مطالب
اثبات قانون مشاهده‌گر در برنامه نویسی
امروز حین کدنویسی به یک مشکل نادر برخورد کردم. کلاسی پایه داشتم (مثلا Person) که یک سری کلاس دیگر از آن ارث بری میکردند (مثلا کلاس‌های Student و Teacher).در اینجا در کلاس پایه بصورت اتوماتیک یک ویژگی(Property) را روی کلاس‌های مشتق شده مقدار دهی میکردم؛ مثلا به این شکل:
 public class Person
    {      
        public Person()
        {
            personId= this.GetType().Name + (new Random()).Next(1, int.MaxValue);          
        }
     }
سپس در یک متد مجموعه‌ای از Studentها و teacher‌ها را ایجاد کرده و به لیستی از Person‌ها اضافه میکنم:
var student1=new Student(){Name="Iraj",Age=21};
var student1=new Student(){Name="Nima",Age=20};
var student1=new Student(){Name="Sara",Age=25};
var student1=new Student(){Name="Mina",Age=22};
var student1=new Student(){Name="Narges",Age=26};
var teacher1=new Student(){Name="Navaei",Age=45};
var teacher2=new Student(){Name="Imani",Age=50};
اما در نهایت اتفاقی که رخ میداد این بود که PersonId همه Student‌ها یکسان می‌شد ولی قضیه به همین جا ختم نشد؛ وقتی خط به خط برنامه را Debug و مقادیر را Watch می‌کردم، مشاهده می‌کردم که PersonId به درستی ایجاد می‌شود.
در فیزیک نوین اصلی هست به نام عدم قطعیت هایزنبرگ که به زبان ساده میتوان گفت نحوه رخداد یک اتفاق، با توجه به وجود یا عدم وجود یک مشاهده‌گر خارجی نتیجه‌ی متفاوتی خواهد داشت.
کم کم داشتم به وجود قانون مشاهده‌گر در برنامه نویسی هم ایمان پیدا میکردم که این کد فقط در صورتیکه آنرا مرحله به مرحله بررسی کنم جواب خواهد داد!
جالب اینکه زمانیکه personId  را نیز ایجاد میکردم، یک دستور برای دیدن خروجی نوشتم مثل این
 public class Person
    {      
        public Person()
        {
            personId= this.GetType().Name + (new Random()).Next(1, int.MaxValue);  
            Debug.Print(personId)       
        }
     }
در این حالت نیز دستورات درست عمل میکردند و personId متفاوتی ایجاد می‌شد!
قبل از خواندن ادامه مطلب شما هم کمی فکر کنید که مشکل کجاست؟
 این مشکل ربطی به قانون مشاهده‌گر و یا دیگر قوانین فیزیکی نداشت. بلکه بدلیل سرعت بالای ایجاد وهله ها(instance) از کلاسی‌های مطروحه (مثلا در زمانی کمتر از یک میلی ثانیه) زمانی در بازه یک کلاک CPU رخ می‌داد.
هر نوع ایجاد کندی (همچون نمایش مقادیر در خروجی) باعث می‌شود کلاک پردازنده نیز تغییر کند و عدد اتفاقی تولید شده فرق کند.
همچنین برای حل این مشکل میتوان از کلاس تولید کننده اعداد اتفاقی، شبیه زیر استفاده کرد:
using System;
using System.Threading;

public static class RandomProvider
{    
    private static int seed = Environment.TickCount;

    private static ThreadLocal<Random> randomWrapper = new ThreadLocal<Random>(() =>
        new Random(Interlocked.Increment(ref seed))
    );

    public static Random GetThreadRandom()
    {
        return randomWrapper.Value;
    }
}

بازخوردهای دوره
تولید پویای کد در زمان اجرا توسط Reflection.Emit
با سلام، من زمانی که می‌خواهم از روش دوم فراخوانی متد استفاده کنم با خطای زیر مواجه می‌شوم
 var myMethod = new DynamicMethod("MyDividerMethod", returnType: typeof(int), parameterTypes: new[] { typeof(int), typeof(int) }, m: typeof(Program).Module);
            var il = myMethod.GetILGenerator();
            il.Emit(opcode:OpCodes.Ldarg_0);
            il.Emit(opcode:OpCodes.Ldarg_1);
            il.Emit(opcode:OpCodes.Add);
            il.Emit(opcode:OpCodes.Ret);

            var result = myMethod.Invoke(obj: null,parameters: new object[] { 10, 2 });
            Console.WriteLine(result);
            Console.ReadKey();

            var method = (DividerDelegate)myMethod.CreateDelegate(delegateType: typeof(DividerDelegate));
            Console.WriteLine(method(10, 2));

خطا


مطالب
ویژگی های کمتر استفاده شده در NET. - بخش چهارم

Parallel.For & Parallel.ForEach

Parallel.For – اجرای یک حلقه for که در آن عملیات تکرار  ممکن است به صورت موازی انجام شود.
var nums = Enumerable.Range( 0, 1000000 ).ToArray();
long total = 0;

// Use type parameter to make subtotal a long, not an int
Parallel.For< long >( 0, nums.Length, () => 0,
                      ( j, loop, subtotal ) =>
                      {
                          subtotal += nums[j];
                          return subtotal;
                      },
                      x => Interlocked.Add( ref total, x ) );
Console.WriteLine( "The total is {0:N0}", total ); 
Interlocked.Add با استفاده از این متد می‌توان دو عدد صحیح را با هم جمع کرد (به صورت thread safe) و نتیجه را در عدد اول ذخیره کرد.
Parallel.ForEach – اجرای یک حلقه foreach که در آن عملیات تکرار ممکن است به صورت موازی انجام شود.
var nums = Enumerable.Range( 0, 1000000 ).ToArray();
long total = 0;
Parallel.ForEach< int, long >( nums, // source collection
                               () => 0, // method to initialize the local variable
                               ( j, loop, subtotal ) => // method invoked by the loop on each iteration
                               {
                                   subtotal += j; //modify local variable
                                   return subtotal; // value to be passed to next iteration
                               },

                               // Method to be executed when each partition has completed.
                               // finalResult is the final value of subtotal for a particular partition.
                               finalResult => Interlocked.Add( ref total, finalResult ) );
Console.WriteLine( "The total from Parallel.ForEach is {0:N0}", total );


IsInfinity

تابع  IsInfinity  جهت ارزیابی یک مقدار اعشاری که به سمت مثبت یا منفی بی نهایت می‌باشد، استفاده می‌شود.
Console.WriteLine("IsInfinity(3.0 / 0) == {0}.", double.IsInfinity(3.0 / 0) ? "true" : "false");
مقدار خروجی مثال بالا true می‌باشد.

dynamic Type

با استفاده از نوع dynamic می توان عملیات چک کردن نوع در زمان کامپایل را پشت سر گذاشت و در عوض این عملیات را به زمان اجرا، موکول داد.

