نظرات مطالب
SQL Antipattern #2
نیازی به استفاده از Id نیست. مسیر زیر را در نظر بگیرید:
/// Example: "00001.00042.00005".
مسیر بالا متناظر با نودی در درخت می‌باشد که در عمق 2 بوده و فرزند 5 ام مربوط به نود 00001.00042 می‌باشد. اگر نیاز باشد فرزند جدیدی به نود 00001.00042 اضافه شود، باید ابتدا مسیر آخرین فرزند آن یعنی الگوی بالایی واکشی شده و سپس مسیر جدیدی برای نود جدید به شکل زیر تشکیل شود:
/// Example: "00001.00042.00006".
دقیقا مشابه به کاری می‌باشد که نوع داده hierarchyid موجود در Sql Server انجام می‌دهد. با این روش دقیقا مشخص می‌باشد که نود x در چه مکانی قرار داد.

مدیریت واحدهای سازمانی
یکسری متد کمکی هم برای مدیریت فیلد Path در نظر گرفته شده است.
    public class OrganizationalUnit : TrackableEntity<User>, IHasRowVersion, IPassivable
    {
        #region Constants

        /// <summary>
        /// Maximum depth of an UO hierarchy.
        /// </summary>
        public const int MaxDepth = 16;

        /// <summary>
        /// Length of a code unit between dots.
        /// </summary>
        public const int PathUnitLength = 5;

        /// <summary>
        /// Maximum length of the <see cref="Path"/> property.
        /// </summary>
        public const int MaxPathLength = MaxDepth * (PathUnitLength + 1) - 1;

        public const char HierarchicalDisplayNameSeperator = '»';

        #endregion

        #region Properties

        public string Name { get; set; }
        public string NormalizedName { get; set; }
        public string HierarchicalDisplayName { get; set; }
        /// <summary>
        /// Hierarchical Path of this organization unit.
        /// Example: "00001.00042.00005".
        /// It's changeable if OU hierarch is changed.
        /// </summary>
        public string Path { get; set; }
        public bool IsActive { get; set; } = true;
        public byte[] RowVersion { get; set; }

        #endregion

        #region Navigation Properties

        public OrganizationalUnit Parent { get; set; }
        public long? ParentId { get; set; }
        public ICollection<OrganizationalUnit> Children { get; set; } = new HashSet<OrganizationalUnit>();
        public ICollection<UserOrganizationalUnit> UserOrganizationalUnits { get; set; } =
            new HashSet<UserOrganizationalUnit>();

        #endregion

        #region Public Methods

        /// <summary>
        /// Creates path for given numbers.
        /// Example: if numbers are 4,2 then returns "00004.00002";
        /// </summary>
        /// <param name="numbers">Numbers</param>
        public static string CreatePath(params int[] numbers)
        {
            if (numbers.IsNullOrEmpty())
            {
                return null;
            }

            return numbers.Select(number => number.ToString(new string('0', PathUnitLength))).JoinAsString(".");
        }

        /// <summary>
        /// Appends a child path to a parent path. 
        /// Example: if parentPath = "00001", childPath = "00042" then returns "00001.00042".
        /// </summary>
        /// <param name="parentPath">Parent path. Can be null or empty if parent is a root.</param>
        /// <param name="childPath">Child path.</param>
        public static string AppendPath(string parentPath, string childPath)
        {
            if (childPath.IsNullOrEmpty())
            {
                throw new ArgumentNullException(nameof(childPath), "childPath can not be null or empty.");
            }

            if (parentPath.IsNullOrEmpty())
            {
                return childPath;
            }

            return parentPath + "." + childPath;
        }

        /// <summary>
        /// Gets relative path to the parent.
        /// Example: if path = "00019.00055.00001" and parentPath = "00019" then returns "00055.00001".
        /// </summary>
        /// <param name="path">The path.</param>
        /// <param name="parentPath">The parent path.</param>
        public static string GetRelativePath(string path, string parentPath)
        {
            if (path.IsNullOrEmpty())
            {
                throw new ArgumentNullException(nameof(path), "Path can not be null or empty.");
            }

            if (parentPath.IsNullOrEmpty())
            {
                return path;
            }

            if (path.Length == parentPath.Length)
            {
                return null;
            }

            return path.Substring(parentPath.Length + 1);
        }

        /// <summary>
        /// Calculates next path for given path.
        /// Example: if code = "00019.00055.00001" returns "00019.00055.00002".
        /// </summary>
        /// <param name="path">The path.</param>
        public static string CalculateNextPath(string path)
        {
            if (path.IsNullOrEmpty())
            {
                throw new ArgumentNullException(nameof(path), "Path can not be null or empty.");
            }

            var parentPath = GetParentPath(path);
            var lastUnitPath = GetLastUnitPath(path);

            return AppendPath(parentPath, CreatePath(Convert.ToInt32(lastUnitPath) + 1));
        }

