مطالب
آموزش Cache در ASP.NET Core - (قسمت اول : مفاهیم اولیه)
امروزه در وب‌سایت‌های شخصی و تجاری، یکی از مهم‌ترین پارامتر‌ها، سرعت پاسخگویی درخواست‌ها به وب‌سایت است. طبق آمار، کاربران آنلاین کنونی که ما با آن‌ها طرفیم، سطح تحملشان به سه ثانیه در یک صفحه میرسد؛ پس ما باید بتوانیم سرعت وب‌سایت‌های خودمان را تا حد ممکن بهبود بخشیم. از طرفی پارامتر سرعت، روی سئو گوگل هم تاثیر بسزایی دارد و Ranking وب‌سایت شمارا تا حد زیادی افزایش می‌دهد. قطعا همه می‌دانید که سرعت وبسایت و برنامه چقدر مهم هست؛ پس زیاده گویی نمی‌کنیم و می‌رویم سراغ اصل مطلب.
یکی از کارهایی که میتوانیم برای افزایش سرعت برنامه انجام دهیم، استفاده از Cache هست. بطور خیلی ساده، Cache یعنی قرار دادن دیتای پرکاربرد، در یک حافظه‌ی نزدیک‌تر از دیتابیس که هروقت به آن نیاز داشتیم، به آن دسترسی سریعی داشته باشیم و سرعت واکشی اطلاعات، از سرعتی که دیتابیس به ما می‌دهد، بیشتر باشد تا درخواست‌های ما با پاسخ سریع‌تری همراه شوند.
این حافظه، Ram هست و عمل Caching به اینصورت خواهد بود که هر وقت دیتای مورد نظر یکبار از دیتابیس واکشی شود، از دفعات بعد، آن دیتا را در Ram ذخیره میکند و برای درخواست‌های بعدی به دیتابیس Query نمیزند و دیتای مورد نیازش را از Ram میگیرد.
این امر در کنار مزایایی که دارد ، حساسیت بالایی هم بهمراه خواهد داشت؛ چرا که حافظه مورد استفاده Ram، یک حافظه محدود هست همچنین میتواند برای هر سخت افزاری متفاوت باشد. پس پیاده سازی این سیستم نیاز به دو دو تا چهارتا و ساختار درست دارد؛ در غیر اینصورت Cache کردن دیتای غلط میتواند به تنهایی وب‌سایتتان را Down کند؛ پس خیلی باید به این موضوع دقت داشت.

چه زمانی بهتر است از کش استفاده کنیم؟
  • وقتی دیتایی داریم که به تکرار از آن در برنامه استفاده میکنیم.
  • وقتی بعد از گرفتن دیتایی از دیتابیس، محاسباتی بر روی آن انجام میدهیم و پاسخ نهایی محاسبه را به کاربر نمایش میدهیم، میتوانیم یکبار پاسخ را کش کنیم تا از محاسبه‌ی هر باره‌ی آن جلوگیری شود.

آیا تمام اطلاعات را میتوان کش کرد؟
خیر.
  • سخت افزاری که برای کش استفاده میکنیم یعنی Ram، بسیار گران‌تر از دیتابیس برای ما تمام میشود؛ چرا که محدود است.
  • اگر همه دیتاهارا کش کنید، عمل سرچ میان آن زمان بیشتری خواهد برد.
پس اکنون میدانید که میتوانیم داده‌های بی نهایتی را در دیتابیس ذخیره کنیم و فقط با ارزش‌ترین‌ها و پر مصرف‌ترین هارا در حافظه کش، ذخیره میکنیم.

عملیات Cache در Asp.Net Core توسط اینترفیس‌های IMemoryCache و IDistributedCache مدیریت میشود و میتوانید با تزریق این اینترفیس‌ها براحتی از متدهایشان استفاده کنید؛ اما قبل از استفاده لازم است با عملکرد هر یک از آن‌ها آشنا شویم.

روش اول : In-memory Caching (Local Caching)
معمول‌ترین و ابتدایی‌ترین روش برای کش کردن اطلاعات، روش Local Caching و بصورت In-Memory است که اطلاعات را در حافظه Ram همان سروری که برنامه در آن اجرا میشود، کش میکند.

این روش تا زمانیکه برنامه‌ی ما برای اجرا شدن، تنها از یک سرور استفاده کند، بهترین انتخاب خواهد بود؛ چرا که به دلیل نزدیک بودن، سریع‌ترین بازخورد را نیز به درخواست‌ها ارائه میدهد.


اما شرایطی را فرض کنید که برنامه از چندین سرور برای اجرا شدن استفاده میکند و به طبع هر سرور درخواست‌های خودش را داراست که ما باید برای هر یک بصورت جداگانه‌ای یک کش In-Memory را در حافظه Ram هرکدام ایجاد کنیم. 

فرض کنید دیتای ما 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 باشد. بخشی از دیتا در Server 1 کش میشود (1 , 3 , 5 , 9) و بخشی دیگر در Server 2 کش خواهد شد (2 , 4 , 6 ,7 , 8 , 10).


در اینجا مشکلات و ضعف هایی به وجود خواهد آمد :


  • برای مثال اگر Server 1 به هر دلیلی از بین برود یا Down شود، اطلاعات کش درون آن نیز پاک خواهد شد و بعد از راه اندازی باید همه آن را دوباره از دیتابیس بخواند.
  • هر کدام از سرور‌ها کش‌های جدایی دارند و باهم Sync نیستند و امکان وجود یک داده‌ی حیاتی در یکی و عدم وجود آن در دیگری، بالاست. فرض کنید برنامه برای هر درخواست، نیاز به اطلاعات دسترسی کاربری را دارد. دسترسی‌های کاربر، در Server 1 کش شده، اما در Server 2 موجود نیست. در Server 2 به دلیل عدم وجود این کش، برنامه برای درخواست‌های معمول خود و چک کردن دسترسی کاربر یا باید هربار به دیتابیس درخواستی را ارسال کند که این برخلاف خواسته ماست و یا باید دیتای مربوط به دسترسی‌های کاربر را بعد از یکبار درخواست، از دیتابیس در خودش کش کند که این‌هم دوباره کاری به حساب میاید و دوبار کش کردن یک دیتا، امر مطلوبی نخواهد بود.

روش هایی وجود دارد که بتوان از سیستم Local Caching در حالت چند سروری هم استفاده کرد و این مشکلات را از بین برد، اما روش استاندارد در حالت چند سروری، استفاده از Distributed Cache‌ها است.


روش دوم : Distributed Caching

در این روش برنامه‌ی ما برای اجرا شدن از چندین سرور شبکه شده به هم، در حال استفاده هست و Cache برنامه، توسط سرورها به اشتراک گذاشته شده. 

در این حالت سرور‌های ما از یک کش عمومی استفاده میکنند که مزایای آن شامل :

■ درخواست‌ها به چندین سرور مختلف از هم ارسال شده، اما دیتای کش بصورت منسجم در هریک وجود خواهد داشت.

■ با خراب شدن یا Down شدن یک سرور، کش موجود در سرور‌های دیگر پاک نمیشود و کماکان قابل استفاده است.

■ به حافظه Ram یک سرور محدود نیست و مشکلات زیادی همچون کمبود سخت افزاری و محدودیت‌های حافظه‌ی Ram را تا حد معقولی کاهش میدهد.


طریقه استفاده از Cache در Asp.Net Core :

  • بر خلاف ASP.NET web forms و ASP.NET MVC در نسخه‌های Core به بعد، Cache بصورت از پیش ثبت شده، وجود ندارد. کش در Asp.Net Core با فراخوانی سرویس‌های مربوطه‌ی آن قابل استفاده است و نیاز است قبل از استفاده، سرویس آن را در کلاس Startup برنامه فراخوانی کنید. 
public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc();
    services.AddMemoryCache();
}

  • اینترفیس IMemoryCache از سیستم تزریق وابستگی‌ها در Core استفاده میکند و برای استفاده از اینترفیس آن، پس از اضافه کردن MemoryCache به Startup ، باید در کنترلر، عمل تزریق وابستگی (DI) را انجام دهید؛ سپس متد‌های مورد نیاز برای کش، در دسترس خواهد بود. 
public class HomeController : Controller
{
    private readonly IMemoryCache  _cache;
    public HomeController(IMemoryCache  cache)
    {
        _cache = cache;
    }
    ....
}

  • برای ذخیره‌ی کش میتوانید از متد Set موجود در این اینترفیس استفاده کنید. 
public IActionResult Set()
{
  _cache.Set("CacheKey", data , TimeSpan.FromDays(1));
  return View();
}

در پارامتر اول این متد (CacheKey)، یک کلید، برای اطلاعاتی که میخواهیم کش کنیم قرار میدهیم. دقت کنید که این کلید، شناسه‌ی دیتای شماست و باید طوری آن را در نظر گرفت که با صدا زدن این کلید از سرویس کش، همان دیتای مورد نظر را برگشت دهد (هر Object دیتا، باید کلید Unique خود را داشته باشد).


در پارامتر دوم، دیتای مورد نظر را که میخواهیم کش کنیم، به متد میدهیم و در پارامتر سوم نیز زمان اعتبار و تاریخ انقضای دیتای کش شده را وارد میکنیم؛ به این معنا که دیتای کش شده، بعد از مدت زمان گفته شده، از حافظه کش(Ram) حذف شود و برای دسترسی دوباره و کش کردن دوباره اطلاعات، نیاز به خواندن مجدد از دیتابیس باشد.


  • برای دسترسی به اطلاعات کش شده میتوانید از متد Get استفاده کنید. 
public IActionResult Get()
{
  string data = _cache.Get("CacheKey");
  return View(data);
}

تنها پارامتر ورودی این متد، کلید از قبل نسبت داده شده به اطلاعات کش هست که با استفاده از یکسان بودن کلید در ورودی این متد و کلید Set شده از قبل در حافظه Ram، دیتا مربوط به آن را برگشت میدهد.