نکته: نوع dynamic همانند نوع object در بسیاری از شرایط، یکسان رفتار می‌کند. اگرچه عملیات‌هایی که شامل عبارت‌هایی از نوع dynamic هستند، یا نوع آن توسط کامپایلر بررسی می‌شوند و یا پذیرفته نمی‌شوند. کامپایلر اطلاعات مربوط به یک پردازش (روند) را یکجا بسته بندی می‌کند و این اطلاعات را بعداً در زمان اجرا ارزیابی می‌کند. به عنوان بخشی از این پردازش، متغیرهایی از نوع dynamic به متغیرهایی از نوع object کامپایل می‌شوند. بنابراین نوع dynamic فقط در زمان کامپایل وجود دارند (نه در زمان اجرا).

var i = 20;
dynamic dynamicVariable = i;
Console.WriteLine( dynamicVariable );

var stringVariable = "Example string.";
dynamicVariable = stringVariable;
Console.WriteLine( dynamicVariable );

var dateTimeVariable = DateTime.Today;
dynamicVariable = dateTimeVariable;
Console.WriteLine( dynamicVariable );

// The expression returns true unless dynamicVariable has the value null.
if ( dynamicVariable is dynamic )
    Console.WriteLine( "dynamicVariable variable is dynamic" );

// dynamic and the as operator.
dynamicVariable = i as dynamic;

// throw RuntimeBinderException if the associated object doesn't have the specified method.
// The code is still compiling successfully.
Console.WriteLine( dynamicVariable.ToNow1 );

همانطور که در مثال بالا مشاهده می‌کنید، شما می‌توانید متغیرهایی از نوع‌های مختلف را به یک شی از نوع dynamic اختصاص دهید. همچنین می‌توانید برای بررسی یک متغیر که از نوع dynamic است یا خیر، از عملگر is استفاده کنید. اگر یک خصوصیت را که وجود ندارد، درخواست کنید (خط آخر مثال بالا)، خطای RuntimeBinderException پرتاب می‌شود.


ExpandoObject

ExpandoObject  این امکان را فراهم می‌آورد که  در زمان اجرا، اعضای یک شیء به صورت پویا، اضافه و حذف شوند (همانند DataTableها).
dynamic sampleObject = new ExpandoObject();
sampleObject.FirstName = "Vahid";
sampleObject.LastName = "Mohammad Taheri";
sampleObject.Age = "28";
sampleObject.TestRemoveProperty = DateTime.Now;
sampleObject.AsString = new Action( () => Console.WriteLine( "{0} {1} is {2} years old.",
                                                                sampleObject.FirstName,
                                                                sampleObject.LastName,
                                                                sampleObject.Age ) );
sampleObject.AsString();
همانطور که در مثال بالا مشاهده می‌کنید، یک شیء با 4 خصوصیت و یک متد را ایجاد کردیم. حال برای حذف یکی از خصوصیت‌ها از روش زیر استفاده می‌کنیم.
( (IDictionary< String, Object >)sampleObject ).Remove( "TestRemoveProperty" );
و در صورت استفاده از خصوصیت حذف شده، خطای  RuntimeBinderException  پرتاب می‌شود.
مطالب
یافتن اکشن متد‌های به اشتباه کش شده در ASP.NET MVC
مرسوم است برای کش کردن خروجی یک اکشن متد در ASP.NET MVC از ویژگی OutputCache استفاده شود. نکته‌ی مهمی که در مورد نحوه پیاده سازی آن وجود دارد، استفاده از OutputCacheModule استاندارد ASP.NET است. در این حالت پس از فراخوانی ابتدایی اکشن متد و کش شدن محتوای حاصل از آن، در دفعه‌ی بعد فراخوانی این آدرس خاص، اصلا چرخه کاری یک کنترلر روی نداده و تمام مسایل توسط OutputCacheModule به صورت مستقل و پیش از رسیدن آن به کنترلر، مدیریت می‌شوند.
خوب، تا اینجا ممکن است مشکلی به نظر نرسد و هدف از کش کردن اطلاعات یک اکشن متد نیز همین مورد است. اما اگر این اکشن متد کش شده، به اشتباه در یک کنترلر مزین شده با ویژگی Authorize قرار گیرد، چه خواهد شد؟ مثلا این کنترلر امن، برای ارائه فایل‌ها یا حتی نمایش قسمتی از صفحه یا کل صفحه، از کش استفاده کرده است. در بار اول دریافت فایل، بدیهی است که تمام مسایل اعتبارسنجی باید مطابق طول عمر یک کنترلر روی دهند. اما در بار دوم فراخوانی آدرس دریافت صفحه یا فایل، اصلا کار به فراخوانی کنترلر نمی‌رسد. به عبارتی کلیه کاربران سایت (اعم از لاگین شده، نشده، دارای دسترسی مشاهده صفحه یا آدرس امن و یا بدون دسترسی)، به این محتوای خاص بدون مشکلی دسترسی خواهند داشت (فقط کافی است که از آدرس نهایی به نحوی مطلع شوند).

سؤال: چگونه می‌توان کلیه اکشن متدهای یک پروژه ASP.NET MVC را که دارای ویژگی OutputCache در یک کنترلر امن هستند، یافت؟

using System;
using System.Linq;
using System.Reflection;
// Add a ref. to \Program Files\Microsoft ASP.NET\ASP.NET MVC 4\Assemblies\System.Web.Mvc.dll
using System.Web.Mvc;
// Add a ref. to System.Web
using System.Web.UI;

namespace FindOutputCaches
{
    class Program
    {
        static void Main(string[] args)
        {
            var path = @"D:\site\bin\Web.dll";
            var asmTarget = Assembly.LoadFrom(path);

            checkSecuredControllers(asmTarget);

            Console.WriteLine("Press a key...");
            Console.Read();
        }

        private static void checkSecuredControllers(Assembly asmTarget)
        {
            // یافتن کلیه کنترلرهایی که فیلتر اوتورایز دارند
            var securedControllers = asmTarget.GetTypes()
                                              .Where(type => typeof(IController).IsAssignableFrom(type) &&
                                                             Attribute.IsDefined(type, typeof(AuthorizeAttribute)) &&
                                                             !type.Name.StartsWith("T4MVC"))
                                              .ToList();

            foreach (var controller in securedControllers)
            {
                // یافتن کلیه اکشن متدهای کنترلر جاری
                var actionMethods = controller.GetMethods(BindingFlags.Public | BindingFlags.Instance | BindingFlags.DeclaredOnly)
                                              .Where(method => typeof(ActionResult).IsAssignableFrom(method.ReturnType))
                                              .ToList();

                foreach (var method in actionMethods)
                {
                    // یافتن متدهایی که دارای آوت پوت کش هستند
                    var attributes = method.GetCustomAttributes(typeof(OutputCacheAttribute), true);
                    if (attributes == null || !attributes.Any())
                        continue;

                    var outputCache = (OutputCacheAttribute)attributes[0]; // AllowMultiple = false
                    if (outputCache.Location == OutputCacheLocation.None)
                        continue; //سبب عدم کش شدن شده است؛ مثلا برای کارهای ای‌جکسی

                    Console.WriteLine("Detected incorrect usage of OutputCache in:\n {0}-->{1}",
                                           controller.FullName, method.Name);
                }
            }
        }
    }
}
کدهای کامل این بررسی را در اینجا ملاحظه می‌کنید.
ابتدا مسیر اسمبلی کامپایل شده پروژه ASP.NET MVC که حاوی کنترلرهای برنامه است، باید مشخص گردد.
سپس در این اسمبلی کلیه نوع‌های تعریف شده، یافت گردیده و آن‌هایی که پیاده سازی کننده IController هستند (یعنی کلاس‌های کنترلر واقعی برنامه) و همچنین دارای ویژگی AuthorizeAttribute نیز می‌باشند، جدا خواهند شد.
در ادامه، در هر کنترلر امن یافت شده، متدهایی را بررسی خواهیم کرد که دارای خروجی از نوع ActionResult باشند (فقط اکشن متدها مدنظر هستند). اگر این اکشن متد یافت شده دارای ویژگی OutputCacheAttribute بود و همچنین Location آن به None تنظیم نشده بود ... یعنی مشکل امنیتی وجود دارد که باید برطرف شود.