        /// <summary>
        /// Gets the last unit path.
        /// Example: if path = "00019.00055.00001" returns "00001".
        /// </summary>
        /// <param name="path">The path.</param>
        public static string GetLastUnitPath(string path)
        {
            if (path.IsNullOrEmpty())
            {
                throw new ArgumentNullException(nameof(path), "Path can not be null or empty.");
            }

            var splittedPath = path.Split('.');
            return splittedPath[splittedPath.Length - 1];
        }

        /// <summary>
        /// Gets parent path.
        /// Example: if path = "00019.00055.00001" returns "00019.00055".
        /// </summary>
        /// <param name="path">The path.</param>
        public static string GetParentPath(string path)
        {
            if (path.IsNullOrEmpty())
            {
                throw new ArgumentNullException(nameof(path), "Path can not be null or empty.");
            }

            var splittedPath = path.Split('.');
            if (splittedPath.Length == 1)
            {
                return null;
            }

            return splittedPath.Take(splittedPath.Length - 1).JoinAsString(".");
        }

        #endregion
    }

البته یک ویو نمایشی برای حالت درختی هم بهتر است داشته باشید.


یکسری متد DomainService

       public virtual async Task<string> GetNextChildPathAsync(long? parentId)
        {
            var lastChild = await GetLastChildOrNullAsync(parentId).ConfigureAwait(false);
            if (lastChild == null)
            {
                var parentPath = parentId != null ? await GetPathAsync(parentId.Value).ConfigureAwait(false) : null;
                return OrganizationalUnit.AppendPath(parentPath, OrganizationalUnit.CreatePath(1));
            }

            return OrganizationalUnit.CalculateNextPath(lastChild.Path);
        }

        public async Task<string> GetNextChildHierarchicalDisplayNameAsync(string name, long? parentId)
        {
            var parent = parentId != null
                ? await _organizationalUnits.SingleOrDefaultAsync(a => a.Id == parentId.Value).ConfigureAwait(false)
                : null;

            return parent == null
                ? name
                : $"{parent.HierarchicalDisplayName} {OrganizationalUnit.HierarchicalDisplayNameSeperator} {name}";
        }

        public virtual async Task<OrganizationalUnit> GetLastChildOrNullAsync(long? parentId)
        {
            return await _organizationalUnits.OrderByDescending(c => c.Path)
                .FirstOrDefaultAsync(ou => ou.ParentId == parentId).ConfigureAwait(false);
        }

        public virtual async Task<string> GetPathAsync(long id)
        {
            Guard.ArgumentNotZero(id, nameof(id));
            var organizationalUnit = await _organizationalUnits.SingleOrDefaultAsync(ou => ou.Id == id).ConfigureAwait(false);
            if (organizationalUnit == null)
            {
                throw new KeyNotFoundException();
            }
            return organizationalUnit.Path;
        }

        public async Task<List<OrganizationalUnit>> FindChildrenAsync(long? parentId, bool recursive = false)
        {
            if (!recursive)
            {
                return await _organizationalUnits.Where(ou => ou.ParentId == parentId).ToListAsync().ConfigureAwait(false);
            }

            if (!parentId.HasValue)
            {
                return await _organizationalUnits.ToListAsync().ConfigureAwait(false);
            }

            var path = await GetPathAsync(parentId.Value).ConfigureAwait(false);

            return await _organizationalUnits.Where(
                ou => ou.Path.StartsWith(path) && ou.Id != parentId.Value).ToListAsync().ConfigureAwait(false);
        }

        public virtual async Task MoveAsync(long id, long? parentId)
        {
            Guard.ArgumentNotZero(id, nameof(id));
            var organizationalUnit = await _organizationalUnits.SingleOrDefaultAsync(ou => ou.Id == id).ConfigureAwait(false);
            if (organizationalUnit == null || organizationalUnit.ParentId == parentId)
            {
                return;
            }

            //Should find children before Path change
            var children = await FindChildrenAsync(id, true).ConfigureAwait(false);

            //Store old Path of OU
            var oldPath = organizationalUnit.Path;

            //Move OU
            organizationalUnit.Path = await GetNextChildPathAsync(parentId).ConfigureAwait(false);
            organizationalUnit.ParentId = parentId;

