 

Iterator‌ها (تکرار شونده‌ها) ساختارهایی هستند که برای حرکت در عناصر یک collection استفاده میشوند. عموما از دستور foreach استفاده و نوع جنریک <IEnumerable<T را نمایندگی میکنند. هر چند که استفاده از آنها ساده است، اما اگر کارکرد داخلی iteratorها را درک نکنیم ممکن است به دام استفاده نادرست از آنها گرفتار شویم. در قطعه کد زیر کلاس Test صدا زده میشود و مقادیر یک تا پنج به صورت یک IEnumerable از داخل بلوک using بازگشت داده میشود. 
private IEnumerable<int> GetEnumerable(StringBuilder log)
{
     using (var test = new Test(log))
      {
          return Enumerable.Range(1, 5);
      }
}

فرض کنیم کلاس Test اینترفیس IDisposable را پیاده‌سازی کرده و در سازنده و متد Dispose خود پیامهایی را به log اضافه کند. در مثالهای واقعی، کلاس Testمیتواند اتصالی به پایگاه داده باشد و رکوردهای خوانده شده، بازگشت داده شوند. توسط حلقه زیر مقدار خروجی تابع را چاپ میکنیم.
var log = new StringBuilder();
            
foreach (var number in GetEnumerable(log))
{
     log.AppendLine($"{number}");
}
انتظار میرود که خروجی به این صورت باشد که ابتدا رشته Created (از سازنده کلاس Test) چاپ شود بعد اعداد یک تا پنج و در نهایت رشته Disposed (از متد Dispose کلاس Test). به عبارتی در ابتدای کار، بلوک using، سازنده کلاس را فراخوانی کند و بعد از اینکه بلوک به پایان کارش رسید متد Dispose کلاس فراخوانی شود. اما در واقع خروجی به صورت زیر خواهد بود. 
Created
Disposed
1
2
3
4
5
این تفاوت در دنیای واقعی مهم است؛ به اینصورت که مثلا اتصال به پایگاه داده قبل از اینکه داده‌ها خوانده شوند، بسته میشود و قطعه کد به درستی عمل نخواهد کرد. تنها راه حل، پیمایش در collection داخل using و بازگشت هر مقدار به صورت مجزا است، که در زیر آمده است.
 using (var test = new Test(log))
 {
     foreach (var i in Enumerable.Range(1,5))
     {
         yield return i;
     }
 }
فقط در این صورت است که کلاس Test بعد از اتمام کار حلقه و در زمان درست به پایان میرسد. توسط کلمه کلیدی yield و برای متدی که خروجی قابل پیمایش داشته باشد میتوان چندین مقدار را بازگشت داد. ترتیب اجرای دستورات در قطعه کد بالا به این صورت است که ابتدا نمونه‌ای از کلاس Test ایجاد میشود و سازنده کلاس فراخوانی میشود، سپس حلقه foreach به تعداد مشخص شده در Range مقادیر بازگشتی را در خروجی تابع قرار میدهد. وقتی که کار حلقه تمام شد، بلوک using دستورات را ادامه خواهد داد که برابر با خاتمه دادن به تمام نمونه‌ها و منابع استفاده شده در بلوک است؛ یعنی فراخوانی متد Dispose. با استفاده از این روش خروجی به شکل زیر خواهد بود. 
Created
1
2
3
4
5
Disposed

اشتراک‌ها
چطور برنامه‌نویسی موازی را برای مادربزرگتان توضیح دهید!؟

برنامه نویسی موازی (Parallel Programming) و برنامه نویسی ناهمگام (Asynchronous Programming) مفاهیم نسبتا جدیدی در دنیای برنامه‌نویسی هستند که برای اغلب برنامه‌نویسان جدید است. همه در مورد آن شنیده‌انم ولی اغلب واضح نیست که دقیقا چیست و چرا سخت است. یک مفهوم پایه برای درک این مفاهیم پایه Thread یا نخ است. نخ‌ها مفاهیمی هستند که وظیفه انجام کارها روی CPU را دارند. در دنیای ما انسان‌ها کسانی هستند که کار انجام می‌دهند. مقاله ،فوق مفهوم «نخ» را به «انسان» شبیه دیده‌است و سعی کرده‌است مفاهیم پیچیده دنیای برنامه‌نویسی را با مفاهیم ساده دنیای ما انسان‌ها توضیح دهد. 

چطور برنامه‌نویسی موازی را برای مادربزرگتان توضیح دهید!؟
مطالب
بررسی معماری پیازی - قسمت اول

 معماری پیازی توسط جفری پالرمو در سال 2008 ابداع شد. این معماری راه بهتری را برای ساخت برنامه‌های کاربردی جهت تست پذیری، نگهداری و قابلیت اطمینان بهتر بر روی زیرساخت‌هایی مانند پایگاه‌های داده و خدمات ارائه می‌دهد. هدف اصلی این معماری، پرداختن به چالش‌های پیش روی معماری 3 لایه و ارائه راه حلی برای مشکلات رایج مانند اتصال و جداسازی وابستگی‌ها است. دو نوع اتصال وجود دارند؛ اتصال محکم و اتصال ضعیف که در ادامه آنها را بررسی میکنیم.


اتصال محکم

هنگامی که یک کلاس، به یک وابستگی مشخصی وابسته است، گفته می‌شود که به شدت با آن کلاس همراه است. یک اتصال محکم جفت شده، به یک شیء دیگر وابسته است. این بدان معناست که تغییر یک شیء در یک برنامه‌ی با اتصال محکم جفت شده، اغلب نیاز به تغییر در تعدادی از اشیاء دیگر دارد. هنگامیکه یک برنامه کوچک است، دشوار نیست، اما در یک برنامه‌ی بزرگ، ایجاد تغییرات بسیار دشوار است.


اتصال ضعیف

یعنی دو شیء مستقل هستند و یک شیء می‌تواند بدون اینکه به آن وابسته باشد، از شیء دیگری استفاده کند. این یک هدف طراحی است که به دنبال کاهش وابستگی‌های متقابل بین اجزای یک سیستم، با هدف کاهش خطر این است که تغییرات در یک جزء، مستلزم تغییر در هر جزء دیگر باشد.


مزایای معماری پیازی

چندین مزیت برای معماری پیازی وجود دارند که در زیر ذکر شده‌اند:

  • قابلیت نگهداری بهتری را فراهم می‌کند؛ زیرا همه کدها به لایه‌ها یا مرکز، بستگی دارند.
  • تست پذیری بهتری را فراهم می‌کند؛ زیرا آزمون واحد را می‌توان برای لایه‌های جداگانه، بدون تأثیر بر سایر ماژول‌های برنامه ایجاد کرد.
  • این برنامه یک برنامه‌ی کاربردی با اتصال آزاد را ایجاد می‌کند؛ زیرا لایه بیرونی برنامه، همیشه از طریق واسط‌ها با لایه داخلی، ارتباط برقرار می‌کند.
  • هرگونه پیاده سازی پیوسته، در زمان اجرا به برنامه ارائه می‌شود.
  • موجودیت‌های دامنه، هسته و بخش مرکزی هستند. می‌تواند به هر دو لایه پایگاه داده و UI دسترسی داشته باشد.
  • لایه‌های داخلی هرگز به لایه خارجی وابسته نیستند. کدی که ممکن است تغییر کرده باشد، باید بخشی از یک لایه خارجی باشد.