البته برای تکمیل این مطلب باید دو حالت زیر هم پیاده سازی و بررسی شوند:
- کلیه Viewهای برنامه بررسی شوند. اگر در View خاصی که متعلق است به یک کنترلر یا حتی اکشن متد امن، ارجاعی به اکشن متدی کش شده در کنترلری دیگر وجود داشت، این مورد هم یک باگ امنیتی است.
- کلیه کنترلرهای عمومی که دارای اکشن متدی امن هستند نیز باید جهت یافتن OutputCache بررسی شوند.
مطالب دوره‌ها
جلوگیری از deadlock در برنامه‌های async
توضیح مطلب جاری نیاز به یک مثال دارد. به همین جهت یک برنامه‌ی WinForms یا WPF را آغاز کنید (تفاوتی نمی‌کند). سپس یک دکمه و یک برچسب را در صفحه قرار دهید. در ادامه کدهای فرم را به نحو ذیل تغییر دهید.
using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Windows.Forms;
using Newtonsoft.Json.Linq;

namespace Async13
{
    public static class JsonExt
    {
        public static async Task<JObject> GetJsonAsync(this Uri uri)
        {
            using (var client = new HttpClient())
            {
                var jsonString = await client.GetStringAsync(uri);
                return JObject.Parse(jsonString);
            }
        }
    }

    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        private void btnGo_Click(object sender, EventArgs e)
        {
            var url =
                "http://api.geonames.org/citiesJSON?north=44.1&south=-9.9&east=-22.4&west=55.2&lang=de&username=demo";
            txtResult.Text = new Uri(url).GetJsonAsync().Result.ToString();
        }
    }
}
این کدها برای کامپایل نیاز به نصب بسته‌ی
 PM> Install-Package Newtonsoft.Json
و همچنین افزودن ارجاعی به اسمبلی استاندارد System.Net.Http نیز دارند.
در اینجا قصد داریم اطلاعات JSON دریافتی را در یک TextBox نمایش دهیم. کاری که انجام شده، فراخوانی متد async ایی است به نام GetJsonAsync و سپس استفاده از خاصیت Result این Task برای صبر کردن تا پایان عملیات.
اگر برنامه را اجرا کنید و بر روی دکمه‌ی دریافت اطلاعات کلیک نمائید، برنامه قفل خواهد کرد. چرا؟
البته تفاوتی هم نمی‌کند که این یک برنامه‌ی دسکتاپ است یا یک برنامه‌ی وب. در هر دو حالت یک deadlock کامل را مشاهده خواهید کرد.


علت بروز deadlock در کدهای async چیست؟

همواره نتیجه‌ی await، در context فراخوان آن بازگشت داده می‌شود. اگر برنامه‌ی دسکتاپ است، این context همان ترد اصلی UI برنامه می‌باشد و اگر برنامه‌ی وب است، این context، زمینه‌ی درخواست در حال پردازش می‌باشد.
خاصیت Result و یا استفاده از متد Wait یک Task، به صورت همزمان عمل می‌کنند و نه غیرهمزمان. متد GetJsonAsync یک Task ناتمام را که فراخوان آن باید جهت پایان‌اش صبر کند، بازگشت می‌دهد. سپس در همینجا کد فراخوان، تردجاری را توسط فراخوانی خاصیت Result قفل می‌کند. متد GetJsonAsync منتظر خواهد ایستاد تا این ترد آزاد شده و بتواند به کارش که بازگردان نتیجه‌ی عملیات به context جاری است، ادامه دهد.
به عبارتی، کدهای async منتظر پایان کار Result هستند تا نتیجه را بازگردانند. در همین لحظه کدهای همزمان برنامه نیز منتظر کدهای async هستند تا خاتمه یابند. نتیجه‌ی کار یک deadlock است.


روش‌های جلوگیری از deadlock در کدهای async؟

الف) در مورد متد ConfigureAwait در قسمت‌های قبل بحث شد و به عنوان یک best practice مطرح است:
    public static class JsonExt
    {
        public static async Task<JObject> GetJsonAsync(this Uri uri)
        {
            using (var client = new HttpClient())
            {
                var jsonString = await client.GetStringAsync(uri).ConfigureAwait(continueOnCapturedContext: false);
                return JObject.Parse(jsonString);
            }
        }
    }
با استفاده از ConfigureAwait false سبب خواهیم شد تا نتیجه‌ی عملیات به context جاری بازگشت داده نشود و نتیجه بر روی thread pool thread ادامه یابد. با اعمال این تغییر، کدهای متد btnGo_Click بدون مشکل اجرا خواهند شد.

ب) راه حل دوم، عدم استفاده از خواص و متدهای همزمان با متدهای غیر همزمان است:
        private async void btnGo_Click(object sender, EventArgs e)
        {
            var url =
                "http://api.geonames.org/citiesJSON?north=44.1&south=-9.9&east=-22.4&west=55.2&lang=de&username=demo";
            var data = await new Uri(url).GetJsonAsync();
            txtResult.Text = data.ToString();
        }
ابتدا امضای متد رویدادگردان را اندکی تغییر داده و واژه‌ی کلیدی async را به آن اضافه می‌کنیم. سپس از await برای صبر کردن تا پایان عملیات متد GetJsonAsync استفاده خواهیم کرد. صبر کردنی که در اینجا انجام شده، یک asynchronous waits است؛ برخلاف روش همزمان استفاده از خاصیت Result یا متد Wait.