  • متد TryGetValue برای بررسی وجود یا عدم وجود یک کلید در حافظه کش هست و یک Boolean را خروجی میدهد. 
public IActionResult Set()
  {
        DateTime data;
       // Look for cache key.
       if (!_cache.TryGetValue( "CacheKey" , out data))
       {
              // Key not in cache, so get data.
              data= DateTime.Now;

            // Save data in cache and set the relative expiration time to one day
             _cache.Set( "CacheKey" , data, TimeSpan.FromDays(1));
        }
        return View(data);
  }

این متد ابتدا بررسی میکند که کلیدی با نام "CacheKey" وجود دارد یا خیر؟ در صورت عدم وجود، آن را میسازد و دیتای مورد نظر را به آن نسبت میدهد.


  • با استفاده از متد GetOrCreate میتوانید کار متد‌های Get و Set را باهم انجام دهید و در یک متد، وجود یا عدم وجود کش را بررسی و در صورت وجود، مقداری را return و در صورت عدم وجود، ابتدا ایجاد کش و بعد return مقدار کش شده را انجام دهید. 
 public IActionResult GetOrCreate()
{
         var data = _cache.GetOrCreate( "CacheKey" , entry =>
         entry.SlidingExpiration = TimeSpan.FromSeconds(3);
         return View(data);
});
    return View(data);
}

  • برای مدیریت حافظه‌ی Ram شما باید یک Expiration Time را برای کش‌های خود مشخص کنید؛ تا هم حافظه Ram را حجیم نکنید و هم در هر بازه‌ی زمانی، دیتای بروز را از دیتابیس بخوانید. برای این کار option‌های متفاوتی از جمله absolute expiration و sliding expiration وجود دارند.

در اینجا absolute expiration به این معنا است که یک زمان قطعی را برای منقضی شدن کش‌ها مشخص میکند؛ به عبارتی میگوییم کش با کلید فلان، در تاریخ و ساعت فلان حذف شود. اما در sliding expiration یک بازه زمانی برای منقضی شدن کش‌ها مشخص میکنیم؛ یعنی میگوییم بعد از گذشت فلان دقیقه از ایجاد کش، آن را حذف کن و اگر در طی این مدت مجددا خوانده شد، طول مدت زمان آن تمدید خواهد شد.

این تنظیمات را میتوانید در قالب یک option زمان Set کردن یک کش، به آن بدهید. 

MemoryCacheEntryOptions options = new MemoryCacheEntryOptions();
options.AbsoluteExpiration = DateTime.Now.AddMinutes(1);
options.SlidingExpiration = TimeSpan.FromMinutes(1);
_cache.Set("CacheKey", data, options );

در مثال بالا هردو option اضافه شده یک کار را انجام میدهند؛ با این تفاوت که absolute expiration تاریخ now را گرفته و یک دقیقه بعد را به آن اضافه کرده و تاریخ انقضای کش را با آن تاریخ set میکند. اما sliding expiration از حالا بمدت یک دقیقه اعتبار دارد.


  • یکی از روش‌های مدیریت حافظه Ram در کش‌ها این است که برای حذف شدن کش‌ها از حافظه، اولویت بندی‌هایی را تعریف کنید. اولویت‌ها در چهار سطح قابل دسترسی است: 

  1.  NeverRemove = 3
  2.  High = 2
  3. Normal = 1
  4.  Low = 0 

این اولویت بندی‌ها زمانی کاربرد خواهند داشت که حافظه اختصاصی Ram، برای کش‌ها پر شده باشد و در این حالت سیستم کشینگ بصورت خودمختار، کش‌های با الویت پایین را از حافظه حذف میکند و کش‌های با الویت بیشتر، در حافظه باقی میمانند. این با شماست که الویت را برای دیتا‌های خود تعیین کنید؛ پس باید با دقت و فکر شده این کار را انجام دهید. 

MemoryCacheEntryOptions options = new MemoryCacheEntryOptions();
// Low / Normal / High / NeverRemove
options.Priority = CacheItemPriority.High;
cache.Set("CacheKey", data, options);

به این صورت میتوانید الویت‌های متفاوت را در قالب option به کش‌های خود اختصاص دهید. 

در این مقاله سعی شد مفاهیم اولیه Cache، طوری گفته شود، تا برای افرادی که میخواهند به تازگی این سیستم را بیاموزند و در پروژه‌های خود استفاده کنند، کاربردی باشد و درک نسبی را نسبت به مزایا و محدودیت‌های این سیستم بدست آورند.


در قسمت دوم همین مقاله بطور تخصصی‌تر به این مبحث میپردازیم و یک پکیج آماده را معرفی میکنیم که خیلی راحت‌تر و اصولی‌تر کش را برای ما پیاده سازی میکند.

مطالب
چگونه تشخیص دهیم اسمبلی دات نت ما وصله شده است؟

یکی از روش‌هایی که برای بررسی یکپارچگی فایل‌ها مورد استفاده قرار می‌گیرد و عموما در دنیای سخت افزار و firmware های نوشته شده برای آن‌ها مرسوم است، قرار دادن CRC32 فایل در قسمتی از فایل و بررسی آن حین Boot سیستم است. اگر CRC32 جدید با CRC32 اصلی یکسان نباشد به این معنا است که فایل در حال اجرا پیش تر دستکاری شده است.
اما در دات نت فریم ورک روش متداول اینکار چیست؟ برای این منظور اضافه کردن امضای دیجیتال به فایل و اسمبلی نهایی تولیدی (فایل exe یا dll تولیدی) توصیه می‌شود (مراجعه به قسمت خواص پروژه و افزودن امضای دیجیتال جدید فقط با چند کلیک، +).
این مورد خوب است (با توجه به اینکه از الگوریتم‌های RSA و SHA1 استفاده می‌کند)، لازم است، اما کافی نیست زیرا ابزارهای حذف آن وجود دارند. به عبارتی برای وصله کردن این فایل‌ها فقط کافی است این امضای دیجیتال حذف شود و زمانی هم که نباشد، بررسی خاصی در مورد یکپارچگی فایل صورت نخواهد گرفت.
اما اگر باز هم نگران patch یا وصله شدن اسمبلی دات نت خود هستید این مورد افزودن امضای دیجیتال را حتما انجام دهید. مهم‌ترین خاصیت آن این است که یک سری تابع native در دات نت فریم ورک برای بررسی نبود آن وجود دارند (+):
[DllImport("mscoree.dll", CharSet=CharSet.Unicode)]
public static extern bool StrongNameSignatureVerificationEx(string wszFilePath, bool fForceVerification, ref bool pfWasVerified);

wszFilePath مسیر فایلی است که باید بررسی شود.
fForceVerification آیا متغیر pfWasVerified نیز مقدار دهی گردد؟
خروجی تابع مشخص می‌سازد که آیا strong name موجود و معتبر است یا خیر؟

و مثالی از استفاده‌ی آن (که بهتر است در یک تایمر نیم ساعت پس از اجرای برنامه رخ دهد):
using System;
using System.Reflection;
using System.Runtime.InteropServices;

namespace SigCheck
{
public class Validation
{
[DllImport("mscoree.dll", CharSet = CharSet.Unicode)]
public static extern bool StrongNameSignatureVerificationEx(
string wszFilePath, bool fForceVerification, ref bool pfWasVerified);

public static void SigCheck()
{
var assembly = Assembly.GetExecutingAssembly();
bool pfWasVerified = false;
if (!StrongNameSignatureVerificationEx(assembly.Location, true, ref pfWasVerified))
{
//خاتمه برنامه در صورت عدم وجود امضای دیجیتال معتبر
throw new Exception();
}
}
}

class Program
{
static void Main(string[] args)
{
Validation.SigCheck();
}
}
}
خوب، شاید پس از حذف و وصله شدن اسمبلی، مجددا strong name به آن اضافه شود! ، آن وقت چه باید کرد؟
زمانیکه به اسمبلی خود امضای دیجیتال اضافه می‌کنید، هش رمزنگاری شده فایل با الگوریتم RSA ، به همراه public key مورد نیاز در اسمبلی ذخیره می‌شوند. از آنجائیکه private key الگوریتم RSA را منتشر نکرده‌اید، شکستن الگوریتم RSA کار ساده‌ای نیست، مگر اینکه جفت کلید خودشان را تولید کنند و public key جدید را در فایل نهایی قرار دهند. بدیهی است این public key جدید با کلید عمومی ما که متناظر است با کلید خصوصی منتشر نشده‌ی اصلی، تطابق نخواهد داشد. برای آشنایی با تابعی که این بررسی را انجام می‌دهد به مقاله ذکر شده رجوع کنید:



اشتراک‌ها
دوره #C برای تازه‌کارها

C# Tutorial For Beginners Full Course | Csharp tutorial for beginners
In this course you will learn how to start in your computer programming path using one of the most relevant programming languages: C#. You will get a good understanding on the basics of how Visual Studio 2019 compiles console-based programs. Finally, this class will pave the way to expanding intermediate C# concepts by creating a good foundation for you in very important concepts such as C# data types, decision making, looping and C# methods.
 