لایه‌های معماری پیاز

این معماری به شدت به اصل وارونگی وابستگی، متکی است. رابط کاربری از طریق واسط‌ها با منطق تجاری ارتباط برقرار می‌کند و دارای چهار لایه است. لایه‌ها به سمت مرکز هستند. بخش مرکزی، موجودیت‌های Domain است که نشان‌دهنده موضوعات تجاری و رفتاری است. این لایه‌ها می‌توانند متفاوت باشند اما لایه موجودیت‌های دامنه، همیشه بخشی از دامنه‌ی مرکزی است. لایه دیگر، رفتار بیشتر یک شیء را تعریف می‌کند. در ادامه به توضیح لایه‌های معماری پیاز توجه فرمایید:


Domain Entities Layer

این بخش مرکزی معماری است. تمام اشیاء دامنه‌ی برنامه را در خود نگه می‌دارد. اگر برنامه ای با چهارچوب موجودیت ORM توسعه داده شود، این لایه دارای کلاس‌های POCO (Code First) یا Edmx (Database First) با موجودیت‌ها است. این نهادهای دامنه هیچ وابستگی ندارند.


Repository Layer

این لایه برای ایجاد یک لایه Abstraction بین لایه نهادهای دامنه و لایه منطق تجاری یک برنامه، در نظر گرفته شده‌است. این یک الگوی دسترسی به داده‌است که باعث می‌شود یک رویکرد مرتبط‌تر برای دسترسی به داده‌ها وجود داشته باشد. ما یک مخزن عمومی را ایجاد می‌کنیم که منبع داده را برای داده‌ها جستجو می‌کند، داده‌ها را از منبع داده به یک نهاد تجاری نگاشت می‌کند و تغییرات موجودیت تجاری را به منبع داده ارائه می‌دهد.


Service Layer

این لایه دارای رابط‌هایی است که برای برقراری ارتباط بین لایه UI و لایه مخزن استفاده می‌شود و به همراه منطق تجاری برای یک موجودیت است. بنابراین به آن لایه منطق تجاری نیز می‌گویند.


UI Layer

خارجی‌ترین لایه است و می‌تواند برنامه‌ی وب، Web API یا پروژه واحد تست باشد. این لایه دارای یک پیاده سازی از جنس Dependency Inversion Principle است بطوری که برنامه، یک برنامه‌ی کاربردی جفت شده‌ی آزاد می‌سازد و از طریق واسط‌ها با لایه داخلی ارتباط برقرار می‌کند.

در مطالب بعدی با مبحث معماری پیازی، نکات تکمیلی و مهمتری از لایه پیاز را تشریح میکنیم و یک پروژه را با معماری پیاز، راه اندازی میکنیم.

مطالب
امکان تعریف ساده‌تر کلاس‌های Immutable در C# 9.0 با معرفی نوع جدید record
در مطلب معرفی خواص init-only، با روش معرفی خواص immutable آشنا شدیم. نوع جدیدی که به C# 9.0 به نام record اضافه شده‌است، قسمتی از آن بر اساس همان خواص init-only کار می‌کند. به همین جهت مطالعه‌ی آن مطلب، پیش از ادامه‌ی بحث جاری، ضروری است.


چرا در C# 9.0 تا این اندازه بر روی سادگی ایجاد اشیاء Immutable تمرکز شده‌است؟

به شیءای Immutable گفته می‌شود که پس از وهله سازی ابتدایی آن، وضعیت آن دیگر قابل تغییر نباشد. همچنین به کلاسی Immutable گفته می‌شود که تمام وهله‌های ساخته شده‌ی از آن نیز Immutable باشند. نمونه‌ی یک چنین شیءای را از نگارش 1 دات نت در حال استفاده هستیم: رشته‌ها. رشته‌ها در دات نت غیرقابل تغییر هستند و هرگونه تغییری بر روی آن‌ها، سبب ایجاد یک رشته‌ی جدید (یک شیء جدید) می‌شود. نوع جدید record نیز به همین صورت عمل می‌کند.

مزایای وجود Immutability:

- اشیاء Immutable یا غیرقابل تغییر، thread-safe هستند که در نتیجه، برنامه نویسی همزمان و موازی را بسیار ساده می‌کنند؛ چون چندین thread می‌توانند با شیءای کار کنند که دسترسی به آن، تنها read-only است.
- اشیاء Immutable از اثرات جانبی، مانند تغییرات آن‌ها در متدهای مختلف در امان هستند. می‌توانید آن‌ها را به هر متدی ارسال کنید و مطمئن باشید که پس از پایان کار، این شیء تغییری نکرده‌است.
- کار با اشیاء Immutable، امکان بهینه سازی حافظه را میسر می‌کنند. برای مثال NET runtime.، هش رشته‌های تعریف شده‌ی در برنامه را در پشت صحنه نگهداری می‌کند تا مطمئن شود که تخصیص حافظه‌ی اضافی، برای رشته‌های تکراری صورت نمی‌گیرد. نمونه‌ی دیگر آن نمایش حرف "a" در یک ادیتور یا نمایشگر است. زمانیکه یک شیء Immutable حاوی اطلاعات حرف "a"، ایجاد شود، به سادگی می‌توان این تک وهله را جهت نمایش هزاران حرف "a" مورد استفاده‌ی مجدد قرار داد، بدون اینکه نگران مصرف حافظه‌ی بالای برنامه باشیم.
- کار با اشیاء Immutable به باگ‌های کمتری ختم می‌شود؛ چون همواره امکان تغییر حالت درونی یک شیء، توسط قسمت‌های مختلف برنامه، می‌تواند به باگ‌های ناخواسته‌ای منتهی شوند.
- Hash list‌ها که در جهت بهبود کارآیی برنامه‌ها بسیار مورد استفاده قرار می‌گیرند، بر اساس کلیدهایی Immutable قابل تشکیل هستند.


روش تعریف نوع‌های جدید record

کلاس ساده‌ی زیر را در نظر بگیرید:
public class User
{
   public string Name { set; get; }
}
برای تبدیل آن به یک نوع جدید record فقط کافی است واژه‌ی کلیدی class آن‌را با record جایگزین کنیم (به آن nominal record هم می‌گویند):
public record User
{
   public string Name { set; get; }
}
نحوه‌ی کار با آن و وهله سازی آن نیز دقیقا مانند کلاس‌ها است:
var user = new User();
user.Name = "User 1";
و ... در اینجا امکان انتساب مقداری به خاصیت Name وجود دارد؛ یعنی این خاصیت به صورت پیش‌فرض Immutable نیست.

روش تعریف دومی نیز در اینجا میسر است (به آن positional record هم می‌گویند):
public record User(string Name);
با این‌کار، به صورت خودکار یک record جدید تشکیل می‌شود که به همراه خاصیت Name است؛ چیزی شبیه به record قبلی که تعریف کردیم (به همین جهت نیاز است نام آن‌را شروع شده‌ی با حروف بزرگ درنظر بگیریم). با این تفاوت که این record، اینبار دارای سازنده است و همچنین خاصیت Name آن از نوع init-only است. در این حالت است که کل record به صورت immutable معرفی می‌شود؛ وگرنه روش تعریف یک خاصیت معمولی که از نوع init-only نیست (مانند مثال اول)، سبب بروز Immutability نخواهد شد.