خلاصه‌ی بحث
Await را با متدهای همزمان Wait یا خاصیت Result بلاک نکنید. در غیراینصورت در ترد اجرا کننده‌ی دستورات، یک deadlock رخ‌خواهد داد؛ زیرا نتیجه‌ی await باید به context جاری بازگشت داده شود اما این context توسط خواص یا متدهای همزمان فراخوانی شده بعدی، قفل شده‌است.
مطالب
امکان تعریف ویژگی‌ها بر روی توابع محلی در C# 9.0

یکی از ویژگی‌های جدید اضافه شده به سی شارپ 9، Attributes on local functions نام دارد و این توانایی را به ما می‌دهد تا بر روی متد‌های محلی که درون متدها تعریف می‌شوند، Attributes قرار دهیم. قابلیت local functions در نسخه 7 سی شارپ اضافه شده‌است و با استفاده از این قابلیت می‌توانیم درون یک متد، تابع دیگری را تعریف کنیم و در همان متد، از آن تابع درونی استفاده کنیم. در واقع تابع درونی، لوکال متد بیرونی است و در خارج از متد بیرونی، قابل دسترسی نیست. مانند مثال زیر:

    // Main method 
    public static void Main()
    {
        // Local Function 
        void AddValue(int a, int b)
        {
            Console.WriteLine("Value of a is: " + a);
            Console.WriteLine("Value of b is: " + b);
            Console.WriteLine("Sum of a and b is: {0}", a + b);
            Console.WriteLine();
        }

        // Calling Local function 
        AddValue(20, 40);
        AddValue(40, 60);
    }

برای بررسی این ویژگی جدید سی شارپ 9.0، از یک مثال استفاده می‌کنیم. فرض کنید یک برنامه‌ی کنسول را داریم و می‌خواهیم یک قطعه کد فقط در حالتی در خروجی نوشته شود که برنامه در حالت دیباگ اجرا شده باشد و اگر در حالت ریلیز باشد، در خروجی مشاهده نشود. قبل از نسخه‌ی 9.0 سی شارپ، مجبور هستیم از directive های کامپایلر زبان استفاده کنیم و از طریق آن به کامپایلر بفهمانیم که چه زمانی این قطعه کد را کامپایل کند. مانند مثال زیر:

        static void Main(string[] args)
        {
            static void DoAction()
            {
                // DoAction

                Console.WriteLine("DoAction...");
            }

#if DEBUG
            DoAction();
#endif
        }

اما با استفاده قابلیت اضافه شده‌ی در این نسخه از سی شارپ، می‌توان روی متدهای محلی هم Attributes اضافه کرد. پس می‌توانیم از ConditionalAttribute استفاده کنیم و آن را در بالای متد محلی قرار دهیم و از کامپایلر بخواهیم در حالت دیباگ اجرا شود. مانند کد زیر

        static void Main(string[] args)
        {
            [Conditional("DEBUG")]
            static void DoAction()
            {
                // Do Action Here

                Console.WriteLine("Do Action...");
            }

            DoAction();
        }

اگر بر روی متدهای محلی C# 8.0 از Attribute استفاده کنیم، با خطای زیر روبرو می‌شویم:

ErrorCS8400Feature 'local function attributes' is not available in C# 8.0. Please use language version 9.0 or greater.
نظرات مطالب
از سرگیری مجدد، لغو درخواست و سعی مجدد دریافت فایل‌های حجیم توسط HttpClient
سلام؛ اگر قصد داشته باشیم از طریق Angular 2  دانلود رو فراخوانی کنیم ، به شکلی که یک فایل حجیم بر روی مرورگر کاربر دانلود بشه ، پیاده سازی به چه صورت خواهد بود ، الان شما در سمت سرور یک حلقه while دارید که محتوی رو می‌خونه ، این یعنی در هر اجرای حلقه من باید محتوی خوانده شده رو return کنم به کلاینت و دوباره با آفست جدید فراخوانی کنم؟
نحوه فراخوانی من به شکل زیر هست که با FileStreamResult برگشتی از سمت سرور به درستی کار میکنه ولی خب همه فایل رو یکجا برمی گردونه :
 downloadOrder(orderId: number , userId : string) {

    this._http.get(this._config.getApiURI() + '/Download/productfile/' + orderId + '/' + userId, { observe: 'blob'})
      .subscribe(
        (data) => {
          if(this._functionService.isNullOrEmpty(data.body)){
            this._snackBarService.error('فایل پیدا نشد');
            return;
          }
          var contentType = data.body.type || "application/octet-stream";

          var fileInfo = JSON.parse(data.headers.get('FileInfo'));          
          var blob = new Blob([data.body], { type: contentType });
          var url = window.URL.createObjectURL(blob);
          var anchor = document.createElement("a");
          anchor.setAttribute("href", url)
          anchor.setAttribute("download", fileInfo.fileName + fileInfo.fileType);
          anchor.setAttribute("target", "_blank");
          document.body.appendChild(anchor);
          anchor.click();
          setTimeout(function () {
            document.body.removeChild(anchor);
            window.URL.revokeObjectURL(url);
          }, 200);
        },
        error => {
          this._snackBarService.error(error);
        });
  }
ولی حالا که قراره فایل رو در چندین مرحله و با حلقه while برگردونیم ، با این سناریو یعنی باید از طرف کلاینت چندین بار فراخوانی باشه ، مگر اینکه کلا یک window جدید باز کنیم  (که احتمالا با مشکل popup blocker مواجه میشیم) و ... آیا باید در سمت سرور بایت‌های خوانده شده رو تو Response بنویسیم ...
نحوه پیاده سازی کد پایین به چه شکل میشه
             while ((bytesRead = await stream.ReadAsync(buffer, 0, buffer.Length)) > 0)  
                    {                        
                        await Response.Body.WriteAsync(buffer);                        
                        //return File(buffer, GetContentType(fullPath), newFileName, true);                        
                        //return new FileStreamResult(stream,"application/octet-stream");
                    }
مطالب
اندازه گیری کارآیی کدها توسط NBench
این روزها جهت اندازه‌گیری کارآیی قطعات کدهای دات نتی، استفاده از فریم ورک‌های مخصوصی که بسیاری از نکات ریز مرتبط با اینگونه اندازه‌گیری‌ها را مانند warmup یا گرم کردن JIT (جهت عدم اندازه گیری زمان کامپایل پویای کدها، بجای زمان واقعی اجرای آن‌ها)، اندازه‌گیری فشار بر روی Garbage collector و غیره را انجام می‌دهند، بجای استفاده‌ی از Stop Watch، متداول است. یکی از معروفترین‌های این گروه، که تقریبا حالت استانداردی را در جهت اندازه گیری کارآیی کدهای دات نتی پیدا کرده‌است، فریم ورک سورس باز NBench است.


شروع به کار با NBench

برای شروع به کار با NBench، ابتدا نیاز است دو بسته‌ی نیوگت ذیل را نصب کرد:
PM> Install-Package NBench
PM> Install-Package NBench.Runner
عملکرد این فریم ورک، شبیه به عملکرد فریم ورک‌های آزمون‌های واحد است. برای مثال فرض کنید که می‌خواهید فشار حافظه و فشار بر روی GC قطعه کدی را اندازه گیری کنید:
[PerfBenchmark(RunMode = RunMode.Iterations, TestMode = TestMode.Measurement)]
[MemoryMeasurement(MemoryMetric.TotalBytesAllocated)]
public void AddMemoryMeasurement()
{
    const int numberOfAdds = 1000000;
    var dictionary = new Dictionary<int, int>();
    for (var i = 0; i < numberOfAdds; i++)
    {
        dictionary.Add(i, i);
    }
}
 
[PerfBenchmark(RunMode = RunMode.Iterations, TestMode = TestMode.Measurement)]
[GcMeasurement(GcMetric.TotalCollections, GcGeneration.AllGc)]
public void MeasureGarbageCollections()
{
    var dataCache = new List<int[]>();
    for (var i = 0; i < 500; i++)
    {
        for (var j = 0; j < 10000; j++)
        {
            var data = new int[100];
            dataCache.Add(data.ToArray());
        }
 
        dataCache.Clear();
    }
}
همانند نوشتن متدهای آزمون‌های واحد، ابتدا یک یا چند متد public void را در اینجا اضافه می‌کنیم.
سپس هر متد تست به ویژگی PerfBenchmark مزین می‌شود. در اینجا RunMode.Iterations به این معنا است که خودمان قصد داریم در طی یک حلقه، تعداد بار انجام را مشخص کنیم.
ویژگی MemoryMeasurement برای اندازه گیری حافظه‌ی مصرفی یک قطعه کد و GcMeasurement برای اندازه گیری فشار بر روی Garbage collector بکار می‌رود.