            //Update Children Paths
            foreach (var child in children)
            {
                child.Path = OrganizationalUnit.AppendPath(organizationalUnit.Path, OrganizationalUnit.GetRelativePath(child.Path, oldPath));
            }
        }



مطالب
برنامه نویسی موازی بخش دوم (محافظت از مقادیر مشترک)
 در بخش قبلی، مروری کلی بر مفاهیم اصلی برنامه نویسی موازی، از جمله شرایط و نکات استفاده از آن را بررسی کردیم. در انتهای بخش اول عنوان کردیم که در روند برنامه نویسی موازی، اگر دو یا چند Thread به طور مشترک به داده‌ای دسترسی داشته باشند، امکان بروز Race condition وجود خواهد داشت. پس باید کد خود را Thread Safe کنیم. می‌توان برای کنترل رفتارهای عجیب اشیاء در محیط‌های Multi Thread، عنوان Thread Safety را بکار برد.

به طور کلی ۴ روش در #C برای ایجاد Thread Safety وجود دارند:


1- Lock/Monitor
این دو روش یکسان هستند و مانند هم عمل می‌کنند. در واقع در ابتدا روش Monitor وجود داشته و بعد روش lock برای کوتاهی syntax، به صورت بلاکی به #C افزوده شده‌است. این روش تنهای بر روی Thread‌های داخلی App Domain کنترل دارد (اجازه ورود یک Thread) و نمی‌تواند بر روی Thread‌های خارج از این حوزه در محیط‌های Multi Thread محدودیتی اعمال نماید. منظور از Thread‌های داخلی، Thread هایی هستند که داخل Application ما ایجاد شده‌اند.

به تکه کد زیر توجه کنید:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Threading;

 class Program
    {
        static int a = 0;
        static int b = 0;
        static Random random = new Random();
        
        static void Main(string[] args)
        {

            Thread obj = new Thread(Division);
            obj.Start();

            Division();
        }

        static void Division()
        {

            for (int i = 0; i <= 500; i++)
            {

                try
                {
                   
                        //Choosing random numbers between 1 to 5
                        a = random.Next(1, 10);
                        b = random.Next(1, 10);


                        //Dividing
                        double ans = a / b;


                        //Reset Variables
                        a = 0;
                        b = 0;

                        Console.WriteLine("Answer : {0} --> {1}", i, ans);
                    
                }
                catch (Exception ex)
                {
                    Console.WriteLine(ex.ToString());
                }
            }
        }
    }

همانطور که در کد بالا ملاحظه می‌کنید، متد Division به صورت Thread Safe پیاده سازی نشده‌است! اما مشکل کجاست!؟

با برسی این متد و عملکرد آن متوجه می‌شویم که این متد در یک چرخه‌ی تکرار ۵۰۰ مرتبه‌ای، دو عدد تصادفی را در بازه‌ی ۱ تا ۱۰، انتخاب کرده و آن‌ها را بر هم تقسیم و متغیر‌های تصادفی را با مقدار ۰ پر می‌کند. همین عمل Reset Variable در این متد، باعث بروز خطا در محیط Multi Thread خواهد شد. بدین صورت که اگر این متد مانند مثال بالا توسط دو Thread مجزا فراخوانی شود، یکبار توسط New Thread و بلافاصله در Thread اصلی Application، احتمال این وجود خواهد داشت که در Thread دوم، بعد از انتخاب دو مقدار تصادفی و درست قبل از عملیات تقسیم، به طور همزمان Thread اول عملیات Reset Variable را انجام دهد که باعث بروز خطای تقسیم بر ۰ در Thread دوم می‌شود. این همان مشکلی است که گاها یافتن آن از طریق Debug بسیار دشوار خواهد بود.
اما با تغییر کد به شکل زیر
class Program
    {
        static int a = 0;
        static int b = 0;
        static Random random = new Random();
        static readonly object _object = new object();
        static void Main(string[] args)
        {

            Thread obj = new Thread(Division);
            obj.Start();

            Division();
        }

        static void Division()
        {

            for (int i = 0; i <= 500; i++)
            {

                try
                {
                    Monitor.Enter(_object);
                   
                        //Choosing random numbers between 1 to 5
                        a = random.Next(1, 10);
                        b = random.Next(1, 10);


                        //Dividing
                        double ans = a / b;


                        //Reset Variables
                        a = 0;
                        b = 0;

                        Console.WriteLine("Answer : {0} --> {1}", i, ans);
                    Monitor.Exit(_object);