برای کار با رکورد دومی که تعریف کردیم باید سازند‌ه‌ی این record را مقدار دهی کرد:
var user = new User("User 1");
// Error: Init-only property or indexer 'User.Name' can only be assigned
// in an object initializer, or on 'this' or 'base' in an instance constructor
// or an 'init' accessor. [CS9Features]csharp(CS8852)
user.Name = "User 1";
و همانطور که ملاحظه می‌کنید، چون خاصیت Name از نوع init-only است و در سازنده‌ی record تعریف شده مقدار دهی شده‌است، دیگر نمی‌توان آن‌را مقدار دهی مجدد کرد. همچنین در اینجا امکان استفاده‌ی از object initializers مانند new User { Name = "User 1" } نیز وجود ندارد؛ چون به همراه یک سازنده‌ی به صورت خودکار تولید شده‌است که خاصیتی init-only را مقدار دهی کرده‌است.


نوع جدید record چه اطلاعاتی را به صورت خودکار تولید می‌کند؟

روش دوم تعریف recordها اگر در نظر بگیریم:
public record User(string Name);
و در این حالت برنامه را کامپایل کنیم، به کدهای زیر که حاصل از دی‌کامپایل است، می‌رسیم:
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Text;
using CS9Features;

public class User : IEquatable<User>
{
 protected virtual Type EqualityContract
 {
  [System.Runtime.CompilerServices.NullableContext(1)]
  [CompilerGenerated]
  get
  {
   return typeof(User);
  }
 }

 public string Name
 {
  get;
  set/*init*/;
 }

 public User(string Name)
 {
  this.Name = Name;
  base..ctor();
 }

 public override string ToString()
 {
  StringBuilder stringBuilder = new StringBuilder();
  stringBuilder.Append("User");
  stringBuilder.Append(" { ");
  if (PrintMembers(stringBuilder))
  {
   stringBuilder.Append(" ");
  }
  stringBuilder.Append("}");
  return stringBuilder.ToString();
 }

 protected virtual bool PrintMembers(StringBuilder builder)
 {
  builder.Append("Name");
  builder.Append(" = ");
  builder.Append((object?)Name);
  return true;
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator !=(User? r1, User? r2)
 {
  return !(r1 == r2);
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator ==(User? r1, User? r2)
 {
  return (object)r1 == r2 || (r1?.Equals(r2) ?? false);
 }

 public override int GetHashCode()
 {
  return EqualityComparer<Type>.Default.GetHashCode(EqualityContract) * -1521134295 + EqualityComparer<string>.Default.GetHashCode(Name);
 }

 public override bool Equals(object? obj)
 {
  return Equals(obj as User);
 }

 public virtual bool Equals(User? other)
 {
  return (object)other != null && EqualityContract == other!.EqualityContract && EqualityComparer<string>.Default.Equals(Name, other!.Name);
 }

 public virtual User <Clone>$()
 {
  return new User(this);
 }

 protected User(User original)
 {
  Name = original.Name;
 }

 public void Deconstruct(out string Name)
 {
  Name = this.Name;
 }
}
این خروجی به صورت خودکار تولید شده‌ی توسط کامپایلر، چنین نکاتی را به همراه دارد:
- record‌ها هنوز هم در اصل همان class‌های استاندارد #C هستند (یعنی در اصل reference type هستند).
- این کلاس به همراه یک سازنده و یک خاصیت init-only است (بر اساس تعاریف ما).
- متد ToString آن بازنویسی شده‌است تا اگر آن‌را بر روی شیء حاصل، فراخوانی کردیم، به صورت خودکار نمایش زیبایی را از محتوای آن ارائه دهد.
- این کلاس از نوع  <IEquatable<User است که امکان مقایسه‌ی اشیاء record را به سادگی میسر می‌کند. برای این منظور متدهای GetHashCode و Equals آن به صورت خودکار بازنویسی و تکمیل شده‌اند (یعنی مقایسه‌ی آن شبیه به value-type است).
- این کلاس امکان clone کردن اطلاعات جاری را مهیا می‌کند.
- همچنین به همراه یک متد Deconstruct هم هست که جهت انتساب خواص تعریف شده‌ی در آن، به یک tuple مفید است.

بنابراین یک رکورد به همراه قابلیت‌هایی است که سال‌ها در زبان #C وجود داشته‌اند و شاید ما به سادگی حاضر به تشکیل و تکمیل آن‌ها نمی‌شدیم؛ اما اکنون کامپایلر زحمت کدنویسی خودکار آن‌ها را متقبل می‌شود!


ساخت یک وهله‌ی جدید از یک record با clone کردن آن

اگر به کدهای حاصل از دی‌کامپایل فوق دقت کنید، یک قسمت جدید clone هم با syntax خاصی در آن ظاهر شده‌است:
public virtual User <Clone>$()
{
  return new User(this);
}
زمانیکه یک شیء Immutable است، دیگر نمی‌توان مقادیر خواص آن‌را در ادامه تغییر داد. اما اگر نیاز به اینکار وجود داشت، باید چکار کنیم؟ در C# 9.0 برای ایجاد وهله‌ی جدید معادلی از یک record، واژه‌ی کلیدی جدیدی را به نام with، اضافه کرده‌اند. برای نمونه اگر record زیر را در نظر بگیریم که دارای دو خاصیت نام و سن است:
public record User(string Name, int Age);
وهله سازی متداول آن به صورت زیر خواهد بود:
var user1 = new User("User 1", 21);
اما اگر خواستیم خاصیت سن آن‌را تغییر دهیم، می‌توان با استفاده از واژه‌ی کلیدی with، به صورت زیر عمل کرد:
var user2 = user1 with { Age = 31 };
کاری که در اصل در اینجا انجام می‌شود، ابتدا clone کردن شیء user1 است (یعنی دقیقا یک وهله‌ی جدید از user1 را با تمام اطلاعات قبلی آن در اختیار ما قرار می‌دهد که این وهله، ارجاعی را به شیء قبلی ندارد و از آن منقطع است). بنابراین نام user2، دقیقا همان "User 1" است که پیشتر تنظیم کردیم؛ با این تفاوت که اینبار مقدار سن آن متفاوت است. با استفاده از cloning، هنوز شیء user1 که immutable است، دست نخورده باقی مانده‌است و توسط with می‌توان خواص آن‌را تغییر داد و حاصل کار، یک شیء کاملا جدید است که مکان آن در حافظه، با مکان شیء user1 در حافظه، یکی نیست.


مقایسه‌ی نوع‌های record

در کدهای حاصل از دی‌کامپایل فوق، قسمت عمده‌ای از آن به تکمیل اینترفیس <IEquatable<User پرداخته شده بود. به همین جهت اکنون دو رکورد با مقادیر خواص یکسانی را ایجاد می‌کنیم:
var user1 = new User("User 1", 21);
var user2 = new User("User 1", 21);
سپس یکبار آن‌ها را از طریق عملگر == و بار دیگر به کمک متد Equals، مقایسه می‌کنیم:
Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
خروجی هر دو حالت، True است:
user1.Equals(user2) -> True
user1 == user2 -> True
این مورد، یکی از مهم‌ترین تفاوت‌های recordها با classها هستند.
- زمانیکه عملگر == را بر روی شیء user1 و user2 اعمال می‌کنیم، اگر User، از نوع کلاس معمولی باشد، حاصل آن false خواهد بود؛ چون این دو، به یک مکان از حافظه اشاره نمی‌کنند، حتی با اینکه مقادیر خواص هر دو شیء یکی است.
- اما اگر به قطعه کد دی‌کامپایل شده دقت کنید، در یک رکورد که هر چند در اصل یک کلاس است، حتی عملگر == نیز بازنویسی شده‌است تا در پشت صحنه همان متد Equals را فراخوانی کند و این متد با توجه به پیاده سازی اینترفیس <IEquatable<User، اینبار دقیقا مقادیر خواص رکورد را یک به یک مقایسه کرده و نتیجه‌ی حاصل را باز می‌گرداند:
public virtual bool Equals(User? other)
{
   return (object)other != null &&
 EqualityContract == other!.EqualityContract &&
 EqualityComparer<string>.Default.Equals(Name, other!.Name) && 
EqualityComparer<int>.Default.Equals(Age, other!.Age);
}
این متدی است که به صورت خودکار توسط کامپایلر جهت مقایسه‌ی مقادیر خواص رکورد جدید تعریف شده، تشکیل شده‌است. به عبارتی recordها از لحاظ مقایسه، شبیه به value objects عمل می‌کنند؛ هرچند در اصل یک کلاس هستند.