دوره #C برای تازه‌کارها
مطالب
استفاده از Kendo UI templates
در مطلب «صفحه بندی، مرتب سازی و جستجوی پویای اطلاعات به کمک Kendo UI Grid» در انتهای بحث، ستون IsAvailable به صورت زیر تعریف شد:
columns: [
               {
                   field: "IsAvailable", title: "موجود است",
                   template: '<input type="checkbox" #= IsAvailable ? checked="checked" : "" # disabled="disabled" ></input>'
                }
]
Templates، جزو یکی از پایه‌های Kendo UI Framework هستند و توسط آن‌ها می‌توان قطعات با استفاده‌ی مجدد HTML ایی را طراحی کرد که قابلیت یکی شدن با اطلاعات جاوا اسکریپتی را دارند.
همانطور که در این مثال نیز مشاهده می‌کنید، قالب‌های Kendo UI از Hash (#) syntax استفاده می‌کنند. در اینجا قسمت‌هایی از قالب که با علامت # محصور می‌شوند، در حین اجرا، با اطلاعات فراهم شده جایگزین خواهند شد.
برای رندر مقادیر ساده می‌توان از # =# استفاده کرد. از # :# برای رندر اطلاعات HTML-encoded کمک گرفته می‌شود و #  # برای رندر کدهای جاوا اسکریپتی کاربرد دارد. از حالت HTML-encoded برای نمایش امن اطلاعات دریافتی از کاربران و جلوگیری از حملات XSS استفاده می‌شود.
اگر در این بین نیاز است # به صورت معمولی رندر شود، در حالت کدهای جاوا اسکریپتی به صورت #\\ و در HTML ساده به صورت #\ باید مشخص گردد.


مثالی از نحوه‌ی تعریف یک قالب Kendo UI

    <!--دریافت اطلاعات از منبع محلی-->
    <script id="javascriptTemplate" type="text/x-kendo-template">
        <ul>
            # for (var i = 0; i < data.length; i++) { #
            <li>#= data[i] #</li>
            # } #
        </ul>
    </script>

    <div id="container1"></div>
    <script type="text/javascript">
        $(function () {
            var data = ['User 1', 'User 2', 'User 3'];
            var template = kendo.template($("#javascriptTemplate").html());
            var result = template(data); //Execute the template
            $("#container1").html(result); //Append the result
        });
    </script>
این قالب ابتدا در تگ script محصور می‌شود و سپس نوع آن مساوی text/x-kendo-template قرار می‌گیرد. در ادامه توسط یک حلقه‌ی جاوا اسکریپتی، عناصر آرایه‌ی فرضی data خوانده شده و با کمک Hash syntax در محل‌های مشخص شده قرار می‌گیرند.
در ادامه باید این قالب را رندر کرد. برای این منظور یک div با id مساوی container1 را جهت تعیین محل رندر نهایی اطلاعات مشخص می‌کنیم. سپس متد kendo.template بر اساس id قالب اسکریپتی تعریف شده، یک شیء قالب را تهیه کرده و سپس با ارسال آرایه‌ای به آن، سبب اجرای آن می‌شود. خروجی نهایی، یک قطعه کد HTML است که در محل container1 درج خواهد شد.
همانطور که ملاحظه می‌کنید، متد kendo.template، نهایتا یک رشته را دریافت می‌کند. بنابراین همینجا و به صورت inline نیز می‌توان یک قالب را تعریف کرد.


کار با منابع داده راه دور

فرض کنید مدل برنامه به صورت ذیل تعریف شده‌است:
namespace KendoUI04.Models
{
    public class Product
    {
        public int Id { set; get; }
        public string Name { set; get; }
        public decimal Price { set; get; }
        public bool IsAvailable { set; get; }
    }
}
و لیستی از آن توسط یک ASP.NET Web API کنترلر، به سمت کاربر ارسال می‌شود:
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using KendoUI04.Models;

namespace KendoUI04.Controllers
{
    public class ProductsController : ApiController
    {
        public IEnumerable<Product> Get()
        {
            return ProductDataSource.LatestProducts.Take(10);
        }
    }
}
در سمت کاربر و در View برنامه خواهیم داشت:
    <!--دریافت اطلاعات از سرور-->
    <div>
        <div id="container2"><ul></ul></div>
    </div>

    <script id="template1" type="text/x-kendo-template">
        <li> #=Id# - #:Name# - #=kendo.toString(Price, "c")#</li>
    </script>

    <script type="text/javascript">
        $(function () {
            var producatsTemplate1 = kendo.template($("#template1").html());

            var productsDataSource = new kendo.data.DataSource({
                transport: {
                    read: {
                        url: "api/products",
                        dataType: "json",
                        contentType: 'application/json; charset=utf-8',
                        type: 'GET'
                    }
                },
                error: function (e) {
                    alert(e.errorThrown);
                },
                change: function () {
                    $("#container2 > ul").html(kendo.render(producatsTemplate1, this.view()));
                }
            });
            productsDataSource.read();
        });
    </script>
ابتدا یک div با id مساوی container2 جهت تعیین محل نهایی رندر قالب template1 در صفحه تعریف می‌شود.
هرچند خروجی دریافتی از سرور نهایتا یک آرایه از اشیاء Product است، اما در template1 اثری از حلقه‌ی جاوا اسکریپتی مشاهده نمی‌شود. در اینجا چون از متد kendo.render استفاده می‌شود، نیازی به ذکر حلقه نیست و به صورت خودکار، به تعداد عناصر آرایه دریافتی از سرور، قطعه HTML قالب را تکرار می‌کند.
در ادامه برای کار با سرور از یک Kendo UI DataSource استفاده شده‌است. قسمت transport/read آن، کار تعریف محل دریافت اطلاعات را از سرور مشخص می‌کند. رویدادگران change آن اطلاعات نهایی دریافتی را توسط متد view در اختیار متد kendo.render قرار می‌دهد. در نهایت، قطعه‌ی HTML رندر شده‌ی نهایی حاصل از اجرای قالب، در بین تگ‌های ul مربوط به container2 درج خواهد شد.
رویدادگران change زمانیکه data source، از اطلاعات راه دور و یا یک آرایه‌ی جاوا اسکریپتی پر می‌شود، فراخوانی خواهد شد. همچنین مباحث مرتب سازی اطلاعات، صفحه بندی و تغییر صفحه، افزودن، ویرایش و یا حذف اطلاعات نیز سبب فراخوانی آن می‌گردند. متد view ایی که در این مثال فراخوانی شد، صرفا در روال رویدادگردان change دارای اعتبار است و آخرین تغییرات اطلاعات و آیتم‌های موجود در data source را باز می‌گرداند.


یک نکته‌ی تکمیلی: فعال سازی intellisense کدهای جاوا اسکریپتی Kendo UI

اگر به پوشه‌ی اصلی مجموعه‌ی Kendo UI مراجعه کنید، یکی از آن‌ها vsdoc نام دارد که داخل آن فایل‌های min.intellisense.js و vsdoc.js مشهود هستند.
اگر از ویژوال استودیوهای قبل از 2012 استفاده می‌کنید، نیاز است فایل‌های vsdoc.js متناظری را به پروژه اضافه نمائید؛ دقیقا در کنار فایل‌های اصلی js موجود. اگر از ویژوال استودیوی 2012 و یا بالاتر استفاده می‌کنید باید از فایل‌های intellisense.js متناظر استفاده کنید. برای مثال اگر از kendo.all.min.js کمک می‌گیرید، فایل متناظر با آن kendo.all.min.intellisense.js خواهد بود.
بعد از اینکار نیاز است فایلی به نام references.js_ را به پوشه‌ی اسکریپت‌های خود با این محتوا اضافه کنید (برای VS 2012 به بعد):
/// <reference path="jquery.min.js" />
/// <reference path="kendo.all.min.js" />
نکته‌ی مهم اینجا است که این فایل به صورت پیش فرض از مسیر Scripts/_references.js/~ خوانده می‌شود. برای اضافه کردن مسیر دیگری مانند js/_references.js/~ باید آن‌را به تنظیمات ذیل اضافه کنید:
 Tools menu –> Options -> Text Editor –> JavaScript –> Intellisense –> References
گزینه‌ی Reference Group را به (Implicit (Web تغییر داده و سپس مسیر جدیدی را اضافه نمائید.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید:
KendoUI04.zip
مطالب دوره‌ها
مدیریت استثناءها در حین استفاده از واژه‌های کلیدی async و await
زمانیکه یک متد async، یک Task یا Task of T (نسخه‌ی جنریک Task) را باز می‌گرداند، کامپایلر سی‌شارپ به صورت خودکار تمام استثناءهای رخ داده درون متد را دریافت کرده و از آن برای تغییر حالت Task به اصطلاحا faulted state استفاده می‌کند. همچنین زمانیکه از واژه‌ی کلیدی await استفاده می‌شود، کدهایی که توسط کامپایلر تولید می‌شوند، عملا مباحث Continue موجود در TPL یا Task parallel library معرفی شده در دات نت 4 را پیاده سازی می‌کنند و نهایتا نتیجه‌ی Task را در صورت وجود، دریافت می‌کند. زمانیکه نتیجه‌ی یک Task مورد استفاده قرار می‌گیرد، اگر استثنایی وجود داشته باشد، مجددا صادر خواهد شد. برای مثال اگر خروجی یک متد async از نوع Task of T باشد، امکان استفاده از خاصیتی به نام Result نیز برای دسترسی به نتیجه‌ی آن وجود دارد:
using System.Threading.Tasks;

namespace Async05
{
    class Program
    {
        static void Main(string[] args)
        {
            var res = doSomethingAsync().Result;
        }

        static async Task<int> doSomethingAsync()
        {
            await Task.Delay(1);
            return 1;
        }
    }
}
در این مثال یکی از روش‌های استفاده از متدهای async را در یک برنامه‌ی کنسول مشاهده می‌کنید. هر چند خروجی متد doSomethingAsync از نوع Task of int است، اما مستقیما یک int بازگشت داده شده است. تبدیلات نهایی در اینجا توسط کامپایلر انجام می‌شود. همچنین نحوه‌ی استفاده از خاصیت Result را نیز در متد Main مشاهده می‌کنید.
البته باید دقت داشت، زمانیکه از خاصیت Result استفاده می‌شود، این متد همزمان عمل خواهد کرد و نه غیرهمزمان (ترد جاری را بلاک می‌کند؛ یکی از موارد مجاز استفاده از آن در متد Main برنامه‌های کنسول است). همچنین اگر در متد doSomethingAsync استثنایی رخ داده باشد، این استثناء زمان استفاده از Result، به صورت یک AggregateException مجددا صادر خواهد شد. وجود کلمه‌ی Aggregate در اینجا به علت امکان استفاده‌ی تجمعی و ترکیب چندین Task باهم و داشتن چندین شکست و استثنای ممکن است.
همچنین اگر از کلمه‌ی کلیدی await بر روی یک faulted task استفاده کنیم، AggregateException صادر نمی‌شود. در این حالت کامپایلر AggregateException را بررسی کرده و آن‌را تبدیل به یک Exception متداول و معمول کدهای دات نت می‌کند. به عبارتی سعی شده‌است در این حالت، رفتار کدهای async را شبیه به رفتار کدهای متداول همزمان شبیه سازی کنند.