اجرای آزمون‌های NBench

پس از تهیه‌ی دو متد فوق، به پوشه‌ی packages\NBench.Runner.0.3.4\lib\net45 مراجعه کنید. یک فایل exe در آن موجود است که کار یافتن و اجرای آزمون‌های NBench را انجام می‌دهد. به عنوان پارامتر آن تنها کافی است مسیر اسمبلی برنامه (فایل exe و یا dll) را به آن ارسال کنیم:
 D:\Prog\NBenchSample\packages\NBench.Runner.0.3.4\lib\net45\NBench.Runner.exe "D:\Prog\NBenchSample\NBenchSample\bin\Release\NBenchSample.exe"
پس از آن، کار اجرای آزمون‌های NBench شروع شده و پس از مدتی ابتدا BEGIN WARMUP و END WARMUP‌ها را می‌توان مشاهده کرد و در آخر یک چنین خروجی ارائه می‌شود:
 --------------- RESULTS: NBenchSample.Program+AddMemoryMeasurement ---------------
TotalBytesAllocated: Max: 47,842,944.00 bytes, Average: 42,002,757.60 bytes, Min: 41,353,848.00 bytes, StdDev: 2,052,032.33 bytes
TotalBytesAllocated: Max / s: 359,074,078.19 bytes, Average / s: 311,474,786.96 bytes, Min / s: 300,926,928.79 bytes, StdDev / s: 16,869,581.62 bytes

--------------- RESULTS: NBenchSample.Program+MeasureGarbageCollections ---------------
TotalCollections [Gen0]: Max: 708.00 collections, Average: 702.80 collections, Min: 697.00 collections, StdDev: 3.65 collections
TotalCollections [Gen0]: Max / s: 111.55 collections, Average / s: 109.87 collections, Min / s: 107.88 collections, StdDev / s: 1.28 collections

TotalCollections [Gen1]: Max: 338.00 collections, Average: 334.60 collections, Min: 330.00 collections, StdDev: 2.41 collections
TotalCollections [Gen1]: Max / s: 53.61 collections, Average / s: 52.31 collections, Min / s: 51.10 collections, StdDev / s: 0.70 collections

TotalCollections [Gen2]: Max: 32.00 collections, Average: 24.80 collections, Min: 18.00 collections, StdDev: 4.73 collections
TotalCollections [Gen2]: Max / s: 4.91 collections, Average / s: 3.87 collections, Min / s: 2.86 collections, StdDev / s: 0.72 collections


نکته‌ای در مورد اندازه گیری فشار حافظه

حافظه توسط سیستم عامل، به صورت صفحات تخصیص داده می‌شود. برای مثال اگر شما به 12 بایت نیاز داشته باشید، سیستم عامل ممکن است 8 کیلوبایت را جهت کاهش تعداد بار تخصیص‌های حافظه و بالا بردن سرعت کار، در اختیار برنامه قرار دهد. بنابراین جهت رسیدن به بهترین نتیجه، در اینجا بهتر است تعداد زیادی شیء را مورد آزمایش قرار داد. برای مثال در آزمایش فوق بجای افزودن یک آیتم به دیکشنری، افزودن میلیون‌ها شیء، نویز استراتژی تخصیص حافظه‌ی توسط سیستم عامل را به حداقل می‌رساند.

شبیه به همین استراتژی، در پیاده سازی Dictionary نیز بکارگرفته شده‌است:
[PerfBenchmark(RunMode = RunMode.Iterations, TestMode = TestMode.Measurement)]
[MemoryMeasurement(MemoryMetric.TotalBytesAllocated)]
public void AddMemoryMeasurement_With_initial_Size()
{
    const int numberOfAdds = 1000000;
    var dictionary = new Dictionary<int, int>(numberOfAdds);
    for (var i = 0; i < numberOfAdds; i++)
    {
        dictionary.Add(i, i);
    }
}
اگر اینبار این آزمون را انجام دهیم، به نتیجه‌ی ذیل خواهیم رسید:
 --------------- RESULTS: NBenchSample.Program+AddMemoryMeasurement_With_initial_Size ---------------
TotalBytesAllocated: Max: 23,245,912.00 bytes, Average: 23,245,912.00 bytes, Min: 23,245,912.00 bytes, StdDev: 0.00 bytes
TotalBytesAllocated: Max / s: 394,032,435.34 bytes, Average / s: 389,108,363.43 bytes, Min / s: 378,502,981.34 bytes, StdDev / s: 5,575,519.09 bytes
در اینجا زمانیکه شیء دیکشنری ایجاد شده‌است، اندازه‌ی اولیه‌ی آن نیز مشخص گردیده‌است. همین مساله سبب شده‌است تا مصرف حافظه‌ی آن از نزدیک به 41 مگابایت (متد AddMemoryMeasurement ابتدای بحث) به نزدیک 24 مگابایت (متد AddMemoryMeasurement_With_initial_Size فوق) کاهش یابد.
علت اینجا است که دیکشنری در پشت صحنه، از یک متد ReSize استفاده می‌کند که شبیه به سیستم عامل، بیشتر از مقدار مورد نیاز جهت ذخیره‌ی اشیاء، برای کاهش تعداد بار تخصیص‌های حافظه، حافظه به خود اختصاص می‌دهد. به همین جهت زمانیکه اندازه‌ی اولیه را مشخص کرد‌ه‌ایم، کار تخصیص حافظه‌ی بیش از اندازه‌ی این شیء، به شدت کاهش یافته‌است.


بررسی متد MeasureGarbageCollections

در متد MeasureGarbageCollections، مقدار زیادی شیء بر روی heap ایجاد شده و GC را وادار به عکس العمل شدید می‌کند.
حلقه‌ی داخلی ایجاد شده نیز تعداد زیادی شیء را در جهت پاکسازی GC تخصیص می‌دهد. این پاکسازی در مرحله‌ا‌ی به نام generation 0 صورت می‌گیرد.
اشیاء اضافه شده‌ی به لیست، طول عمر بیشتری دارند (تا پایان حلقه). بنابراین از garbage collection at generation 0 جان سالم به در خواهند برد و در garbage collection at generation 1  به عمر آن‌ها پایان داده خواهد شد. هرچند ممکن است تعدادی از آن‌ها پاکسازی نشده و تا پایان full garbage collection (generation 2) باقی بمانند.
در آزمایش انجام شده، با ذکر GcGeneration.AllGc، هر سه مورد Gen0 تا Gen2 اندازه گیری خواهند شد. عموما اندازه گیری Gen0 و Gen1 مهم نیستند و این‌ها خیلی زود به پایان خواهند رسید. اگر تعداد بار رخ‌دادن Gen2 زیاد بود (یا اصلا وجود داشت)، می‌تواند سبب بروز مشکلات کارآیی شدیدی گردد.
بنابراین می‌توان بجای تنظیم GcGeneration.AllGc، صرفا از GcGeneration.Gen2 استفاده کرد.