                }
                catch (Exception ex)
                {
                    Console.WriteLine(ex.ToString());
                }
            }
        }
    }

مادامی که یک Thread در حالت انتخاب اعداد تصادفی تا تقسیم و اعلام نتیجه می‌باشد، به Thread‌های داخلی دیگر، اجازه‌ی ورود به این بخش که تحت کنترل Monitor می‌باشد داده نخواهد شد. همانطور که گفته شده، بازه‌ی تحت کنترل مانیتور میتواند با بلاک Lock(object) جایگزین شود. شیء object یک شیء مشترک (static) میان تمام اشیاء است برای کنترل ورود Thread‌ها و قفل گزاری مشترک بین این اشیاء.

2- Mutex:
این نوع قفل گزاری به منظور محافظت منابع مشترک برای جلوگیری از ورود Thread‌های بیرونی استفاده می‌شود. منظور از Thread‌های بیرونی Thread‌های یک کامپیوتر است. همچنین می‌توان از Mutex بجای lock نیز استفاده کرد؛ اما به دلیل هدف کاری Mutex، باید هزینه‌ی بیشتری (تقریبا 50 برابر کندتر از Lock) پرداخت کرد.
 static void Main()
  { 
    using (var mutex = new Mutex (false, "dotnettips.info Demo"))
    {
     
      if (!mutex.WaitOne (TimeSpan.FromSeconds (3), false))
      {
        Console.WriteLine ("Another app instance is running. Bye!");
        return;
      }
      RunProgram();
    }
  }
 
  static void RunProgram()
  {
    Console.WriteLine ("Running. Press Enter to exit");
    Console.ReadLine();
  }
در مثال بالا از یک Mutex نام دار استفاده شده است که به ما این امکان را می‌دهد تا به صورت Computer-Wide روی Thread‌ها ایجاد محدودیت نماییم. اگر متد بالا را در دو ترمینال اجرا کنید، نسخه‌ی دوم اجرا نخواهد شد. البته این نکته را در نظر داشته باشید که این امکان در سیتم عامل‌های مبتنی بر Linux غیرفعال است .
Mutex دارای دو متد مهم است :

۱- WaiteOne : شروع Blocking با این متد خواهد بود و اگر بتواند عملیات blocking را انجام دهد مقدار True را باز می‌گرداند. این متد دارای دو ورودی دیگر نیز هست که در مقالات بعدی به طور مفصل به آن‌ها اشاره خواهد شد. اما بطور خلاصه می‌توان اینگونه عنوان نمود که یک پارامتر زمان وجود دارد که مدت زمان انتظار برای Blocking را مشخص می‌کند و پارامتر Boolean دیگری که در حالت synchronization مورد استفاده قرار می‌گیرد و خروج و یا عدم خروج از دامنه synchronization را مشخص می‌کند.

۲- ReleaseMutex : شروع آزاد سازی انحصار، با این متد انجام می‌شود.

هیچگاه نباید یک Mutex را در کد رها کرد؛ زیرا باعث به‌وجود آمدن خطاهایی در کد خواهد شد. روش‌هایی برای رها سازی وجود دارد مانند Dispose کردن Mutex و یا استفاده از متد ReleaseMutex. قبل از خروج از کد باید دقت داشت در بخش هایی از کد که از این نوع قفل گزاری استفاده شده‌است، حتما باید مکانیسم‌های Exception Handling و یا Disposing را برای مدیریت Mutex ایجاد شده اعمال کرد.

3 -Semaphore 
یک نسخه پیشرفته‌تر از Mutex است که می‌تواند برای Thread‌های داخلی و یا خارجی استفاده شود و روی آنها اعمال محدودیت کند. همچنین می‌تواند اجازه‌ی ورود یک تا چند Thread را به بخشی از کد، برای محافظت از منابع بدهد. Semaphore نیز مانند Mutex دارای متد‌های Wait و Release است. یک Semaphore با ظرفیت ورود یک Thread در لحظه همان Mutex است. همچنین از Semaphore‌‌ها می‌توان در متدهای Async نیز استفاده کرد.

4- SemaphoreSlim
در واقع یک نسخه‌ی پیشرفته از Monitor و یک نسخه‌ی سبک وزن از Semaphore است و به همان شکل به شما اجازه‌ی محدودیت گزاری فقط بر روی Thread‌های داخلی را می‌دهد. اما بجای اجازه‌ی ورود فقط یک Thread، به شما این امکان را می‌دهد که اجازه‌ی ورود همزمان یک یا چند Thread را به انتخاب خود بدهید.