یک مثال

در اینجا توسط متد getTitleAsync، اطلاعات یک صفحه‌ی وب به صورت async دریافت شده و سپس عنوان آن استخراج می‌شود. در متد showTitlesAsync نیز از آن استفاده شده و در طی یک حلقه، چندین وب سایت مورد بررسی قرار خواهند گرفت. چون متد getTitleAsync از نوع async تعریف شده‌است، فراخوان آن نیز باید async تعریف شود تا بتوان از واژه‌ی کلیدی  await برای کار با آن استفاده کرد.
نهایتا در متد Main برنامه، وظیفه‌ی غیرهمزمان showTitlesAsync اجرا شده و تا پایان عملیات آن صبر می‌شود. چون خروجی آن از نوع Task است و نه Task of T، در اینجا دیگر خاصیت Result قابل دسترسی نیست. متد Wait نیز ترد جاری را همانند خاصیت Result بلاک می‌کند.
using System;
using System.Collections.Generic;
using System.Net;
using System.Text.RegularExpressions;
using System.Threading.Tasks;

namespace Async05
{
    class Program
    {
        static void Main(string[] args)
        {
            var task = showTitlesAsync(new[]
            {
                "http://www.google.com",
                "https://www.dntips.ir"
            });
            task.Wait();

            Console.WriteLine();
            Console.WriteLine("Press any key to exit...");
            Console.ReadKey();
        }

        static async Task showTitlesAsync(IEnumerable<string> urls)
        {
            foreach (var url in urls)
            {
                var title = await getTitleAsync(url);
                Console.WriteLine(title);
            }
        }

        static async Task<string> getTitleAsync(string url)
        {
            var data = await new WebClient().DownloadStringTaskAsync(url);
            return getTitle(data);
        }

        private static string getTitle(string data)
        {
            const string patternTitle = @"(?s)<title>(.+?)</title>";
            var regex = new Regex(patternTitle);
            var mc = regex.Match(data);
            return mc.Groups.Count == 2 ? mc.Groups[1].Value.Trim() : string.Empty;
        }
    }
}
کلیه عملیات مبتنی برشبکه، همیشه مستعد به بروز خطا هستند. قطعی ارتباط یا حتی کندی آن می‌توانند سبب بروز استثناء شوند.
برنامه را در حالت عدم اتصال به اینترنت اجرا کنید. استثنای صادر شده، در متد task.Wait ظاهر می‌شود (چون متدهای async ترد جاری را خالی کرده‌اند):


و اگر در اینجا بر روی لینک View details کلیک کنیم، در inner exception حاصل، خطای واقعی قابل مشاهده است:


همانطور که ملاحظه می‌کنید، استثنای صادر شده از نوع System.AggregateException است. به این معنا که می‌تواند حاوی چندین استثناء باشد که در اینجا تعداد آن‌ها با عدد یک مشخص شده‌است. بنابراین در این حالات، بررسی inner exception را فراموش نکنید.

در ادامه داخل حلقه‌ی foreach متد showTitlesAsync، یک try/catch قرار می‌دهیم:
        static async Task showTitlesAsync(IEnumerable<string> urls)
        {
            foreach (var url in urls)
            {
                try
                {
                    var title = await getTitleAsync(url);
                    Console.WriteLine(title);
                }
                catch (Exception ex)
                {
                    Console.WriteLine(ex);
                }
            }
        }
اینبار اگر برنامه را اجرا کنیم، خروجی ذیل را در صفحه می‌توان مشاهده کرد:
 System.Net.WebException: The remote server returned an error: (502) Bad Gateway.
System.Net.WebException: The remote server returned an error: (502) Bad Gateway.

Press any key to exit...
در اینجا دیگر خبری از AggregateException نبوده و استثنای واقعی رخ داده در متد await شده بازگشت داده شده‌است. کار واژه‌ی کلیدی await در اینجا، بررسی استثنای رخ داده در متد async فراخوانی شده و بازگشت آن به جریان متداول متد جاری است؛ تا نتیجه‌ی عملیات همانند یک کد کامل همزمان به نظر برسد. به این ترتیب کامپایلر توانسته است رفتار بروز استثناءها را در کدهای همزمان و غیرهمزمان یک دست کند. دقیقا مانند حالتی که یک متد معمولی در این بین فراخوانی شده و استثنایی در آن رخ داده‌است.


مدیریت تمام inner exceptionهای رخ داده در پردازش‌های موازی

همانطور که عنوان شد، await تنها یک استثنای حاصل از Task در حال اجرا را به کد فراخوان بازگشت می‌دهد. در این حالت اگر این Task، چندین شکست را گزارش دهد، چطور باید برای دریافت تمام آن‌ها اقدام کرد؟ برای مثال استفاده از Task.WhenAll می‌تواند شامل چندین استثنای حاصل از چندین Task باشد، ولی await تنها اولین استثنای دریافتی را بازگشت می‌دهد. اما اگر از خاصیتی مانند Result یا متد Wait استفاده شود، یک AggregateException حاصل تمام استثناءها را دریافت خواهیم کرد. بنابراین هرچند await تنها اولین استثنای دریافتی را بازگشت می‌دهد، اما می‌توان به Taskهای مرتبط مراجعه کرد و سپس بررسی نمود که آیا استثناهای دیگری نیز وجود دارند یا خیر؟
برای نمونه در مثال فوق، حلقه‌ی foreach تشکیل شده آنچنان بهینه نیست. از این جهت که هر بار تنها یک سایت را بررسی می‌کند، بجای اینکه مانند مرورگرها چندین ترد را به یک یا چند سایت باز کرده و نتایج را دریافت کند.
البته انجام کارها به صورت موازی همیشه ایده‌ی خوبی نیست ولی حداقل در این حالت خاص که با یک یا چند سرور راه دور کار می‌کنیم، درخواست‌های همزمان دریافت اطلاعات، سبب کارآیی بهتر برنامه و بالا رفتن سرعت اجرای آن می‌شوند. اما مثلا در حالتیکه با سخت دیسک سیستم کار می‌کنیم، اجرای موازی کارها نه تنها کمکی نخواهد کرد، بلکه سبب خواهد شد تا مدام drive head در مکان‌های مختلفی مشغول به حرکت شده و در نتیجه کارآیی آن کاهش یابد.
برای ترکیب چندین Task، ویژگی خاصی به زبان سی‌شارپ اضافه نشده‌، زیرا نیازی نبوده است. برای این حالت تنها کافی است از متد Task.WhenAll، برای ساخت یک Task مرکب استفاده کرد. سپس می‌توان واژه‌ی کلیدی await را بر روی این Task مرکب فراخوانی کرد.
همچنین می‌توان از متد ContinueWith یک Task مرکب نیز برای جلوگیری از بازگشت صرفا اولین استثنای رخ داده توسط کامپایلر، استفاده کرد. در این حالت امکان دسترسی به خاصیت Result آن به سادگی میسر می‌شود که حاوی AggregateException کاملی است.


اعتبارسنجی آرگومان‌های ارسالی به یک متد async

زمان اعتبارسنجی آرگومان‌های ارسالی به متدهای async مهم است. بعضی از مقادیر را نمی‌توان بلافاصله اعتبارسنجی کرد؛ مانند مقادیری که نباید نال باشند. تعدادی دیگر نیز پس از انجام یک Task زمانبر مشخص می‌شوند که معتبر بوده‌اند یا خیر. همچنین فراخوان‌های این متدها انتظار دارند که متدهای async بلافاصله بازگشت داده شده و ترد جاری را خالی کنند. بنابراین اعتبارسنجی‌های آن‌ها باید با تاخیر انجام شود. در این حالات، دو نوع استثنای آنی و به تاخیر افتاده را شاهد خواهیم بود. استثنای آنی زمان شروع به کار متد صادر می‌شود و استثنای به تاخیر افتاده در حین دریافت نتایج از آن دریافت می‌گردد. باید دقت داشت کلیه استثناهای صادر شده در بدنه‌ی یک متد async، توسط کامپایلر به عنوان یک استثنای به تاخیر افتاده گزارش داده می‌شود. بنابراین اعتبارسنجی‌های آرگومان‌ها را بهتر است در یک متد سطح بالای غیر async انجام داد تا بلافاصله بتوان استثناءهای حاصل را دریافت نمود.