یک نکته: بازنویسی عملگر == در SDK نگارش rc2 فعلی رخ‌داده‌است و در نگارش‌های قبلی preview، اینگونه نبود.


امکان ارث‌بری در recordها

دو رکورد زیر را در نظر بگیرید که اولی به همراه Name است و نمونه‌ی مشتق شده‌ی از آن، خاصیت init-only سن را نیز به همراه دارد:
    public record User
    {
        public string Name { get; init; }

        public User(string name)
        {
            Name = name;
        }
    }

    public record UserWithAge : User
    {
        public int Age { get; init; }

        public UserWithAge(string name, int age) : base(name)
        {
            Age = age;
        }
    }
در اینجا روش دیگر تعریف recordها را ملاحظه می‌کنید که شبیه به کلاس‌ها است و خواص آن init-only هستند. در این حالت اگر مقایسه‌ی زیر را انجام دهیم:
var user1 = new User("User 1");
var user2 = new UserWithAge("User 1", 21);

Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
به خروجی زیر خواهیم رسید:
user1.Equals(user2) -> False
user1 == user2 -> False
علت آن را هم پیشتر بررسی کردیم. تساوی رکوردها بر اساس مقایسه‌ی مقدار تک تک خواص آن‌ها صورت می‌گیرد و چون user1 به همراه سن نیست، مقایسه‌ی این دو، false را بر می‌گرداند.

امکان تعریف ارث‌بری رکوردها به صورت زیر نیز وجود دارد و الزاما نیازی به روش تعریف کلاس مانند آن‌ها، مانند مثال فوق نیست:
public abstract record Food(int Calories);
public record Milk(int C, double FatPercentage) : Food(C);


رکوردها متد ToString را بازنویسی می‌کنند

در مثال قبلی اگر یک ToString را بر روی اشیاء تشکیل شده فراخوانی کنیم:
Console.WriteLine(user1.ToString());
Console.WriteLine(user2.ToString());
به این خروجی‌ها می‌رسیم:
User { Name = User 1 }
UserWithAge { Name = User 1, Age = 21 }
که حاصل بازنویسی خودکار متد ToString در پشت صحنه است.


امکان استفاده‌ی از Deconstruct در رکوردها

دو روش برای تعریف رکوردها وجود دارند؛ یکی شبیه به تعریف کلاس‌ها است و دیگری تعریف یک سطری، که positional record نیز نامیده می‌شود:
public record Person(string Name, int Age);
 فقط در حالت تعریف یک سطری positional record فوق است که خروجی خودکار نهایی تولیدی، به همراه public void Deconstruct نیز خواهد بود:
public void Deconstruct(out string Name, out int Age)
{
  Name = this.Name;
  Age = this.Age;
}
در این حالت می‌توان از tuples نیز برای کار با آن استفاده کرد:
var (name, age) = new Person("User 1", 21);
واژه‌ی «positional» نیز دقیقا به همین قابلیت اشاره می‌کند که بر اساس موقعیت خواص تعریف شده‌ی در رکورد، امکان Deconstruct آن‌ها به متغیرهای یک tuple وجود دارد. حالت تعریف کلاس مانند رکوردها، nominal نام دارد.


امکان استفاده‌ی از نوع‌های record در ASP.NET Core 5x

سیستم model binding در ASP.NET Core 5x، از نوع‌های record نیز پشتیبانی می‌کند؛ یک مثال:
 public record Person([Required] string Name, [Range(0, 150)] int Age);

 public class PersonController
 {
   public IActionResult Index() => View();

   [HttpPost]
   public IActionResult Index(Person person)
   {
    // ...
   }
 }


پرسش و پاسخ

آیا نوع‌های record به صورت value type معرفی می‌شوند؟
پاسخ: خیر. رکوردها در اصل reference type هستند؛ اما از لحاظ مقایسه، شبیه به value types عمل می‌کنند.

آیا می‌توان در یک کلاس، خاصیتی از نوع رکورد را تعریف کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان در رکوردها، از struct و یا کلاس‌ها جهت تعریف خواص استفاده کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان از واژه‌ی کلیدی with با کلاس‌ها و یا structها استفاده کرد؟
پاسخ: خیر. این واژه‌ی کلیدی در C# 9.0 مختص به رکوردها است.

آیا رکوردها به صورت پیش‌فرض Immutable هستند؟
پاسخ: اگر آن‌ها را به صورت positional records تعریف کنید، بله. چون در این حالت خواص تشکیل شده‌ی توسط آن‌ها از نوع init-only هستند. در غیراینصورت، می‌توان خواص غیر init-only را نیز به تعریف رکوردها اضافه کرد.
مطالب
اصول طراحی شی گرا SOLID - #بخش پنجم اصل DIP

اصل 5)  D – DIP– Dependency Inversion principle 
مقایسه با دنیای واقعی:
همان مثال کامپیوتر را دوباره در نظر بگیرید.این کامپیوتر دارای قطعات مختلفی مانند RAM ، هارد دیسک، CD ROM و ... است که هر کدام به صورت مستقل به مادربرد متصل شده اند. این به این معنی است که اگر قسمتی از کار بیفتد میتوان آن را با یک قطعه‌ی جدید به آسانی تعویض کرد . حالا فقط تصور کنید که تمامی قطعات شدیداً به یکدیگر متصل شده اند آنوقت دیگر نمیتوانستیم قطعه ای را از مادربرد برداریم و به همین خاطر اگر مثلا RAM از کار بیفتد ، یاید یک مادربرد جدید خریداری کنید که برای شما گران تمام می‌شود.
به مثال زیر توجه کنید :
public class CustomerBAL
{
    public void Insert(Customer c)
    {
        try
        {
            //Insert logic
        }
        catch (Exception e)
        {
            FileLogger f = new FileLogger();
            f.LogError(e);
        }
    }
}