هزینه‌ی اعمال محدودیت (قفل گزاری) روی Thread ها
به طور کل هزینه‌ی قفل گزاری بر روی Thread‌ها بالاست. اما در صورت نیاز باید انتخاب درستی از بین موارد عنوان شده را انتخاب نمود. lock/Monitor و SemaphoreSlim دارای کمترین هزینه و Mutex و Semaphore دارای بیشترین هزینه و سربار هستند. اگر در Application‌های بزرگ از Mutex و Semaphore به درستی استفاده نشود، به جد باعث کندی خواهد شد.

در بخش بعدی مقاله، Double-checked locking را مورد بررسی قرار خواهیم داد.
نظرات مطالب
آرگومان‌های نامگذاری شده (named arguments/parameters) در C#4
یک نکته‌ی تکمیلی: بهبود جزئی آرگومان‌های نامدار در C# 7.2

تا پیش از C# 7.2، آرگومان‌های نامدار، تنها پس از ذکر آرگومان‌های بدون نام، مجاز بودند. برای مثال اگر امضای متدی به صورت زیر باشد:
public static void Write(int age, string name, string homeTown)
فراخوانی آن به صورت زیر تا C# 7.2 مجاز نبود:
Write(age: 20, "User 1", homeTown: "Tehran");
و باخطای کامپایلر زیر، کامپایل نمی‌شد:
Named argument specifications must appear after all fixed arguments have been specified.
این محدودیت در C# 7.2 برطرف شده‌است؛ به این شرط که موقعیت پارامترها تغییری نکنند و پارامترها دقیقا در همانجایی که قرار است باشند، معرفی شوند.
در این حالت تمام فراخوانی‌های ذیل در C# 7.2 مجاز هستند:
Write(age: 20, name: "User 1", "T1");
Write(age: 21, "User 2", homeTown: "T2");
Write(age: 22, "User 3", "T3");
Write(23, name: "User 4", "T4");
مطالب
محاسبه ی اختلاف زمان رخدادی در گذشته با زمان فعلی به فارسی
حتما در سایت جاری مشاهده کرده اید در اطلاعات مربوط به پست‌ها زمان تقریبی انتشار پست درج شده است. 
  • 12 ساعت قبل
  • دیروز
  • لحظاتی پیش
  • ...

نشان دادن همچین اطلاعاتی در برنامه‌های مختلف می‌تواند سودمند باشد ، مثلا در این سایت اگر مطلبی مربوط به گذشته باشد خواننده با دیدن عبارت 4 سال قبل از پرسیدن یک سری سوالات خودداری می‌کند.
آقای Jeff Awtood یکی از خالقین سایت Stackoverflow زمانی سوالی درباره‌ی نحوه‌ی پیاده سازی این ویژگی پرسیده بودند که در نهایت یکی از پاسخ ها پذیرفته شد. 
یک مثال از نحوه‌ی پیاده سازی این ویژگی برای زبان فارسی مانند زیر است :
public class RelativeTimeCalculator
{
    const int SECOND = 1;
    const int MINUTE = 60 * SECOND;
    const int HOUR = 60 * MINUTE;
    const int DAY = 24 * HOUR;
    const int MONTH = 30 * DAY;

    public static string Calculate(DateTime dateTime)
    {
        var ts = new TimeSpan(DateTime.Now.Ticks - dateTime.Ticks);
        double delta = Math.Abs(ts.TotalSeconds);
        if (delta < 1 * MINUTE)
        {
            return ts.Seconds == 1 ? "لحظه ای قبل" : ts.Seconds + " ثانیه قبل";
        }
        if (delta < 2 * MINUTE)
        {
            return "یک دقیقه قبل";
        }
        if (delta < 45 * MINUTE)
        {
            return ts.Minutes + " دقیقه قبل";
        }
        if (delta < 90 * MINUTE)
        {
            return "یک ساعت قبل";
        }
        if (delta < 24 * HOUR)
        {
            return ts.Hours + " ساعت قبل";
        }
        if (delta < 48 * HOUR)
        {
            return "دیروز";
        }
        if (delta < 30 * DAY)
        {
            return ts.Days + " روز قبل";
        }
        if (delta < 12 * MONTH)
        {
            int months = Convert.ToInt32(Math.Floor((double)ts.Days / 30));
            return months <= 1 ? "یک ماه قبل" : months + " ماه قبل";
        }
        int years = Convert.ToInt32(Math.Floor((double)ts.Days / 365));
        return years <= 1 ? "یک سال قبل" : years + " سال قبل";
    }