از دست دادن استثناءها

فرض کنید مانند مثال قسمت قبل، دو وظیفه‌ی async آغاز شده و نتیجه‌ی آن‌ها پس از await هر یک، با هم جمع زده می‌شوند. در این حالت اگر کل عملیات را داخل یک قطعه کد try/catch قرار دهیم، اولین await ایی که یک استثناء را صادر کند، صرفنظر از وضعیت await دوم، سبب اجرای بدنه‌ی catch می‌شود. همچنین انجام این عملیات بدین شکل بهینه نیست. زیرا ابتدا باید صبر کرد تا اولین Task تمام شود و سپس دومین Task شروع گردد و به این ترتیب پردازش موازی Taskها را از دست خواهیم داد. در یک چنین حالتی بهتر است از متد await Task.WhenAll استفاده شود. در اینجا دو Task مورد نیاز، تبدیل به یک Task مرکب می‌شوند. این Task مرکب تنها زمانی خاتمه می‌یابد که هر دوی Task اضافه شده به آن، خاتمه یافته باشند. به این ترتیب علاوه بر اجرای موازی Taskها، امکان دریافت استثناءهای هر کدام را نیز به صورت تجمعی خواهیم داشت.
مشکل! همانطور که پیشتر نیز عنوان شد، استفاده از await در اینجا سبب می‌شود تا کامپایلر تنها اولین استثنای دریافتی را بازگشت دهد و نه یک AggregateException نهایی را. روش حل آن‌را نیز عنوان کردیم. در این حالت بهتر است از متد ContinueWith و سپس استفاده از خاصیت Result آن برای دریافت کلیه استثناءها کمک گرفت.
حالت دوم از دست دادن استثناءها زمانی‌است که یک متد async void را ایجاد می‌کنید. در این حالات بهتر است از یک Task بجای بازگشت void استفاده شود. تنها علت وجودی async voidها، استفاده از آن‌ها در روال‌های رویدادگردان UI است (در سایر حالات code smell درنظر گرفته می‌شود).
public async Task<double> GetSum2Async()
        {
            try
            {
                var task1 = GetNumberAsync();
                var task2 = GetNumberAsync();

                var compositeTask = Task.WhenAll(task1, task2);
                await compositeTask.ContinueWith(x => { });

                return compositeTask.Result[0] + compositeTask.Result[1];
            }
            catch (Exception ex)
            {
                //todo: log ex
                throw;
            }
        }
در مثال فوق، نحوه‌ی ترکیب دو Task را توسط Task.WhenAll جهت اجرای موازی و سپس اعمال نکته‌ی یک ContinueWith خالی و در ادامه استفاده از Result نهایی را جهت دریافت تمامی استثناءهای حاصل، مشاهده می‌کنید.
در این مثال دیگر مانند مثال قسمت قبل
        public async Task<double> GetSumAsync()
        {
            var leftOperand = await GetNumberAsync();
            var rightOperand = await GetNumberAsync();

            return leftOperand + rightOperand;
        }
هر بار صبر نشده‌است تا یک Task تمام شود و سپس Task بعدی شروع گردد.
با کمک متد Task.WhenAll ترکیب آن‌ها ایجاد و سپس با فراخوانی await، سبب اجرای موازی چندین Task با هم شده‌ایم.


مدیریت خطاهای مدیریت نشده

ابتدا مثال زیر را در نظر بگیرید:
using System;
using System.Threading.Tasks;

namespace Async01
{
    class Program
    {
        static void Main(string[] args)
        {
            Test2();
            Test();
            Console.ReadLine();

            GC.Collect();
            GC.WaitForPendingFinalizers();

            Console.ReadLine();
        }

        public static async Task Test()
        {
            throw new Exception();
        }

        public static async void Test2()
        {
            throw new Exception();
        }
    }
}
در این مثال دو متد که یکی async Task و دیگری async void است، تعریف شده‌اند.
اگر برنامه را کامپایل کنید، کامپایلر بر روی سطر فراخوانی متد Test اخطار زیر را صادر می‌کند. البته برنامه بدون مشکل کامپایل خواهد شد.
 Warning  1  Because this call is not awaited, execution of the current method continues before the call is completed.
Consider applying the 'await' operator to the result of the call.
اما چنین اخطاری در مورد async void صادر نمی‌شود. بنابراین ممکن است جایی در کدها، فراخوانی await فراموش شود. اگر خروجی متد شما ازنوع Task و مشتقات آن باشد، کامپایلر حتما اخطاری را جهت رفع آن گوشزد خواهد کرد؛ اما نه در مورد متدهای void که صرفا جهت کاربردهای UI و روال‌های رخدادگردان آن طراحی شده‌اند.
همچنین اگر برنامه را اجرا کنید استثنای صادر شده در متد async void سبب کرش برنامه می‌شود؛ اما نه استثنای صادر شده در متد async Task. متدهای async void چون دارای Synchronization Context نیستند، استثنای صادره را به Thread pool برنامه صادر می‌کنند. به همین جهت در همان لحظه نیز سبب کرش برنامه خواهند شد. اما در حالت async Task به این نوع استثناءها اصطلاحا Unobserved Task Exception گفته شده و سبب بروز  faulted state در Task تعریف شده می‌گردند.
برای مدیریت آن‌ها در سطح برنامه باید در ابتدای کار و در متد Main، توسط TaskScheduler.UnobservedTaskException روال رخدادگردانی را برای مدیریت اینگونه استثناءها تدارک دید. زمانیکه GC شروع به آزاد سازی منابع می‌کند، این استثناءها نیز درنظر گرفته شده و سبب کرش برنامه خواهند شد. با استفاده از متد SetObserved همانند قطعه کد زیر، می‌توان از کرش برنامه جلوگیری کرد:
using System;
using System.Threading.Tasks;

namespace Async01
{
    class Program
    {
        static void Main(string[] args)
        {
            TaskScheduler.UnobservedTaskException += TaskScheduler_UnobservedTaskException;

            //Test2();
            Test();
            Console.ReadLine();

            GC.Collect();
            GC.WaitForPendingFinalizers();

            Console.ReadLine();
        }

        private static void TaskScheduler_UnobservedTaskException(object sender, UnobservedTaskExceptionEventArgs e)
        {
            e.SetObserved();
            Console.WriteLine(e.Exception);
        }

        public static async Task Test()
        {
            throw new Exception();
        }

        public static async void Test2()
        {
            throw new Exception();
        }
    }
}
البته لازم به ذکر است که این رفتار در دات نت 4.5 به این شکل تغییر کرده است تا کار با متدهای async ساده‌تر شود. در دات نت 4، یک چنین استثناءهای مدیریت نشده‌ای،‌بلافاصله سبب بروز استثناء و کرش برنامه می‌شدند.
به عبارتی رفتار قطعه کد زیر در دات نت 4 و 4.5 متفاوت است:
Task.Factory.StartNew(() => { throw new Exception(); });

Thread.Sleep(100);
GC.Collect();
GC.WaitForPendingFinalizers();
در دات نت 4  اگر این برنامه را خارج از VS.NET اجرا کنیم، برنامه کرش می‌کند؛ اما در دات نت 4.5 خیر و آن‌ها به UnobservedTaskException یاد شده هدایت خواهند شد. اگر می‌خواهید این رفتار را به همان حالت دات نت 4 تغییر دهید، تنظیم زیر را به فایل config برنامه اضافه کنید:
 <configuration>
    <runtime>
      <ThrowUnobservedTaskExceptions enabled="true"/>
    </runtime>
</configuration>


یک نکته‌ی تکمیلی: ممکن است عبارات lambda مورد استفاده، از نوع async void باشد.

همانطور که عنوان شد باید از async void منهای مواردی که کار مدیریت رویدادهای عناصر UI را انجام می‌دهند (مانند برنامه‌های ویندوز 8)، اجتناب کرد. چون پایان کار آن‌ها را نمی‌توان تشخیص داد و همچنین کامپایلر نیز اخطاری را در مورد استفاده ناصحیح از آن‌ها بدون await تولید نمی‌کند (چون نوع void اصطلاحا awaitable نیست). به علاوه بروز استثناء در آن‌ها، بلافاصله سبب خاتمه برنامه می‌شود. بنابراین اگر جایی در برنامه متد async void وجود دارد، قرار دادن try/catch داخل بدنه‌ی آن ضروری است.
protected override void LoadState(Object navigationParameter, Dictionary<String, Object> pageState)
{
    try
    {
        ClickMeButton.Tapped += async (sender, args) =>
        {
             throw new Exception();        

        };
    }
    catch (Exception ex)
    {
        // This won’t catch exceptions!
        TextBlock1.Text = ex.Message;
    }
}
در این مثال خاص ویندوز 8، شاید به نظر برسد که try/catch تعریف شده سبب مهار استثنای صادر شده می‌شود؛ اما خیر!
 public delegate void TappedEventHandler(object sender, TappedRoutedEventArgs e);
امضای متد TappedEventHandler از نوع delegate void است. بنابراین try/catch را باید داخل بدنه‌ی روال رویدادگردان تعریف شده قرار داد و نه خارج از آن.
مطالب
درباره Iterator methodها و yield return در #C
هنگامیکه می‌خواهید در متدهای خود مقداری (از هر نوع datatype دلخواه) را return نمایید، در حالت عادی قادر خواهید بود که فقط از یک return در بدنه متد خود استفاده نمایید:
 public int Sum(int a, int b)
{
     return a + b;
}
اما چنانچه از متدهای تکرار شونده استفاده نمایید، چطور؟

متدهای تکرار شونده یا Iterator method‌ها ، در داخل یک collection به صورت دلخواه iterate کرده یا به اصلاح پیمایش می‌کنند. این متدها از کلمه کلیدی Yield در هنگام return کردن مقادیر استفاده می‌کنند. (در C# از Yield return و در VB از Yield استفاده می‌شود)  به عبارت دیگر یک متد با خروجی از نوع قابل پیمایش (مانند IEnumerable)، با استفاده از چند yield return، دارای قابلیت پیمایش و بازگرداندن چندین مقدار به جای یک مقدار واحد می‌گردد.