public class FileLogger
{
    public void LogError(Exception e)
    {
        //Log Error in a physical file
    }
}
در کد بالا کلاسCustomerBAL مستقیما به کلاس FileLogger وابسته است که استثناء‌های رخ داده را بر روی یک فایل فیزیکی لاگ میکند. حالا فرض کنید که چند روز بعد مدیریت تصمیم میگیرد که از این به بعد استثناء‌ها بر روی یک Event  Viewer لاگ شوند. اکنون چه میکنید؟ با تغییر کدها ممکن است با خطاهای زیادی روبرو شوید(درصورت تعداد بالای کلاسهایی که از کلاس FileLogger استفاده میکنند و فقط تعداد محدودی از آنها نیاز دارند که بر روی Event Viewer لاگ کنند.)
DIP  به ما میگوید : " ماژول‌های سطح بالا نباید به ماژولهای سطح پایین وابسته باشند، هر دو باید به انتزاعات وابسته باشند. انتزاعات نباید وابسته به جزئیات باشند، بلکه جزئیات باید وابسته به انتزاعات باشند. ".
در طراحی ساخت یافته، ماژولهای سطح بالا به ماژولهای سطح پایین وابسته بودند. این مسئله دو مشکل ایجاد می‌کرد:
1-  ماژول‌های سطح بالا (سیاست گذار) به ماژول‌های سطح پایین (مجری) وابسته هستند. در نتیجه هر تغییری در ماژول‌های سطح پایین ممکن است باعث اشکال در ماژول‌های سطح بالا گردد.
2-  استفاده مجدد از ماژول‌های سطح بالا در جاهای دیگر مشکل است، زیرا وابستگی مستقیم به ماژول‌های سطح پایین دارند.
راه حل با توجه به اصل DIP :
public interface ILogger
{
    void LogError(Exception e);
}

public class FileLogger:ILogger
{
    public void LogError(Exception e)
    {
        //Log Error in a physical file
    }
}
public class EventViewerLogger : ILogger
{
    public void LogError(Exception e)
    {
        //Log Error in a Event Viewer
    }
}
public class CustomerBAL
{
    private ILogger _objLogger;
    public CustomerBAL(ILogger objLogger)
    {
        _objLogger = objLogger;
    }

    public void Insert(Customer c)
    {
        try
        {
            //Insert logic
        }
        catch (Exception e)
        {            
            _objLogger.LogError(e);
        }
    }
}
در اینجا وابستگی‌های کلاس CustomerBAL از طریق سازنده آن در اختیارش قرار گرفته است. یک اینترفیس ILogger تعریف شده‌است به همراه دو پیاده سازی مختلف از آن مانند FileLogger و EventViewerLogger. 
یکی از انواع فراخوانی آن نیز می‌تواند به شکل زیر باشد:
var customerBAL = new CustomerBAL (new EventViewerLogger());
customerBAL.LogError();
اطلاعات بیشتر در دوره آموزشی "بررسی مفاهیم معکوس سازی وابستگی‌ها و ابزارهای مرتبط با آن  ".       
نظرات مطالب
فلسفه وجودی بخش finally در try catch چیست؟

- اینکه شما بروز یک مشکل رو با یک عدد منفی از یک متد بازگشت می‌دید یعنی هنوز دید زبان C رو دارید. در دات نت وجود استثناءها دقیقا برای ننوشتن return 0 یا -1 و شبیه به آن هست. در این حالت برنامه خودکار در هر سطحی که باشد، ادامه‌اش متوقف میشه و نیازی نیست تا مدام خروجی یک متد رو چک کرد.

- اینکه در یک متد کانکشنی برقرار شده و بسته شده یعنی ضعف کپسوله سازی مفاهیم ADO.NET. نباید این مسایل رو مدام در تمام متدها تکرار کرد. میشه یک متد عمومی ExecSQL درست کرد بجای تکرار مدام یک سری کد.

- یک سری از اشیاء اینترفیس IDisposable رو پیاده سازی می‌کنند مثل همین شیء اتصالی که ذکر شد. در این حالت میشه از using استفاده کرد بجای try/finally و اون وقت به دوتا using نیاز خواهید داشت یعنی شیء Command هم نیاز به try/finally داره.

مطالب
بررسی تفاوت بین DTO و POCO
در ابتدا اجازه بدهید تعریف درستی از این دو واژه، ارائه کنیم.

DTO (Data Transfer Object)
به بیان خیلی ساده، DTO‌ها برای انتقال اطلاعات استفاده می‌شوند؛ پس هیچ منطق و رفتاری در این اشیاء تعریف نمی‌شود .اگر در DTO منطقی پیاده سازی شود، دیگر به آن DTO گفته نمی‌شود. اجازه بدید منظورمان را از منطق یا رفتار مشخص کنیم. منطق یا رفتار، همان متدهایی هستند که در نوع داده خود تعریف میکنیم. در #C، یک DTO تنها از خصوصیت‌ها (Properties) که از بلوک‌های Get و Set تشکیل شده‌اند، ساخته می‌شود. البته بدون کدهایی جهت اعتبار سنجی (Validation) مقادیر.

سؤال: وضعیت attribute ‌ها و Metadata‌ها چه می‌شود؟
خیلی غیر معمول نیست که از metadata‌ها در DTO، به‌منظور اعتبار سنجی یا اهداف خاص، استفاده کنیم. بعضی از attribute‌ها هیچ رفتاری را به DTO‌ها اضافه نمی‌کنند؛ ولی استفاده از DTO‌ها را در بخش‌های دیگر سیستم، ساده‌تر می‌کنند. در نتیجه هیچکدام از attribute ‌ها و metadata‌ها، شرایط DTO بودن را نقض نمی‌کنند.

مدل‌های دیگری مثل ViewModels‌ها و API Model‌ها چه می‌شوند؟
واژه DTO خیلی مبهم است. تنها چیزی که بیان می‌کند این است که شیء است و فقط و فقط شامل اطلاعات است و رفتاری ندارد. در این تعریف درباره‌ی کاربرد مورد نظر یک DTO چیزی گفته نشده. در بسیاری از معماری‌ها، DTO نقش خاصی را ایفا می‌کند. بطور مثال در معماری MVC، از DTO‌ها برای انقیاد داده (Binding) و ارسال اطلاعات به یک View استفاده میکنند. به همین خاطر این DTO‌ها بعنوان ViewModel، در معماری MVC شناخته می‌شوند که رفتاری را در خود تعریف نمی‌کنند و تنها فرمت اطلاعات مورد انتظار یک View را مهیا می‌کنند.
پس در این سناریوی خاص، ViewModel نوعی DTO می‌باشد. اما باید دقت داشته باشید، همه ViewModel‌‌ها را نمی‌توان DTO محسوب کرد؛ مثلا در معماری MVVM، ویوو مدل‌های تعریف شده، شامل رفتار هم می‌باشند. حتی در معماری MVC نیز گاهی اوقات منطقی به  ViewModel‌‌ها اضافه می‌شود که دیگر به آنها DTO نمی‌گوییم.

 
در صورت امکان، نام DTO‌ها را بر اساس استفاده‌ی آنها تعیین کنید. بطور مثال کلاسی با نام FoodDTO، مشخص نمی‌کند که این نوع، کجا و چگونه قرار است در معماری برنامه شما مورد استفاده قرار  بگیرید؛ برعکس نامگذاری به صورت FoodViewModels کاربرد آن را صراحتا بیان می‌کند.
مثالی از DTO در زبان سی شارپ :
public class ProductViewModel
{
  public int ProductId { get; set; }
  public string Name { get; set; }
  public string Description { get; set; }
  public string ImageUrl { get; set; }
  public decimal UnitPrice { get; set; }
}

کپسوله سازی و DTO ها 
کپسوله سازی، یکی از اصول برنامه نویسی شیءگرا می‌باشد. اما این کپسوله سازی به DTO‌ها اعمال نمی‌شوند. به این علت که هدف کپسوله سازی، پنهان کردن فرآیند پشت صحنه‌ی ذخیره سازی اطلاعات است؛ اما در DTO هیچ فرآیندی پیاده سازی نشده و نباید هیچ State پنهانی وجود داشته باشد. پس بحث Encapsulation در DTO منتفی است. پس کار را برای خودتان سخت نکنید؛ با تعریف private setter ‌ها یا تبدیل کردن DTO به یک شیء غیرقابل تغییر (immutable). شما باید به‌راحتی بتوانید عملیات ایجاد، نوشتن و خواندن DTO‌‌ها را انجام دهید؛ همچنین باید بتوانید عملیات سریالایز کردن بر روی DTO‌‌ها را بدون فرآیند سفارشی اضافه‌ای، انجام دهید.