} 
نحوه‌ی کارکرد کد اینگونه است که دلتای زمان داده شده به متد Calculate با زمان فعلی بر حسب ثانیه محاسبه می‌گردد و با یک سری شرط مقایسه می‌شود ، مثلا اگر دلتا کمتر از 120 ثانیه بود رشته‌ی یک دقیقه قبل باز می‌گردد.
یک مثال از نحوه‌ی استفاده از این کلاس اینگونه است : 
var relativeTime=RelativeTimeCalculator.Calculate(DateTime.Now.AddMinutes(-10)); 
مطالب
آموزش LINQ بخش ششم - عملگرهای پرس و جو قسمت اول
عملگرهای استاندارد پرس و جو

در یک طبقه بندی کلی، عملگرهای پرس و جو بر اساس ورودی و خروجی آنها به سه دسته تقسیم می‌شوند:
1- نتیجه‌ی توالی ورودی، بصورت یک توالی، به خروجی ارسال می‌شود.
2- نتیجه‌ی توالی ورودی، بصورت یک عنصر یکتا و واحد به خروجی ارسال می‌شود.
3- اثری از ورودی در توالی خروجی وجود ندارد (این عملگرها عناصر خودشان را تولید می‌کنند).

دسته‌ی آخر شاید کمی عجیب به نطر برسد. این عملگرها هیچ توالی ورودی را دریافت نمی‌کنند. مثلا می‌توان از طریق این عملگر‌ها، یک توالی از اعداد صحیح را تولید کرد.
تقسیم بندی عملگرهای پرس و جو بر اساس عملکرد به صورت زیر می‌باشد : 
  • محدود کننده (Restriction)
where
  • بازتابی (Projection)
Select,SelectMany 
  • جداکننده (Partitioning)
Take,Skip,TakeWhile,SkipWhile 
  • مرتب سازی (Ordering)
OrderBy,OrderByDescending,ThenBy,ThenByDescending,Reverse 
  • گروه بندی (Grouping)
GroupBy 
  • مجموعه (Set)
Concat,Union,Intersect,Except 
  • تبدیل (Conversion)
ToArray,ToList,ToDictionary,ToLookup,OfType,Cast 
  • عنصر(Element)
First,FirstOrDefault,Last,LastOrDefalt,Single,SingleOrDefault 
  • عنصر در (ElementAt)
ElementAtOrDefault,DefaultIfEmpty 
  • تولید (Generation)
Empty,Range,Report 
  • کمی (Quantifier)
Any,All,Contains,SequenceEqual 
  • مجموعه (Aggregate)
Count,LongCount,Sum,Min,Max,Average,Aggregate 
  • اتصال (Join)
Join,GroupJoin,Zip 

در این مطلب عملگرهای محدود کننده، بازتابی و جداکننده، بررسی خواهند شد. بعد از معرفی هر عملگر، معادل عبارت‌های پرس و جوی آنها نیز معرفی خواهند شد.

عملگرهای محدود کننده (Restriction Operators)
این عملگرها یک توالی ورودی را دریافت و یک توالی محدود شده یا به بیان دیگر فیلتر شده را تولید می‌کنند. عناصر توالی خروجی، عناصری هستند که با فیلتر اعمال شده مطابقت دارند.
Where
این عملگر، عناصری را به خروجی ارسال می‌کند که با گزاره‌ی (Predicate) تعریف شده مطابقت داشته باشند.
نکته : گزاره (Predicate) تابعی است که اگر شرط آن تامین شود، مقدار true و در غیر اینصورت مقدار false را باز می‌گرداند.
مثال : 
 Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.Where(x => x.Calories >= 200);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
در کد فوق از عملگر where استفاده شده است. گزاره‌ی (x=>x.Calories>=200) به ازای هر غذایی که کالری آن مساوی یا بزرگتر از 200 باشد، مقدار true را باز می‌گرداند.
خروجی کد بالا:
 Sugar
Butter
عملگر where امضای دیگری دارد که اندیس عنصر ورودی توالی را نیز می‌پذیرد. در مثال قبل، اندیس Sugar برابر 0 و اندیس Butter برابر 4 است. پرس و جوی زیر خروجی مشابه مثال قبل را تولید می‌کند.
 IEnumerable<Ingredient> query = ingredients.Where((ingredient, index) => ingredient.Name == "Sugar" || index == 4);
گزاره نوشته شده در این پرس و جو  از نوع <Func<Ingredient,int,bool خواهد بود و پارامتر int، اندیس عنصر در توالی ورودی می‌باشد.