برای درک بهتر مسئله از مثالی برای ادامه توضیحات استفاده می‌کنم. متد پیمایش شونده (Iterate method) زیر را در نظر بگیرید که خروجی IEnumerable دارد:
 public static IEnumerable SomeNumbers()
{
     yield return 3;
     yield return 5;
     yield return 8;
}
برای استفاده از مقادیر بازگشتی متد بالا از حلقه foreach زیر استفاده می‌نماییم:
static void Main()
{
    foreach (int number in SomeNumbers())
    {
        Console.Write(number.ToString() + " ");
    }
    // Output: 3 5 8
    Console.ReadKey();
}
حلقه foreach فوق ، در پایان اولین پیمایش، عدد 3 را باز گردانده و مکان این return را حفظ می‌کند. در چرخه بعدی عدد 5 را باز می‌گرداند و این نقطه را نیز نگه می‌دارد و در چرخه پایانی عدد 8 را برگردانده و سپس حلقه با رسیدن به نقطه پایانی متد، خاتمه می‌یابد.

برای خاتمه پیمایش در Iterator method‌ها ، میتوانید از foreach استفاده کنید و یا اینکه عبارت yield break  را بعد از تمامی yield return‌ها به کار گیرید:
 public static IEnumerable SomeNumbers()
{
   yield return 3;
   yield return 5;
   yield return 8;
   yeild break;
}
نکات:

  - در هنگام ایجاد Iterator method ها، نوع مقادیر خروجی متد ، باید یکی از انواع IEnumerable, IEnumerable<T>, IEnumerator,  و یا IEnumerator<T>. باشد.
 - در هنگام declare کردن ، نمی‌توانید از پارامترهای  ref و out استفاده نمایید.
 - در Anonymous method‌ها (متدهای بی نام) و Unsafe block‌ها نمی‌توانید از yield return (yield در VB ) استفاده نمایید.
 - نمی‌توانید از Yield return در بلوکهای try-catch استفاده کندی. اما می‌توانید در قسمت try بلوک try-finally استفاده نمایید.
 - از yield break  می‌توانید در بلوک try  و یا بلوک catch استفاده نمایید ، اما در بلوک finally خیر.
 - هنگام بروز خطا در foreach هایی که خارج از iterator method‌ها استفاده می‌شوند، بلوک finally داخل این متدها اجرا می‌گردد.

مثالی دیگر با استفاده Iterator method‌ها و yield return جهت بازگرداندن روزهای هفته:
static void Main()
{
  DaysOfTheWeek days = new DaysOfTheWeek();
  foreach (string day in days)
    {
        Console.Write(day + " ");
    }
    // Output: Sun Mon Tue Wed Thu Fri Sat
    Console.ReadKey();
}

public class DaysOfTheWeek : IEnumerable
{
  private string[] days = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
  public IEnumerator GetEnumerator()
    {
        for (int index = 0; index < days.Length; index++)
        {
            // Yield each day of the week. 
            yield return days[index];
        }
    }
}
منابع:
 yield ، Iterators
مطالب
آشنایی با Fluent interfaces

تعریف مقدماتی fluent interface در ویکی پدیا به شرح زیر است: (+)

In software engineering, a fluent interface (as first coined by Eric Evans and Martin Fowler) is a way of implementing an object oriented API in a way that aims to provide for more readable code.

به صورت خلاصه هدف آن فراهم آوردن روشی است که بتوان متدها را زنجیر وار فراخوانی کرد و به این ترتیب خوانایی کد نوشته شده را بالا برد. پیاده سازی آن هم شامل دو نکته است:
الف) نوع متد تعریف شده باید مساوی با نام کلاس جاری باشد.
ب) در این حالت خروجی متد‌های ما کلمه کلیدی this خواهند بود.

برای مثال:
using System;

namespace FluentInt
{
public class FluentApiTest
{
private int _val;

public FluentApiTest Number(int val)
{
_val = val;
return this;
}

public FluentApiTest Abs()
{
_val = Math.Abs(_val);
return this;
}

public bool IsEqualTo(int val)
{
return val == _val;
}
}
}
مثالی هم از استفاده‌ی آن به صورت زیر می‌تواند باشد:
if (new FluentApiTest().Number(-10).Abs().IsEqualTo(10))
{
Console.WriteLine("Abs(-10)==10");
}
که در آن توانستیم تمام متدها را زنجیر وار و با خوانایی خوبی شبیه به نوشتن جملات انگلیسی در کنار هم قرار دهیم.
خوب! این مطلبی است که همه جا پیدا می‌کنید و مطلب جدیدی هم نیست. اما موردی را که سخت می‌شود یافت این است که طراحی کلاس فوق ایراد دارد. برای مثال شما می‌توانید ترکیب‌های زیر را هم تشکیل دهید و کار می‌کند؛ یا به عبارتی برنامه کامپایل می‌شود و این خوب نیست:
if(new FluentApiTest().Abs().Number(-10).IsEqualTo(10)) ...
if (new FluentApiTest().Abs().IsEqualTo(10)) ...
می‌شود در کدهای برنامه یک سری throw new exception را هم قرار داد که ... هی! اول باید اون رو فراخوانی کنی بعد این رو!
ولی ... این روش هم صحیح نیست. از ابتدای کار نباید بتوان متد بی‌ربطی را در طول این زنجیره مشاهده کرد. اگر قرار نیست استفاده گردد، نباید هم در intellisense ظاهر شود و پس از آن هم نباید قابل کامپایل باشد.

بنابراین صورت مساله به این ترتیب اصلاح می‌شود:
می‌خواهیم پس از نوشتن FluentApiTest و قرار دادن یک نقطه، در intellisense فقط Number ظاهر شود و نه هیچ متد دیگری. پس از ذکر متد Number فقط متد Abs یا مواردی شبیه به آن مانند Sqrt ظاهر شوند. پس از انتخاب مثلا Abs آنگاه متد IsEqualTo توسط Intellisense قابل دسترسی باشد. در روش اول فوق، به صورت دوستانه همه چیز در دسترس است و هر ترکیب قابل کامپایلی را می‌شود با متدها ساخت که این مورد نظر ما نیست.
اینبار پیاده سازی اولیه به شرح زیر تغییر خواهد کرد:
using System;

namespace FluentInt
{
public class FluentApiTest
{
public MathMethods<FluentApiTest> Number(int val)
{
return new MathMethods<FluentApiTest>(this, val);
}
}

public class MathMethods<TParent>
{
private int _val;
private readonly TParent _parent;

public MathMethods(TParent parent, int val)
{
_val = val;
_parent = parent;
}

public Restrictions<MathMethods<TParent>> Abs()
{
_val = Math.Abs(_val);
return new Restrictions<MathMethods<TParent>>(this, _val);
}
}

public class Restrictions<TParent>
{
private readonly int _val;
private readonly TParent _parent;

public Restrictions(TParent parent, int val)
{
_val = val;
_parent = parent;
}

public bool IsEqualTo(int val)
{
return _val == val;
}
}
}
در اینجا هم به همان کاربرد اولیه می‌رسیم:
if (new FluentApiTest().Number(-10).Abs().IsEqualTo(10))
{
Console.WriteLine("Abs(-10)==10");
}
با این تفاوت که intellisense هربار فقط یک متد مرتبط در طول زنجیره را نمایش می‌دهد و تمام متدها در همان ابتدای کار قابل انتخاب نیستند.
در پیاده سازی کلاس MathMethods از Generics استفاده شده به این جهت که بتوان نوع متد Number را بر همین اساس تعیین کرد تا متدهای کلاس MathMethods در Intellisense (یا به قولی در طول زنجیره مورد نظر) ظاهر شوند. کلاس Restrictions نیز به همین ترتیب معرفی شده است و از آن جهت تعریف نوع متد Abs استفاده کردیم. هر کلاس جدید در طول زنجیره، توسط سازنده خود به وهله‌ای از کلاس قبلی به همراه مقادیر پاس شده دسترسی خواهد داشت. به این ترتیب زنجیره‌ای را تشکیل داده‌ایم که سازمان یافته است و نمی‌توان در آن متدی را بی‌جهت پیش یا پس از دیگری صدا زد و همچنین دیگر نیازی به بررسی نحوه‌ی فراخوانی‌های یک مصرف کننده نیز نخواهد بود زیرا برنامه کامپایل نمی‌شود.
نظرات مطالب
C# 6 - The nameof Operator
یک نکته‌ی تکمیلی: بهبود عملگر nameof در C# 11

عملگر nameof در C# 11، اندکی بهبود یافته‌است و اینبار می‌تواند در ویژگی‌ها (attributes) نیز به نام پارامترهای متدها، دسترسی پیدا کند. چند مثال:
الف) امکان دسترسی به نام پارامتر متد، در حالت اعمال به متد
[MyAttr(nameof(parameter))]
void Method(string parameter)
{
}

ب) امکان دسترسی به نام نوع پارامتر جنریک متد، در حالت اعمال به متد
[MyAttr(nameof(T))]
void Method<T>()
{
}

ج) امکان دسترسی به نام پارامتر متد، در حالت اعمال به پارامتر
void Method([MyAttr(nameof(parameter))] int parameter)
{
}

یکی از کاربردهای آن، بهبود تعاریف متادیتای nullable reference types و عدم نیاز به کار با رشته‌ها به صورت مستقیم است:
[return: NotNullIfNotNull(nameof(path))]
public static string? GetUrl(string? path)
        => !string.IsNullOrEmpty(path) ? $"https://localhost/api/{path}" : null;
مطالب
روش های مختلف پردازش یک رشته و تبدیل آن به نوع داده تاریخ
DateTime در طبقه بندی سی شارپ، جزء Strcut Type‌ها قرار می‌گیرد . عمدتا از DateTime برای مدیریت تاریخ، زمان و یا تاریخ-زمان استفاده می‌شود. خیلی از اوقات ما نیاز داریم تا رشته‌ای را به نوع تاریخ تبدیل کنیم تا بتوانیم عملیات مختلفی، همچون محاسبه‌ی اختلاف دو تاریخ، روز هفته، روز ماه و غیره را بدست آوریم. در دات نت متد‌های مختلفی وجود دارند که جداسازی تاریخ را از یک رشته برای ما فراهم می‌کنند:
  • Convert.ToDateTime()
  • DateTime.Parse()
  • DateTime.ParseExact()
  • DateTime.TryParse()
  • DateTime.TryParseExact()
در این مطلب این متد‌ها و تفاوت آنها را بررسی می‌کنیم.