Field ها  یا Property ها 
سؤالی که مطرح می‌شود این است که وقتی کپسوله سازی در DTO مفهومی ندارد، چرا باید همیشه از property ‌ها استفاده کنیم؟ چرا از فیلد‌ها استفاده نکنیم (فیلد‌های public )؟
ما می‌توانیم هم از property استفاده کنیم و هم از field‌ها؛ اما بعضی از فریم ورک‌ها که کار Serialization را انجام می‌دهند، فقط با property ‌ها کار می‌کنند. بنابراین بسته به نیاز خودتان، از field‌های عمومی یا property‌ها استفاده کنید. اما عموما از Property استفاده میکنند. البته در این پیوند، پرسش و پاسخ مفصلی در این رابطه وجود دارد.

غیرقابل تغییر بودن (Immutability) و نوع رکورد ( Record Type )
غیرقابل تغییر بودن، یکی از مزیت‌های مهم در توسعه نرم افزار است. اما همانطور که در مثل بالا بیان شد، نیازی به غیرقابل تغییر کردن DTO‌‌ها نیست. با ارائه رکورد در سی شارپ 9  شرایط کمی تغییر کرد. شاید عبارت مخفف دیگری که اضافه شده Data transfer Records یا (DTRs) است. یکی از روش‌های تعریف DTR در سی شارپ 9، به شکل زیر است:
public record ProductDTO(int Id, string Name, string Description);

البته روش دیگری هم وجود دارد که شما property‌ها را تعریف کنید و از طریق سازنده، مقدار دهی شوند. ویژگی جدید init-only این امکان را فراهم می‌کند که فقط در زمان مقدار دهی اولیه (initialization)، خصوصیات مقداردهی شوند و در ادامه‌ی چرخه حیات شیء، property ‌ها فقط خواندنی هستند. این ویژگی، record‌ها را غیر قابل تغییر می‌کند.
مثال:
public record ProductDTO
{
  public int Id { get; init; }
  public string Name { get; init; }
}
var dto = new ProductDTO { Id = 1, Name = "some name" };

کلاس‌های POCO یا همان Plain Old CLR/C# Object
شی Plain Old چیست؟ هر شیءای که Plain Old باشد، می‌تواند در هر جایی از برنامه‌ی ما مورد استفاده قرار بگیرد؛ حتی در کلاس‌های Test برنامه. این اشیاء هیچگونه وابستگی برای اجرا وظایف خود، به بانک‌های اطلاعاتی و کتابخانه‌های ثالت ندارند.
برای درک بهتر این نوع کلاس‌ها، به مثال زیر دقت کنید:
public class Product : DataObject<Product>
{
  public Product(int id)
  {
    Id = id;
    InitializeFromDatabase();
  }
  private void InitializeFromDatabase()
  {
    DataHelpers.LoadFromDatabase(this);
  }
  public int Id { get; private set; }
  // other properties and methods
}
همانطور که مشاهده میکنید، این کلاس به متد استاتیکی برای کار با دیتابیس وابسته است؛ در نتیجه باعث میشود که کل کلاس، به وجود بانک اطلاعاتی وابسته شود. همچنین با ارث بری از کلاس پایه‌ی دیگری، وابستگی به یک کتابخانه‌ی ثالث ایجاد شده‌است. اجرای آزمون واحد برای چنین کلاسی، سبب fail شدن عملیات می‌شود. به این علت که ارتباط با بانک اطلاعاتی مورد نیاز متد DataHelpers، تامین نشده‌است. این شرایط، مثالی از الگوی Active Record Pattern می‌باشند. همچنین این کلاس دسترسی به منبع داده را در درون خود گنجانده است که این به معنای نقض اصل Persistence Ignorant (اصل Persistence Ignorance به طور خلاصه بیان می‌کند که در تحلیل و طراحی Business Logic به موضوع ذخیره‌سازی (Persistence) فکر نکنید (تا جای ممکن) یا به عبارت دیگر، ذهن خود را درگیر پیچیدگی‌های ذخیره سازی نکنید. برگرفته شده از breakpoint.blog.ir : روح الله دلپاک)می باشد. یکی از ویژگی‌های POCO عدم نقض الگوی فوق است.

مثالی از POCO : 
public class Product
{
  public Product(int id)
  {
    Id = id;
  }

  private Product()
  {
    // required for EF
  }

  public int Id { get; private set; }
  // other properties and methods
}
این کلاس یک POCO است:
  • برای اجرای وظایف خود به فریم ورک ثالثی وابسته نیست.
  • به کلاس پایه‌ای ( Base class) نیاز ندارد.
  • وابستگی به متد استاتیکی ندارد.
  • می تواند در هر جایی از پروژه، نمونه سازی شود.
  • اصل Persistence Ignorant را بیشتر رعایت کرده، نه بطور کامل؛ چون یک سازنده دارد که به کتابخانه‌ی ثالثی نیازمند است (سازنده‌ی بدون پارامتر که مورد نیاز EF می‌باشد).

POCO و DTO :

شاید این دو مفهموم گیج کننده باشند، ولی DTO همان POCO هست. اگر یک کلاس، DTO باشد، حتما POCO نیز هست. (مرور ویژگی‌های دو مورد در بخش‌های قبلی) ولی برعکس این وضعیت ممکن است صادق نباشد؛ مثال قبلی که در آن وابستگی به کتابخانه‌ی ثالثی در سازنده‌ی بدون پارامتر وجود داشت، DTO بودن را نقض می‌کرد. پس اگر هر دو حالت صادق بود، میتوان گفت این دو مفهوم یکی است.
مطالب
Functional Programming - قسمت پنجم - وسواس استفاده از نوع های اولیه
در ادامه سری مقالات مرتبط با برنامه نویسی تابعی ، قصد دارم به استفاده کردن یا نکردن از نوع‌های داده اولیه (Primitive Types) را بررسی کنیم. پیشنهاد میکنم در صورتی که قسمت‌های قبلی را مطالعه نکرده اید ابتدا قسمت‌های قبل را بخوانید.

در طراحی مدل دامین، بیشتر مواقع از نوع‌های اولیه مانند int , string,… استفاده میکنیم و به عبارتی میتوانیم بگوییم در استفاده از این نوع داده وسواس داریم. قطعه کد زیر را در نظر بگیرید:
public class UserFactory
{
    public User CreateUser(string email) {
        return new User(email);
    }
}
کلاس UserFactory، یک متد به نام CreateUser دارد که یک رشته را به عنوان ورودی میگیرد و یک شیء از کلاس User را بر می‌گرداند. خوب مشکل این متد کجاست؟
اگر به خاطر داشته باشید، در قسمت‌های قبلی در مورد مفهومی به نام Honesty صحبت کردیم. به طور ساده باید بتوانیم از روی امضای تابع، کاری را که تابع انجام میدهد و خروجی آن را ببینیم. این تابع Honest نیست؛ شرایطی که string می‌تواند درست نباشد، خالی باشد، طول غیر مجاز داشته باشد و ... را نمیتوانیم از امضای تابع حدس بزنیم.