پیاده سازی توسط عبارت‌های پرس و جو
 در روش عبارت‌های پرس و جو، کلمه‌ی کلیدی where به‌همراه یک عبارت منطقی در پرس و جو ظاهر می‌شود:
 IEnumerable<Ingredient> gueryExpression =
from i in ingredients
where i.Calories >= 200
select i;


عملگرهای بازتاب (Projection Operators)

عملگرهای پرس و جوی بازتابی، یک توالی ورودی را دریافت و با تبدیل عناصر آنها، یک توالی خروجی را تولید می‌کنند.

Select
عملگر پرس و جوی select هر عنصر توالی ورودی را به یک عنصر در توالی خروجی تبدیل می‌کند. تعداد عناصر ورودی و خروجی در این حالت یکسان می‌باشند.
پرس و جوی زیر عناصر توالی ورودی Ingredient را به عناصر رشته‌ای در توالی خروجی بازتاب می‌کند. عبارت Lambda تعریف شده، نحوه‌ی بازتاب عناصر را مشخص می‌کند (هر عنصر ingredient به یک عنصر رشته‌ای بازتاب می‌شود):
 IEnumerable<string> query = ingredients.Select(x => x.Name);
  می‌توان توالی خروجی با عناصر صحیح را نیز تولید کرد:  
 IEnumerable<int> query = ingredients.Select(x => x.Name.Length);

در عملیات بازتاب می‌توان یک شیء جدید را در توالی خروجی ایجاد کرد. در کد زیر عناصر Ingredient به یک عنصر جدید از نوع IngredientNameAndLenght بازتاب شده است.
class IngredientNameAndLength
{
    public string Name { get; set; }
    public int Length { get; set; }
    public override string ToString()
    {
      return Name + " " + Length;
    }
}

IEnumerable<IngredientNameAndLength> query = ingredients.Select(x =>
new IngredientNameAndLength
{
   Name = x.Name,
   Length = x.Name.Length
});
پرس و جوی بالا را می‌توان به شکل نوع‌های بی نام نیز بازنویسی کرد. باید دقت شود که نوع بازگشتی این پرس و جو باید از نوع var باشد.
var query = ingredients.Select(x =>
new
{
   Name = x.Name,
   Length = x.Name.Length
});
خروجی کد بالا به شکل زیر است :
{ Name = Sugar, Length = 5 }
{ Name = Egg, Length = 3 }
{ Name = Milk, Length = 4 }
{ Name = Flour, Length = 5 }
{ Name = Butter, Length = 6 }

پیاده سازی توسط عبارت‌های پرس و جو

کلمه‌ی کلیدی select در عبارت‌های پرس و جو، به شکل زیر استفاده می‌شود:
var query = from i in ingredients
select new
{
    Name=i.Name,
    Length=i.Name.Length
};

SelectMany 
برعکس دستور select که به ازای هر عنصر در توالی ورودی، یک عنصر را در توالی خروجی بازتاب می‌کرد، دستور SelectMany ممکن است تعداد عناصر کمتر و یا بیشتری را در توالی خروجی بازتاب کند (انتخاب مقادیر یک مجموعه از مجموعه‌ی دیگر).
عبارت Lambda نوشته شده در عملگر Select، یک مقدار را باز می‌گرداند. اما عبارت Lambda نوشته شده در عملگر SelectMany، یک توالی فرزند (Child Sequence) را ایجاد می‌کند. توالی فرزند ممکن است حاوی تعداد مختلفی از عناصر به ازای هر عنصر در توالی ورودی باشد.
در مثال زیر عبارت Lambda یک توالی فرزند از کاراکتر‌ها ایجاد می‌کند (یک کاراکتر به ازای هر حرف از هر عنصر توالی ورودی). به‌طور مثال عنصر ورودی Sugar، پس از پردازش توسط  عبارت Lambda، یک توالی فرزند با 5 عنصر 's','u','g','e','r' فراهم می‌کند. هر رشته‌ی در توالی Ingredient می‌تواند تعداد حروف متفاوتی داشته باشد. در نتیجه عبارت Lambda، توالی‌های فرزندی با طول‌های مختلف ایجاد می‌کند.
مثال:
string[] ingredients = {"Sugar","Egg","Milk","Flour","Butter"};
IEnumerable<char> query = ingredients.SelectMany(x => x.ToCharArray());
foreach (var item in query)
{
   Console.WriteLine(item);
}
خروجی مثال بالا :
 S
u
g
a
r
E
g
g
M
i
l
k
F
l
o
u
r
B
u
t
t
e
r