تابع ()Convert.ToDateTime 
این تابع یک رشته‌ی با فرمت مشخص را به تاریخ و زمان تبدیل می‌کند. overload‌ها مختلف این تابع را در بخش زیر مشاهده می‌کنید:
• ToDateTime(string value)
Value  : رشته‌ای از تاریخ و زمان است.
 • ToDateTime(string value,IFormatProvider provide)
Value  : رشته‌ای از تاریخ و زمان است.
Provider : اطلاعات فرهنگ مورد نظر را فراهم می‌کند.
CultureInfo culture = new CultureInfo("en-US");    
DateTime tempDate = Convert.ToDateTime("1/1/2010 12:10:15 PM", culture);
در اینجا en-us اطلاعاتی را درباره‌ی فرهنگ کشور آمریکا، ارائه می‌دهد. لیست کامل فرهنگ‌های موجود در net. را می‌توانید در اینجا مشاهده کنید.
اگر رشته‌ی ما تهی (null) نباشد، بصورت درونی متد ()DateTime.Parse فراخوانی و نتیجه‌ی آن بازگردانده می‌شود. اما در صورتیکه رشته‌ی ارسالی ما تهی باشد، مقدار بازگردانده شده مقدار DateTime.MinValue که برابر با 0001/1/1 می‌باشد، بازگردانده می‌شود.
نمونه‌ای از خروجی این تابع با ورودی‌های مختلف :
string datestr = null;
Console.WriteLine(Convert.ToDateTime(datestr));//0001-01-01T00:00:00
datestr = "wrong string";
Console.WriteLine(Convert.ToDateTime(datestr));
//Unhandled Exception: System.FormatException: 
//The string was not recognized as a valid DateTime. 
//There is an unknown word starting at index 0.
datestr = "Tue Dec 30,2015";
Console.WriteLine(Convert.ToDateTime(datestr));
//Unhandled Exception: System.FormatException: 
//String was not recognized as a valid DateTime.

تابع () DateTime.Parse :
این تابع یک رشته‌ی با فرمت مشخص را به تاریخ و زمان تبدیل می‌کند. دو overload این تابع را در زیر می‌بینیم:
• DateTime.Parse(string value)
Value  : رشته‌ای از تاریخ و زمان می‌باشد.
• DateTime.Parse(String value, IFormatProvider provider)
Value : رشته‌ای از تاریخ و زمان می‌باشد.
Provider : اطلاعات فرهنگ مورد نظر را فراهم می‌کند.
  • DateTime.Parse(String value, IFormatProvider provider, DateTypeStyles styles)
Value : رشته‌ای از تاریخ و زمان می‌باشد.
Provider : اطلاعات فرهنگ مورد نظر را فراهم می‌کند 
Styles  : از طریق این پارامتر، تنظیمات قالب بندی رشته‌ی دریافتی برای سفارشی سازی کردن عملیات پردازش تعریف می‌شود. فرض کنید می‌خواهید کلیه‌ی فضاهای خالی (Space) را که قبل و بعد از رشته‌ی تاریخ هستند و نه در داخل رشته‌ی تاریخ، در زمان جداسازی و پردازش در نظر نگیرید. این پارامتر می‌تواند در اینجا به کمک ما بیاید (DateTimeStyles.AllowWhiteSpaces). مشاهده‌ی لیست کامل این خصوصیت از اینجا.
اگر مقدار رشته تهی باشد، استثنای Null نمایش داده خواهد شد (ArgumentNullException ) و اگر فرمت تاریخ ورودی صحیح نباشد، با استثنای فرمت غیرمعتبر روبرو خواهیم شد (FormatException).
string datestr = null;
Console.WriteLine(DateTime.Parse(datestr));
//// Exception: Argument null exception
datestr = "wrong string";            
Console.WriteLine(DateTime.Parse(datestr));
//// Exception: The string was not recognized as a valid DateTime. 
//// There is an unknown word starting at index 0.  
datestr = "Tue Dec 30, 2015";
//Unhandled Exception: System.FormatException: 
//String was not recognized as a valid DateTime. 
Console.WriteLine(DateTime.Parse(datestr));  

تابع ()DateTime.ParsExact
این تابع رشته‌ای شامل تاریخ و زمان را به‌همراه فرهنگ ارسالی، دریافت و آن را تبدیل به نوع DateTime می‌کند. فرمت رشته‌ی ارسالی باید با فرمت استاندارد رشته‌ی تاریخ یکسان باشد. overload‌های مختلف این تابع را در زیر مشاهده می‌کنید:
 • DateTime.ParseExact(string value, string format, IFormatProvider provider)
Value : رشته‌ای از تاریخ و زمان می‌باشد.
Provider : اطلاعات فرهنگ مورد نظر را فراهم می‌کند.

• DateTime.ParseExact(string value, string format, IFormatProvider provider, DateTimeStyles style)
Value : رشته‌ای از تاریخ و زمان می‌باشد.
Format : فرمت مورد نظر برای نمایش تاریخ بعد از تبدیل را مشخص می‌کند.
Provider : اطلاعات فرهنگ مورد نظر را فراهم می‌کند.
Styles  : از طریق این پارامتر تنظیمات قالب بندی رشته برای سفارشی کردن عملیات جداسازی و پردازش تعریف می‌شود.
• DateTime.ParseExact(string value, string[] formats, IFormatProvider provider, DateTimeStyles style)
 
Value : رشته‌ای از تاریخ و زمان می‌باشد.
Format : فرمت مورد نظر برای نمایش تاریخ بعد از تبدیل را مشخص می‌کند. تفاوت این حالت با حالت قبل این است که لیستی از فرمت‌ها را قبول می‌کند و حداقل باید یک فرمت با رشته‌ی ارسالی قابل انطباق باشد.
Provider : اطلاعات فرهنگ مورد نظر را فراهم می‌کند.
Styles : از طریق این پارامتر تنظیمات قالب بندی رشته برای سفارشی کردن عملیات جداسازی تعریف می‌شود. 
اگر مقدار رشته تهی باشد، استثنای Null نمایش داده خواهد شد (ArgumentNullException) و اگر فرمت تاریخ ورودی صحیح نباشد، با استثنای فرمت غیرمعتبر روبرو خواهیم شد(FormatException).
فرمت رشته‌ی تاریخ حتما باید با فرمت نوع تاریخ منطبق باشد. به همین منظور حالت‌های مختلفی را در آرایه می‌توان پیش بینی کرد. بطور مثال ممکن است رشته‌ی ما بصورت "2012-2-1" و یا "2012/2/1" باشد. بنابر این فرمت‌های "MM/dd/yyyy" و "MM-dd-yyyy" را از طریق آرایه ارسال می‌کنیم.
برای درک بهتر این موضوع، کد‌های زیر را مشاهده کنید: 
string datestr = null;
CultureInfo provider = CultureInfo.InvariantCulture;
Console.WriteLine(DateTime.ParseExact(datestr, "mm/dd/yyyy", provider));
//Unhandled Exception: System.ArgumentNullException: 
//String reference not set to an instance of a String.
datestr = "wrong date";
Console.WriteLine(DateTime.ParseExact(datestr, "mm/dd/yyyy", provider));
//Unhandled Exception: System.FormatException: 
//String was not recognized as a valid DateTime
datestr = "Tue Dec 30, 2015";
Console.WriteLine(DateTime.ParseExact(datestr, "mm/dd/yyyy", provider));
//Unhandled Exception: System.FormatException: 
//String was not recognized as a valid DateTime.
datestr = "10-22-2015";
Console.WriteLine(DateTime.ParseExact(datestr, "MM-dd-yyyy", provider));
//30/07/1394 12:00:00 ق.ظ
datestr = "10-22-2015";
Console.WriteLine(DateTime.ParseExact(datestr, new string[]
    {"MM-dd-yyyy", "MM/dd/yyyy", "MM.dd.yyyy"}, provider, DateTimeStyles.None));
//30/07/1394 12:00:00 ق.ظ

تابع ()DateTime.TryParse
این تابع رشته‌ای شامل تاریخ و زمان را به‌همراه فرهنگ مشخصی، دریافت و آن را تبدیل به نوع DateTime می‌کند و یک مقدار bool را برای اعلان این موضوع که عملیات تبدیل با موفقیت انجام شده است یا خیر، باز می‌گرداند. فرمت رشته‌ی ارسالی باید با فرمت رشته‌ی تاریخ یکسان باشد. overload‌های مختلف این تابع را در زیر مشاهده می‌کنید:
 
• DateTime.TryParse (String value, out DateTime result)
Value : رشته‌ای از تاریخ و زمان می‌باشد.
Result : مقدار تاریخ را بعد از جداسازی در خود ذخیره می‌کند.