اندازه‌گیری Throughput یا تعداد بار اجرای یک متد در ثانیه

روش دیگر کار با فریم ورک NBench، ایجاد یک کلاس مخصوص و سپس افزودن متدهای Setup مزین به PerfSetup، متد Cleanup مزین به PerfCleanup و سپس تعدادی متد اندازه گیری کارآیی توسط ویژگی PerfBenchmark است. در اینجا برای اندازه‌گیری سرعت اجرای متدها، از ویژگی CounterThroughputAssertion استفاده خواهد شد که پارامتر اول آن نام یک شمارشگر است. این شمارشگر در متد Setup ایجاد می‌شود (با یک نام دلخواه).
public class DictionaryThroughputTests
{
    private readonly Dictionary<int, int> _dictionary = new Dictionary<int, int>();
 
    private const string AddCounterName = "AddCounter";
    private Counter _addCounter;
    private int _key;
 
    private const int AverageOperationsPerSecond = 20000000;
 
    [PerfSetup]
    public void Setup(BenchmarkContext context)
    {
        _addCounter = context.GetCounter(AddCounterName);
        _key = 0;
    }
 
    [PerfBenchmark(RunMode = RunMode.Throughput, TestMode = TestMode.Test)]
    [CounterThroughputAssertion(AddCounterName, MustBe.GreaterThan, AverageOperationsPerSecond)]
    public void AddThroughput_ThroughputMode(BenchmarkContext context)
    {
        _dictionary.Add(_key++, _key);
        _addCounter.Increment();
    }
 
    [PerfBenchmark(RunMode = RunMode.Iterations, TestMode = TestMode.Test)]
    [CounterThroughputAssertion(AddCounterName, MustBe.GreaterThan, AverageOperationsPerSecond)]
    public void AddThroughput_IterationsMode(BenchmarkContext context)
    {
        for (var i = 0; i < AverageOperationsPerSecond; i++)
        {
            _dictionary.Add(i, i);
            _addCounter.Increment();
        }
    }
 
    [PerfCleanup]
    public void Cleanup(BenchmarkContext context)
    {
        _dictionary.Clear();
    }
}
در این آزمایش‌ها، RunMode.Throughput به معنای اجرای متد آزمایش به تعداد AverageOperationsPerSecond توسط فریم ورک NBench است. در حالت قید RunMode.Iterations، تعداد بار اجرا، توسط حلقه‌ای که ما مشخص کرده‌ایم، تعیین می‌گردد.
 --------------- RESULTS: NBenchSample.DictionaryThroughputTests+AddThroughput_ThroughputMode ---------------
[Counter] AddCounter: Max: 575,654.00 operations, Average: 575,654.00 operations, Min: 575,654.00 operations, StdDev: 0.00 operations
[Counter] AddCounter: Max / s: 7,205,997.59 operations, Average / s: 7,163,894.30 operations, Min / s: 7,075,316.79 operations, StdDev / s: 42,518.20 operations

--------------- RESULTS: NBenchSample.DictionaryThroughputTests+AddThroughput_IterationsMode ---------------
[Counter] AddCounter: Max: 20,000,000.00 operations, Average: 20,000,000.00 operations, Min: 20,000,000.00 operations, StdDev: 0.00 operations
[Counter] AddCounter: Max / s: 7,409,380.61 operations, Average / s: 7,250,991.24 operations, Min / s: 6,880,938.73 operations, StdDev / s: 148,085.19 operations
اگر دقت کنید، کارآیی اندازه گیری شده‌ی در حالت RunMode.Iterations بیشتر است از حالت RunMode.Throughput. چون در حالت RunMode.Throughput، فریم ورک کار اجرای متد را از طریق Reflection انجام می‌دهد. بنابراین بهتر است از حالت RunMode.Iterations، جهت رسیدن به نتایج دقیق‌تری استفاده کرد.
در اینجا برای گزارش دادن، عددهای Average و  Average / s باید مورد استفاده قرار گیرند.
مطالب
Routing Service در WCF
به صورت معمول در سیستم‌های مبتنی بر WCF ارتباط بین سرور و کلاینت در قالب EndpointConfiguration تعریف می‌شوند. یعنی کلاینت برای برقراری ارتباط با سرور نیاز به آدرسی که سرور مورد نظر در آن هاست شده است دارد. این روش هنگامی که فقط یک مقصد وجود داشته باشد روش موثری است. اما اگر سرویس‌های مورد نظر در چند سرور هاست شده باشند نیاز به سیستم مسیر یابی خواهیم داشت. خوشبختانه در WCF 4.0 این امکان به خوبی تدارک دیده شده است.
WCF Routing Service چیست؟
Routing Service به عنوان سرویس مسیریابی WCF در دات نت 4 معرفی شد. به وسیله Routing Service می‌توان Endpoint Configuration  مقصد‌های مختلف را با هم تجمیع کرد و در نتیجه تعداد تنظیمات برای Endpoint در سمت کلاینت کاهش پیدا می‌کند به طوری که کلاینت فقط با یک مقصد در ارتباط است. مقصد کلاینت همان Routing Service می‌باشد که در این سرور درخواست‌های رسیده از کلاینت‌ها با توجه به فیلتر انجام شده به مقصد اصلی ارسال خواهند شد.
با استفاده از Routing Service معماری سیستم به صورت تغییر پیدا می‌کند:

اهداف:

موارد زیر اهداف و مزایای استفاده از Routing Service است:

»Service versioning

»Content-based routing scenario 

»Service partitioning 

»Protocol bridging 

هر کدام از موارد بالا در طی پست‌های جداگانه شرح داده خواهند شد.