برای روشن‌تر شدن بحث، مثال بالا را همیشه در ذهن خود داشته باشید. در این مثال، در تابع Divide که عمل تقسیم را انجام می‌دهد، پارامتر y که یک عدد از نوع int است، میتواند مقدار صفر را داشته باشد و باعث یک exception شود.و از آنجائیکه نوع خروجی این متد هم int است، انتظار دریافت یک exception را نداریم. در مورد exception‌ها به طول مفصل در قسمت قبلی صحبت کردیم. در مثال بالا تصور کنید که بجای یک ایمیل، از چند ایمیل به عنوان ورودی می‌خواهید استفاده کنید. آیا منطق Validation را به ازای هر پارامتر ورودی باید تکرار کنید؟

به طور کلی استفاده‌ی نابجا و بیش از حد از نوع‌های داده‌ی اولیه، باعث می‌شود تا Honesty متد‌ها را از دست بدهیم و قاعده‌ی DRY را نقض کنیم.

صحبت در مورد استفاده کردن یا نکردن، جنبه‌های زیادی دارد و یکی از مواردی است که در معماری DDD تحت عنوان Value Object به آن پرداخته شده. هدف ما در این قسمت از مقاله، صرفا پرداختن به گوشه‌ای از این مورد هست. ولی شما میتوانید برای مطالعه بیشتر و اطلاعات تکمیلی کتاب Domain-Driven Design: Tackling Complexity in the Heart of Software نوشته Eric Evans را مطالعه کنید.


به جای نوع‌های اولیه از چی استفاده کنیم؟

جواب خیلی ساده‌است؛ شما نیاز دارید تا یک Type اختصاصی را ایجاد کنید. برای مثال بجای استفاده از نوع string برای یک ایمیل، می‌توانید یک کلاس را به عنوان Email ایجاد کنید که مشخصه‌ای به نام Value دارد. این کار به روش‌های مختلفی قابل انجام است؛ اما پیشنهاد من استفاده از این روش هست:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.Reflection;

namespace ValueOf
{
    public class ValueOf<TValue, TThis> where TThis : ValueOf<TValue, TThis>, new()
    {
        private static readonly Func<TThis> Factory;

        /// <summary>
        /// WARNING - THIS FEATURE IS EXPERIMENTAL. I may change it to do
        /// validation in a different way.
        /// Right now, override this method, and throw any exceptions you need to.
        /// Access this.Value to check the value
        /// </summary>
        protected virtual void Validate()
        {
        }

        static ValueOf()
        {
            ConstructorInfo ctor = typeof(TThis)
                .GetTypeInfo()
                .DeclaredConstructors
                .First();

            var argsExp = new Expression[0];
            NewExpression newExp = Expression.New(ctor, argsExp);
            LambdaExpression lambda = Expression.Lambda(typeof(Func<TThis>), newExp);

            Factory = (Func<TThis>)lambda.Compile();
        }

        public TValue Value { get; protected set; }

        public static TThis From(TValue item)
        {
            TThis x = Factory();
            x.Value = item;
            x.Validate();

            return x;
        }

        protected virtual bool Equals(ValueOf<TValue, TThis> other)
        {
            return EqualityComparer<TValue>.Default.Equals(Value, other.Value);
        }

        public override bool Equals(object obj)
        {
            if (obj is null)
                return false;

            if (ReferenceEquals(this, obj))
                return true;

            return obj.GetType() == GetType() && Equals((ValueOf<TValue, TThis>)obj);
        }

        public override int GetHashCode()
        {
            return EqualityComparer<TValue>.Default.GetHashCode(Value);
        }

        public static bool operator ==(ValueOf<TValue, TThis> a, ValueOf<TValue, TThis> b)
        {
            if (a is null && b is null)
                return true;

            if (a is null || b is null)
                return false;

            return a.Equals(b);
        }

        public static bool operator !=(ValueOf<TValue, TThis> a, ValueOf<TValue, TThis> b)
        {
            return !(a == b);
        }

        public override string ToString()
        {
            return Value.ToString();
        }
    }
}
در این روش، یک کلاس را به عنوان Value Object ایجاد کرده‌ایم. این کلاس، نوع اولیه‌ای را که با آن سر و کار داریم، در بر خواهد گرفت و منطق مربوط به مقایسه، همچنین عملگرهای == و != را هم از طریق Equals و GetHashCode، پیاده سازی کرده. برای مثال جهت کلاس ایمیل می‌توانیم به صورت زیر عمل کنیم:
public class EmailAddress : ValueOf<string, EmailAddress> { }
همچنین برای مقدار دهی این کلاس میتوانید به صورت زیر عمل کنید:
EmailAddress emailAddress = EmailAddress.From("foo@bar.com");
برای مثال‌های پیچیده‌تر مانند آدرس، که شامل آدرس، کد پستی و … می‌باشد، میتوانید با استفاده از امکان Tuple‌ها که از سی شارپ 7 به بعد معرفی شده، مانند مثال زیر عمل کنید:
public class Address : ValueOf<(string firstLine, string secondLine, Postcode postcode), Address> { }
و در نهایت برای نوشتن منطق مربوط به validation می‌توانید متد Validate را Override کنید و قاعده‌ی DRY را هم نقض نکنید.

روش معرفی شده‌ی در این مقاله، صرفا جهت آشنایی بیشتر شما و داشتن کدی تمیز‌تر از طریق مفاهیم برنامه نویسی تابعی خواهد بود. در دنیای واقعی، احتمالا مسائلی را برای ذخیره سازی این آبجکت‌ها و یا کار با کتابخانه‌هایی مانند Entity Framework خواهید داشت که به سادگی قابل حل است.

در صورتیکه مشکلی در پیاده سازی داشتید، می‌توانید مشکل خود را زیر همین مطلب و یا بر روی gist آن کامنت کنید.
مطالب
اشیاء context در ASP.NET
در asp.net  تعدادی اشیاء پایه، حاوی اطلاعات بسیار با ارزشی در خصوص درخواست جاری، application و پاسخی که ارسال می‌شود هستند و به صورت غیر مستقیم جهت دست‌یابی به قسمتهای مرکزی و هسته‌ای چهارچوب asp.net مانند security , stat data می‌توان این اشیاء را بکار گرفت.
بررسی این اشیاء از این جهت حائز اهمیت است که در کنترلر‌ها و ویوها می‌توان پاسخهای ارسالی به کلاینت‌ها را بر حسب شرایط مختلفی مانند درخواست رسیده یا حالت خاص دیگری تغییر داد. ضمن اینکه از این اشیاء در ماژول‌ها و هندلر‌ها نیز استفاده می‌شود. لذا قبل از پرداختن به مفاهیم مرتبط به ماژولها و هندلرها بهتر است این اشیاء بررسی شوند.