• DateTime.TryParse(String value, IFormatProvider provider, DateTimeStyles styles, out DateTime result)
Value : رشته‌ای از تاریخ و زمان می‌باشد.
Provider : اطلاعات فرهنگ مورد نظر را فراهم می‌کند.
Styles  : از طریق این پارامتر می‌توانیم قالب پارامتر ارسالی را مشخص کنیم (مثلا نادیده گرفتن فضاهای خالی).
Result : مقدار تاریخ را بعد از جداسازی در خود ذخیره می‌کند.
این تابع همیشه سعی می‌کند رشته‌ی تاریخ را جداسازی کند. در صورت موفقیت در عملیات جداسازی رشته، تاریخ معتبر را بر می‌گرداند و در غیر اینصورت میزان کوچکترین تاریخ یا همان MinValue را که قبلا در همین مطلب اشاره شد، باز می‌گرداند. در صورتی هم که رشته‌، null یا با فرمت رشته‌ای غیر معتبر باشد، همان مقدار DateTime.MinValue بازگردانده می‌شود. همیشه با کنترل مقدار بازگشتی صحت انجام عملیات را می‌توان متوجه شد (true موفقیت در عملیات جداسازی و false عدم موفقیت در عملیات جداسازی).
نکته‌ی مهم عدم پرتاب استثتاء در صورت عدم موفقیت در عملیات جداسازی می‌باشد.
string datestr = null;
            DateTime temp;
            Console.WriteLine(DateTime.TryParse(datestr, out temp));
            Console.WriteLine(temp);
            //False
            //0001 - 01 - 01T00: 00:00

            datestr = "wrong date";
            Console.WriteLine(DateTime.TryParse(datestr, out temp));
            Console.WriteLine(temp);
            //False
            //0001 - 01 - 01T00: 00:00

            datestr = "Tue Dec 30, 2015";
            Console.WriteLine(DateTime.TryParse(datestr, out temp));
            Console.WriteLine(temp);
            //False
            //0001 - 01 - 01T00: 00:00

تابع ()DateTime.TryParseExact
این تابع رشته‌ای شامل تاریخ و زمان را به‌همراه فرهنگ مشخصی دریافت و آن را تبدیل به نوع DateTime می‌کند. رشته‌ی ارسالی باید منطبق با فرمت تاریخ باشد. overload‌های مختلف این تابع را در زیر مشاهده می‌کنید:

• DateTime.ParseExact(string value, string format, IFormatProvider provider, DateTimeStyles style)
Value : رشته‌ای از تاریخ و زمان می‌باشد.
Format : فرمت مورد نظر را برای نمایش تاریخ بعد از تبدیل، مشخص می‌کند.
Provider : اطلاعات فرهنگ مورد نظر را فراهم می‌کند.
Styles  : از طریق این پارامتر می‌توانیم قالب پارامتر ارسالی را مشخص کنیم (مثلا نادیده گرفتن فضاهای خالی).

• DateTime.ParseExact(string value, string[] formats, IFormatProvider provider, DateTimeStyles style)
Value : رشته‌ای از تاریخ و زمان می‌باشد.
Format : فرمت مورد نظر برای نمایش تاریخ بعد از تبدیل را مشخص می‌کند و می‌توان آرایه‌ای از فرمت‌ها را در اینجا ارسال کرد.
Provider : اطلاعات فرهنگ مورد نظر را فراهم می‌کند.
Styles  : از طریق این پارامتر می‌توانیم قالب پارامتر ارسالی را مشخص کنیم (مثلا نادیده گرفتن فضاهای خالی).
این تابع را در شرایط زیر، مقدار (MinValue( 1/1/0001 12:00:00 AM را باز می‌گرداند:
• رشته null  باشد.
• رشته خالی باشد "".
• فرمت رشته‌ی تاریخ غلط باشد.
• رشته با فرمت معرفی شده‌ی در provider، انطباق نداشته باشد.
• تنها در صورتی که مقدار انتخابی DateTimeStyle معتبر نباشد، استثنایی رخ می‌دهد.
همچنین همیشه پس از انجام عملیات، مقداری بولین را برای نمایش موفقیت یا عدم موفقیت جدا سازی، باز می‌گرداند.
  string datestr = null;
            DateTime temp;
            CultureInfo provider = CultureInfo.InvariantCulture;
            Console.WriteLine(DateTime.TryParseExact(datestr, "MM/dd/yyyy", provider, DateTimeStyles.None, out temp));
            Console.WriteLine(temp);
            //False
            //1/1/0001 12:00:00 AM

            datestr = "wrong date";
            Console.WriteLine(DateTime.TryParseExact(datestr, "MM/dd/yyyy", provider, DateTimeStyles.None, out temp));
            Console.WriteLine(temp);
            //False
            //1/1/0001 12:00:00 AM

            datestr = "Tue Dec 30, 2015";
            Console.WriteLine(DateTime.TryParseExact(datestr, "MM/dd/yyyy", provider, DateTimeStyles.None, out temp));
            Console.WriteLine(temp);
            //False
            //1/1/0001 12:00:00 AM

            datestr = "10‐22‐2015";
            Console.WriteLine(DateTime.TryParseExact(datestr, "MM/dd/yyyy", provider, DateTimeStyles.None, out temp));
            Console.WriteLine(temp);
            //False
            //1/1/0001 12:00:00 AM

            datestr = "10‐22‐2015";
            Console.WriteLine(DateTime.TryParseExact(
            datestr, "MM‐dd‐yyyy", provider, DateTimeStyles.None, out temp));
            Console.WriteLine(temp);
            //True
            //30/07/1394 12:00:00 ق.ظ

            datestr = "10‐12‐2015";
            Console.WriteLine(DateTime.TryParseExact(datestr, new string[] { "MM/dd/yyyy", "MM‐dd‐yyyy", "MM.dd.yyyy" }, provider, DateTimeStyles.None, out temp));
            Console.WriteLine(temp);
            //True
            //20/07/1394 12:00:00 ق.ظ


آنالیز متد‌های معرفی شده 
نوع DateTime متد‌های مختلفی را برای جداسازی رشته و تبدیل آن به تاریخ دارد. تفاوت‌های این متد‌ها را در بخش زیر بررسی می‌کنیم :

تفاوت Parse و ConvertToDateTime:
این دو متد شبیه به هم هستند، اما چند تفاوت کوچک با هم دارند:
• اگر مقدار رشته‌ی ارسالی null باشد، متد Parse، یک استثناء را ارسال می‌کند و متد ConvertToDateTime مقدار MinValue را باز می‌گرداند.
• در متد Parse می‌توان یک پارامتر اضافه‌تر نیز ارسال کرد که DateTimeStyle نامیده می‌شود. اما متد ConvertToDateTime این قابلیت را ندارد.
• تابع ConvertToDateTime به‌صورت داخلی از متد DateTime.Parse به‌همراه فرهنگ جاری استفاده می‌کند.

تفاوت تابع Parseو ParseExact:
این دو تابع شبیه به هم هستند، اما می‌توان یک پارامتر اضافی format را نیز به تابع ParseExact ارسال کرد. این پارامتر به ما کمک می‌کند تا رشته‌ای را که فرمت متفاوتی از حالت معمولی دارد، به تاریخ تبدیل کنیم. مثلا اگر رشته‌ی "11232015" بدین شکل باشد، فرمت باید به شکل "MMddyyyy" تعریف شود.

تفاوت تابع Parse و TryParse:
این دو متد شبیه به هم هستند، با این تفاوت که تابع TryParse در صورت عدم موفقیت جداسازی رشته، استثنائی را ارسال نمی‌کند و همیشه مقدار MinValue را در صورت عدم موفقیت در تبدیل، باز می‌گرداند.

تفاوت تابع TryParse و TryParseExact:
هر دو تابع شبیه به هم هستند؛ بجز در پارامتر format. تابع TryParseExact از یک پارامتر اضافه‌ی format استفاده می‌کند. ولی تابع TryParse اگر نتواند فرمت مورد نیاز را فراهم کند، مقدار minValue را باز می‌گرداند.
 
مطالب
فشرده سازی فایل ها در NET 4.5.
با اضافه شده فضای نام  System.IO.Compression در NET 4.5. دیگر بدون نیاز به کتابخانه‌های همچون DotNetZip به راحتی می‌توانید فایل‌های خود را فشرده یا باز کنید.

کلاس ZipFile
این کلاس امکان فشرده یا باز نمون فایل یا یک پوشه را در اختیارمان قرار میدهد. مثلا برای فشرده سازی یک پوشه از کد زیر استفاده می‌نمایید
string startPath = @"c:\example\start";
string zipPath = @"c:\example\result.zip";
ZipFile.CreateFromDirectory(startPath, zipPath);
برای بار نمون یک فایل فشرده هم از تابع ExtractToDirectory استفاده نمایید
string extractPath = @"c:\example\extract";
ZipFile.ExtractToDirectory(zipPath, extractPath);
کلاس ZipArchive
کلاس ZipFile و ZipArchive  مکمل هم دیگر هستند و اکثرا با هم دیگر کاربرد دارد اما این کلاس برای دستکاری فایل Zip استفاده می‌شود مثلا برای ایجاد یک فایل zip و کنترل بیشتر بر روی آن در مثال زیر یک ابتدا یک فایل خالی ایجاد کرده ایم و با تابع CreateEntityFromFile فایل‌های مورد را با مسیر و نام آن و حتی کیفیت فشردگی به آن اضافه نموده اید.
using (ZipArchive zipFile = ZipFile.Open(zipName, ZipArchiveMode.Create))
{
    zipFile.CreateEntryFromFile(@"C:\Temp\File1.txt", "File1.txt");
    zipFile.CreateEntryFromFile(@"C:\Temp\File2.txt", "File2.txt", CompressionLevel.Fastest);
}
اما اگر بخواهیم فایل Zip  را در یک MemoryStream ایجاد کنیم کافیست از کد زیر استفاده نمایید
using (MemoryStream zipStream = new MemoryStream())
{
        using (ZipArchive zipFile = new ZipArchive(zipStream, ZipArchiveMode.Create))
        {
                zipFile.CreateEntryFromFile(filepath, filename);
        }
}
حال می‌خواهیم یک فایل Zip را باز کنیم. کلاس ZipArchiveEntry برای دسترسی به فایل‌های موجود در فایل Zip می‌باشد.
using (ZipArchive archive = ZipFile.OpenRead(zipName))
{
    foreach (ZipArchiveEntry file in archive.Entries)
    {
           Console.WriteLine("File Name: {0}", file.Name);
           Console.WriteLine("File Size: {0} bytes", file.Length);
           Console.WriteLine("Compression Ratio: {0}", ((double)file.CompressedLength  / file.Length).ToString("0.0%"));
           file.ExtractToFile(directorypath);
    }
}