بررسی یک مثال:

دو Contract به صورت زیر تعریف می‌کنیم:

 [ServiceContract]
    public interface ICalculatorV1
    {
        [OperationContract]
        int Add(int a, int b);
    }

[ServiceContract]
    public interface ICalculatorV2
    {
        [OperationContract]
        int Sub(int a, int b);
    }
پیاده سازی Contract‌های بالا در فالب سرویس به صورت زیر خواهد بود:
public class CalculatorV1 : ICalculatorV1
    {
        public int Add(int a, int b)
        {
            return a + b;
        }
    }

public class CalculatorV2 : ICalculatorV2
    {
        public int Sub(int a, int b)
        {
            return a - b;
        }
    }
تنظیمات Binding سرویس ها:
system.serviceModel>
    <services>
      <service name="WCFRoutingSample.CalculatorV1">
        <host>
          <baseAddresses>
            <add baseAddress = "http://localhost:8732/CalculatorServiceV1/" />
          </baseAddresses>
        </host>

        <endpoint address ="" binding="basicHttpBinding" contract="WCFRoutingSample.ICalculatorV1">

          <identity>
            <dns value="localhost"/>
          </identity>
        </endpoint>

        <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/>
      </service>
      <service name="WCFRoutingSample.CalculatorV2">
        <host>
          <baseAddresses>
            <add baseAddress = "http://localhost:8733/CalculatorServiceV2/" />
          </baseAddresses>
        </host>
 
        <endpoint address ="" binding="basicHttpBinding" contract="WCFRoutingSample.ICalculatorV2">
 
          <identity>
            <dns value="localhost"/>
          </identity>
        </endpoint>
 
        <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/>
      </service>
    </services>
    <behaviors>
      <serviceBehaviors>
        <behavior>
          <serviceMetadata httpGetEnabled="True"/>
          <serviceDebug includeExceptionDetailInFaults="False" />
        </behavior>
      </serviceBehaviors>
    </behaviors>
  </system.serviceModel>

حال باید RoutingService را به صورت زیر هاست نماییم:
class Program
    {
        static void Main(string[] args)
        {
            var host = new ServiceHost(typeof(RoutingService));
            host.Open();
            Console.WriteLine("Server is running.");
            Console.ReadLine();
            host.Close();
        }
    }

مهم‌ترین بخش تنظیمات مربوط به Routing Service  است:
<system.serviceModel>
    <behaviors>
      <serviceBehaviors>
        <behavior name="routingBehv">
          <routing routeOnHeadersOnly="false" filterTableName="filters"/>
          <serviceDebug includeExceptionDetailInFaults="true"/>
          <serviceMetadata httpGetEnabled="true"/>
        </behavior>
      </serviceBehaviors>
    </behaviors>
    <routing>
      <filters>
        <filter name="CalV1ServiceFilter" filterType="EndpointName" filterData="Calv1Service"/>
        <filter name="CalV2ServiceFilter" filterType="EndpointName" filterData="Calv2Service"/>
      </filters>
      <filterTables>
        <filterTable name="filters">
          <add filterName="CalV1ServiceFilter" endpointName="Calv1Service" />
          <add filterName="CalV2ServiceFilter" endpointName="Calv2Service"/>
        </filterTable>
      </filterTables>
    </routing>
    <services>
      <!-- Routing service with endpoint definition -->
      <service name="System.ServiceModel.Routing.RoutingService"
               behaviorConfiguration="routingBehv">
        <endpoint
          address="/Calv1"
          binding="basicHttpBinding"
          contract="System.ServiceModel.Routing.IRequestReplyRouter"
          name="Calv1Service"/>
        <endpoint
         address="/Calv2"
         binding="basicHttpBinding"
         contract="System.ServiceModel.Routing.IRequestReplyRouter"
         name="Calv2Service"/>

        <host>
          <baseAddresses>
            <add baseAddress="http://localhost:9000/CalculatorService"/>
          </baseAddresses>
        </host>
      </service>
    </services>
    <client>
      <endpoint address="http://localhost:8732/CalculatorServiceV1"
                binding="basicHttpBinding"
                contract="*"
                name="Calv1Service"/>
      <endpoint address="http://localhost:8733/CalculatorServiceV2"
                binding="basicHttpBinding"
                contract="*"
                name="Calv2Service"/>
    </client>

  </system.serviceModel>
همان طور که مشاهده می‌کنید ابتدا اطلاعات Binding دو سرویس نوشته در بالا را به عنوان Endpoint‌های مختلف تعریف کردیم و سپس با استفاده از FilterTable نوع درخواست را به Endpoint مورد نظر وصل کردیم(در این مثال فیلتر بر اساس نوع Endpoint است). به وسیله این تعاریف Routing Service می‌داند که هر درخواست را به کدام سرویس ارسال نماید و پاسخ به کجا بازگشت داده شود.
مطالب دوره‌ها
انتقال خودکار Data Annotations از مدل‌ها به ViewModelهای ASP.NET MVC به کمک AutoMapper
عموما مدل‌های ASP.NET MVC یک چنین شکلی را دارند:
public class UserModel
{
    public int Id { get; set; }
 
    [Required(ErrorMessage = "(*)")]
    [Display(Name = "نام")]
    [StringLength(maximumLength: 10, MinimumLength = 3, ErrorMessage = "نام باید حداقل 3 و حداکثر 10 حرف باشد")]
    public string FirstName { get; set; }
 
    [Required(ErrorMessage = "(*)")]
    [Display(Name = "نام خانوادگی")]
    [StringLength(maximumLength: 10, MinimumLength = 3, ErrorMessage = "نام خانوادگی باید حداقل 3 و حداکثر 10 حرف باشد")]
    public string LastName { get; set; }
}
 و ViewModel مورد استفاده برای نمونه چنین ساختاری را دارد:
public class UserViewModel
{
      public string FirstName { get; set; }
      public string LastName { get; set; }
}
مشکلی که در اینجا وجود دارد، نیاز به کپی و تکرار تک تک ویژگی‌های (Data Annotations/Attributes) خاصیت‌های مدل، به خواص مشابه آن‌ها در ViewModel است؛ از این جهت که می‌خواهیم برچسب خواص ViewModel، از ویژگی Display دریافت شوند و همچنین اعتبارسنجی‌های فیلدهای اجباری و بررسی حداقل و حداکثر طول فیلدها نیز حتما اعمال شوند (هم در سمت کاربر و هم در سمت سرور).
در ادامه قصد داریم راه حلی را به کمک جایگزین سازی Provider‌های توکار ASP.NET MVC با نمونه‌ی سازگار با AutoMapper، ارائه دهیم، به نحوی که دیگر نیازی نباشد تا این ویژگی‌ها را در ViewModelها تکرار کرد.


قسمت‌هایی از ASP.NET MVC که باید جهت انتقال خودکار ویژگی‌ها تعویض شوند

ASP.NET MVC به صورت توکار دارای یک ModelMetadataProviders.Current است که از آن جهت دریافت ویژگی‌های هر خاصیت استفاده می‌کند. می‌توان این تامین کننده‌ی ویژگی‌ها را به نحو ذیل سفارشی سازی نمود.
در اینجا IConfigurationProvider همان Mapper.Engine.ConfigurationProvider مربوط به AutoMapper است. از آن جهت استخراج اطلاعات نگاشت‌های AutoMapper استفاده می‌کنیم. برای مثال کدام خاصیت Model به کدام خاصیت ViewModel نگاشت شده‌است. این‌کارها توسط متد الحاقی GetMappedAttributes انجام می‌شوند که در ادامه‌ی مطلب معرفی خواهد شد.
public class MappedMetadataProvider : DataAnnotationsModelMetadataProvider
{
    private readonly IConfigurationProvider _mapper;
 
    public MappedMetadataProvider(IConfigurationProvider mapper)
    {
        _mapper = mapper;
    }
 
    protected override ModelMetadata CreateMetadata(
        IEnumerable<Attribute> attributes,
        Type containerType,
        Func<object> modelAccessor,
        Type modelType,
        string propertyName)
    {
        var mappedAttributes =
            containerType == null ?
            attributes :
            _mapper.GetMappedAttributes(containerType, propertyName, attributes.ToList());
        return base.CreateMetadata(mappedAttributes, containerType, modelAccessor, modelType, propertyName);
    }
}