کلاس httpcontext هسته‌ی چهارچوب Asp.net است که خواص بسیار مهمی به شرح ذیل را فراهم می‌آورد:
Application : شیء HttpAplicationState را جهت مدیریت Application State Data بر می‌گرداند.
ApplicationInstance  : شیء HttpApplication مرتبط با درخواست جاری را بر می‌گرداند.
Cache : شیء Cache را جهت کش داده‌ها بر می‌گرداند.
Current : خصوصیت استاتیکی که شیء HttpContext درخواست جاری را بر می‌گرداند.
CurrentHandler : وهله‌ای از IHttpHandler را که محتویات درخواست جاری را تولید خواهد کرد،  بر می‌گرداند.
IsDebuggingEnabled : مقدار True یا False را بسته به اینکه Debug فعال باشد یا خیر بر می‌گرداند.
Items : یک Collection را که می‌تواند جهت انتقال State Data بین اجزاء مختلف فریم ورک که در پردازش یک درخواست همکاری می‌کنند، بر گرداند.
GetSection : قسمت خاصی از فایل Web.Config را بر می‌گرداند.
Request : شیء HttpRequest را که حاوی جزئیات درخواست پردازش شده است، بر می‌گرداند.
Response : شیء HttpResponse را بر می‌گرداند که حاوی جزئیات Response ای است که آماده ارسال به مرورگر است.
Session : برگرداننده‌ی شیء HttpSession است. این خاصیت قبل از وقوع رخداد PostAcquireRequestState مربوط به Application، مقدار null را خواهد داشت.
TimeStamp : شیء از نوع Datetime و معرف زمانی است که شیء HttpContext ایجاد شده‌است.
Trace : جهت ثبت اطلاعات تشخیصی به کار می‌رود.

در فایل global از طریق خاصیت Context به وهله‌ای از HttpContext دسترسی داریم. ولی این خاصیت فراگیر نبوده و در ویوها و کنترلر‌ها از طریق خاصیت HttpContext  در دسترس است که در کنترلر خاصیتی از کلاس پایه Controller و در ویو خاصیتی از کلاس پایه WebViewPage می‌باشد و در ماژول‌ها از طریق پارامتر ورودی متد Init در دسترس است‌.
در هندلر‌ها متد ProcessRequest وهله‌ای از شیء HttpContext را دریافت می‌کند.
به طور سراسری در هر نقطه‌ای از برنامه از طریق خاصیت استاتیک HttpContext.Current  به شیء HttpContext مرتبط با درخواست جاری دسترسی خواهیم داشت.
در کلاسهای مدل نیز از طریق خاصیت استاتیک یاد شده می‌توان به این شیء دسترسی داشت؛ ولی بهتر است اگر مدل نیاز به اطلاعاتی در خصوص یک Request داشت این اطلاعات از طریق اشیاء Context در کنترلر دریافت و به عنوان آرگومان به مدل ارسال شوند.
به صورت کلی، خلاصه‌ی مطالب فوق به صورت ذیل می‌باشد:

بخش مورد نظر 
روش دسترسی به اشیاء context
 Controller 
 از طریق خاصیت HttpContext
View 
خاصیت Context
Global Application Class خاصیت Context
Modules 
آرگومان متد Init
Handlers 
 آرگومان متد ProcessRequest
به صورت کلی از طریق خاصیت استاتیک HttpContext.Current


خواص ذکر شده‌ی در جدول فوق، همگی نوع یکسانی ندارند. در فایل  global و هندلر‌ها و ماژولها، دقیقا به همان HtpContext ای دسترسی داریم که قبلا با آن‌ها آشنا شدیم. این نوع از اشیاء (منظور خواص کلاس HttpContext) قبل از اینکه فریم ورک MVC، دست به کار مدیریت یک درخواست شود، کار خود را شروع می‌کنند که این امر کار آزمایش واحد را مشکل می‌کند. برای رفع این مشکل خواص مهیا در کنترلر و ویو وهله‌هایی از کلاسهای متفاوتی را برمی گردانند که از کلاس Context مشتق شده‌اند و ضمنا آزمایش واحد را به سادگی پشتیبانی می‌کنند(+ ) . خاصیت HttpContext کلاس Controller وهله‌ای از کلاس HttpContextBase را بر می‌گردانند. همه‌ی اشیاء context موجود در این کلاس، دارای پسوند Base هستند؛ مانند : HttpRequestBase, HttpResponseBase و...
اگر نیاز داشتید که یک شیء از نوع پسوند دار Base را از یک شیء فاقد این پسوند ایجاد کنید، برای مثال یک شیء HttpRequest دارید، ولی متدی دارید که آرگومان آن وهله‌ای از کلاس HttpRequestBase است، برای این کار کلاسهایی با پسوند Wrapper مانند HttpContextWrapper ,…  وجود دارند که از کلاسهایی با پسوند Base مشتق شده و در متد سازنده خود آرگومانی از کلاسهای اصلی فاقد پسوند Base را می‌گیرند.
ولی عکس آن امکان پذیر نیست و نمی‌توان کلاس با پسوند Base را به نوع اولیه برگرداند. ولی همان طور که گفتیم هر جایی که نیاز داشتیم، می‌توان از طریق خاصیت استاتیک System.Web.HTTPContext.Current به اشیاء Context اصلی دسترسی داشت.
بسیاری از کلاسهای فریم ورک Asp.Net دارای خاصیت‌هایی هستند که به خوااص کلاس HttpContext نگاشت شده‌اند. یکی از این نمونه‌ها کلاس HttpApplication است که کلاس پایه‌ی فایل global نیز هست. همان طور که در ذیل نیز می‌بینید، بسیاری از خواص و متدهای کلاس HttpApplication به نوعی مرتبط با اشیاء context هستند.

Application : به خاصیت HttpContext.Application نگاشت شده‌است که دسترسی به state data application را مهیا می‌سازد.
CompleteRequest : به چرخه حیات جاری خاتمه خاتمه داده و آن را مستقیما به رخداد LogRequest منتقل می‌کند.
Context : شیء HttpContext مرتبط با درخواست جاری را بر می‌گرداند.
Init : هر گاه متد Init یکی از ماژولهای ثبت شده در برنامه فراخوانی شود، این متد صدا زده خواهد شد.
Modules : یک شیء HttpModuleCollection را که حاوی جزئیات ماژولهای برنامه است، بر می‌گرداند.
RegisterModule(type: متد استاتیکی است که یک ماژول جدید را ثبت می‌کند.
Request : مقدار HttpContext.Request را برگشت می‌دهد و در صورتی که این مقدار null باشد، استثنایی رخ خواهد داد.
Response : مقدار HttpContext.Response را برگشت داده و در صورت null بودن این مقدار، استثنایی رخ می‌دهد.
Server : به خاصیت HttpContext.Server نگاشت شده است.
Session : مقدار HttpContext.Session را برگشت می‌دهد که در صورت null بودن این مقدار، استثنایی رخ خواهد داد.

در این مقاله با خواص کلاس HttpContext که اشیائی مهم و پرکاربرد بوده و حاوی اطلاعات بسیار سودمندی هستند، آشنا شدیم. ضمنا همان طور که در ابتدای مقاله گفته شد، از این اشیاء در ماژول‌ها و هندلرها استفاده‌ی زیادی می‌شود.
نظرات مطالب
ارتقاء از WinForms به WPF
بله. در WinRT هم با همین مفاهیم سروکار داریم. کمی کمتر شده، تعدادی کلاس و کنترل جدید به آن اضافه شده، اما اصول یکی است.
ضمن اینکه هنوز هم برنامه نویسی دسکتاپ مشتری خاص خودش را دارد.