شبیه به همین کار را باید برای ModelValidatorProviders.Providers نیز انجام داد. در اینجا یکی از تامین کننده‌های ModelValidator، از نوع DataAnnotationsModelValidatorProvider است که حتما نیاز است این مورد را نیز به نحو ذیل سفارشی سازی نمود. در غیراینصورت error messages موجود در ویژگی‌های تعریف شده، به صورت خودکار منتقل نخواهند شد.
public class MappedValidatorProvider : DataAnnotationsModelValidatorProvider
{
    private readonly IConfigurationProvider _mapper;
 
    public MappedValidatorProvider(IConfigurationProvider mapper)
    {
        _mapper = mapper;
    }
 
    protected override IEnumerable<ModelValidator> GetValidators(
        ModelMetadata metadata,
        ControllerContext context,
        IEnumerable<Attribute> attributes)
    {
 
        var mappedAttributes =
            metadata.ContainerType == null ?
            attributes :
            _mapper.GetMappedAttributes(metadata.ContainerType, metadata.PropertyName, attributes.ToList());
        return base.GetValidators(metadata, context, mappedAttributes);
    }
}

و در اینجا پیاده سازی متد GetMappedAttributes را ملاحظه می‌کنید.
ASP.NET MVC هر زمانیکه قرار است توسط متدهای توکار خود مانند Html.TextBoxFor, Html.ValidationMessageFor، اطلاعات خاصیت‌ها را تبدیل به المان‌های HTML کند، از تامین کننده‌های فوق جهت دریافت اطلاعات ویژگی‌های مرتبط با هر خاصیت استفاده می‌کند. در اینجا فرصت داریم تا ویژگی‌های مدل را از تنظیمات AutoMapper دریافت کرده و سپس بجای ویژگی‌های خاصیت معادل ViewModel درخواست شده، بازگشت دهیم. به این ترتیب ASP.NET MVC تصور خواهد کرد که ViewModel ما نیز دقیقا دارای همان ویژگی‌های Model است.
public static class AutoMapperExtensions
{
    public static IEnumerable<Attribute> GetMappedAttributes(
        this IConfigurationProvider mapper,
        Type viewModelType,
        string viewModelPropertyName,
        IList<Attribute> existingAttributes)
    {
        if (viewModelType != null)
        {
            foreach (var typeMap in mapper.GetAllTypeMaps().Where(i => i.DestinationType == viewModelType))
            {
                var propertyMaps = typeMap.GetPropertyMaps()
                    .Where(propertyMap => !propertyMap.IsIgnored() && propertyMap.SourceMember != null)
                    .Where(propertyMap => propertyMap.DestinationProperty.Name == viewModelPropertyName);
 
                foreach (var propertyMap in propertyMaps)
                {
                    foreach (Attribute attribute in propertyMap.SourceMember.GetCustomAttributes(true))
                    {
                        if (existingAttributes.All(i => i.GetType() != attribute.GetType()))
                        {
                            yield return attribute;
                        }
                    }
                }
            }
        }
 
        if (existingAttributes == null)
        {
            yield break;
        }
 
        foreach (var attribute in existingAttributes)
        {
            yield return attribute;
        }
    }
}


ثبت تامین کننده‌های سفارشی سازی شده توسط AutoMapper

پس از تهیه‌ی تامین کننده‌های انتقال ویژگی‌ها، اکنون نیاز است آن‌ها را به ASP.NET MVC معرفی کنیم:
protected void Application_Start()
{
    AreaRegistration.RegisterAllAreas();
    WebApiConfig.Register(GlobalConfiguration.Configuration);
    FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
    RouteConfig.RegisterRoutes(RouteTable.Routes); 
 
    Mappings.RegisterMappings();
    ModelMetadataProviders.Current = new MappedMetadataProvider(Mapper.Engine.ConfigurationProvider);
 
    var modelValidatorProvider = ModelValidatorProviders.Providers
        .Single(provider => provider is DataAnnotationsModelValidatorProvider);
    ModelValidatorProviders.Providers.Remove(modelValidatorProvider);
    ModelValidatorProviders.Providers.Add(new MappedValidatorProvider(Mapper.Engine.ConfigurationProvider));
}
در اینجا ModelMetadataProviders.Current با MappedMetadataProvider جایگزین شده‌است.
در قسمت کار با ModelValidatorProviders.Providers، ابتدا صرفا همان تامین کننده‌ی از نوع DataAnnotationsModelValidatorProvider پیش فرض، یافت شده و حذف می‌شود. سپس تامین کننده‌ی سفارشی سازی شده‌ی خود را معرفی می‌کنیم تا جایگزین آن شود.


مثالی جهت آزمایش انتقال خودکار ویژگی‌های مدل به ViewModel

کنترلر مثال برنامه به شرح زیر است. در اینجا از متد Mapper.Map جهت تبدیل خودکار مدل کاربر به ViewModel آن استفاده شده‌است:
public class HomeController : Controller
{
    public ActionResult Index()
    {
        var model = new UserModel { FirstName = "و", Id = 1, LastName = "ن" };
        var viewModel = Mapper.Map<UserViewModel>(model);
        return View(viewModel);
    }
 
    [HttpPost]
    public ActionResult Index(UserViewModel data)
    {
        return View(data);
    }
}
با این View که جهت ثبت اطلاعات مورد استفاده قرار می‌گیرد. این View، اطلاعات مدل خود را از ViewModel معرفی شده‌ی در ابتدای بحث دریافت می‌کند:
@model Sample12.ViewModels.UserViewModel
 
@using (Html.BeginForm("Index", "Home", FormMethod.Post, htmlAttributes: new { @class = "form-horizontal", role = "form" }))
{
    <div class="row">
        <div class="form-group">
            @Html.LabelFor(d => d.FirstName, htmlAttributes: new { @class = "col-md-2 control-label" })
            <div class="col-md-10">
                @Html.TextBoxFor(d => d.FirstName)
                @Html.ValidationMessageFor(d => d.FirstName)
            </div>
        </div>
        <div class="form-group">
            @Html.LabelFor(d => d.LastName, htmlAttributes: new { @class = "col-md-2 control-label" })
            <div class="col-md-10">
                @Html.TextBoxFor(d => d.LastName)
                @Html.ValidationMessageFor(d => d.LastName)
            </div>
        </div>
        <div class="form-group">
            <div class="col-md-offset-2 col-md-10">
                <input type="submit" value="ارسال" class="btn btn-default" />
            </div>
        </div>
    </div>
}
در این حالت اگر برنامه را اجرا کنیم به شکل زیر خواهیم رسید:


در این شکل هر چند نوع مدل View مورد استفاده از ViewModel ایی تامین شده‌است که دارای هیچ ویژگی و Data Annotations/Attributes نیست، اما برچسب هر فیلد از ویژگی Display دریافت شده‌‌است. همچنین اعتبارسنجی سمت کاربر فعال بوده و برچسب‌های آن‌ها نیز به درستی دریافت شده‌اند.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.