پیاده سازی توسط عبارت‌های پرس و جو

در روش عبارت‌های پرس و جو یک عبارت (clause) اضافی from برای تولید یک توالی فرزند به کار برده می‌شود. خروجی کد زیر مشابه کد قبلی است:
 string[] ingredients = {"Sugar","Egg","Milk","Flour","Butter"};
IEnumerable<char> query2 = from i in ingredients
from c in i.ToCharArray()
select c;

foreach (var item in query2)
{
   Console.WriteLine(item);
}

عملگرهای جداکننده (Partitioning Operators)
عملگر‌های جداکننده، یک توالی ورودی را دریافت و آنها را از هم جدا می‌کنند.

Take
عملگر Takeیک توالی ورودی را دریافت کرده و تعداد مشخصی از توالی را باز می‌گرداند.
مثال: عملگر Take، سه عضو اول توالی Ingredient را باز می‌گرداند:
 Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.Take(3);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا :
 Sugar
Egg
Milk
همچون سایر عملگر‌های پرس و جو، عملگر Take هم می‌تواند بصورت زنجیروار استفاده شود. در مثال زیر ابتدا عملگر Where برای محدود کردن عناصر با شرطی خاص و سپس عملگر Take برای جدا کردن عناصر حاصل از نتیجه‌ی مرحله قبل مورد استفاده قرار گرفته است:
Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.Where(x=>x.Calories>100).Take(2);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا :
Sugar
Milk

پیاده سازی توسط عبارت‌های پرس و جو

کلمه‌ی کلیدی (Key word) جایگزینی برای عملگر Take وجود ندارد، ولی می‌توان با ترکیب دو روش نوشتن پرس و جو، خروجی مورد نظر را تولید کرد:
 IEnumerable<Ingredient> query =
(from i in ingredients
  where i.Calories > 100
  select i).Take(2);
TakeWhile
عملگر TakeWhile بر عکس عملگر Take تعداد مشخصی را باز می‌گرداند . این عملگر تا زمانی که گزاره با عناصر مطابقت داشته باشد، اجرا می‌شود و در غیر اینصورت خاتمه پیدا می‌کند.
کد زیر تا زمانی که خصوصیت Calorie توالی ورودی بزرگتر و مساوی 100 باشد، عناصر را جدا می‌کند.
Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.TakeWhile(x => x.Calories >= 100);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا :
 Sugar
Egg
Milk
همانطور که مشاهده می‌کنید، وقتی عملگر TakeWhile به عنصری می‌رسد که گزاره‌ی آن را نقض می‌کند، متوقف می‌شود (در اینجا Flour). در حالی که ممکن است عناصری بعد از Flour وجود داشته باشند که با گزاره‌ی TakeWhile تطابق داشته باشند.

پیاده سازی توسط عبارت‌های پرس و جو
برای این عملگر هم کلمه‌ی کلیدی (Key word) جایگزینی وجود ندارد و با ترکیب دو روش نوشتن پرس و جو نتیجه‌ی دلخواه حاصل می‌شود.
 
Skip
این عملگر تعداد مشخصی از عناصر را از ابتدای توالی نادیده گرفته و باقی عناصر را باز می‌گرداند.
کد زیر سه عضو اول توالی را نادیده گرفته و مابقی را باز می‌گرداند:
Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.Skip(3);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا :
 Flour
Butter

پیاده سازی توسط عبارت‌های پرس و جو

برای این عملگر هم کلمه‌ی کلیدی (Key word) جایگزینی وجود ندارد و با ترکیب دو روش نوشتن پرس و جو، نتیجه‌ی دلخواه حاصل می‌شود.
با ترکیب عملگر Take و Skip می‌توان اطلاعات را به‌صورت صفحه بندی به کاربر ارائه کرد. مثال زیر این حالت را نشان می‌دهد.
IEnumerable<Ingredient> firstPage = ingredients.Take(2);
IEnumerable<Ingredient> secondPage = ingredients.Skip(2).Take(2);
IEnumerable<Ingredient> thirdPage = ingredients.Skip(4).Take(2);

Console.WriteLine("First Page : ");
foreach (var ingredient in firstPage)
{
   Console.WriteLine(" - " + ingredient.Name);
}

Console.WriteLine("Second Page : ");
foreach (var ingredient in secondPage)
{
   Console.WriteLine(" - " + ingredient.Name);
}

Console.WriteLine("Third Page : ");
foreach (var ingredient in thirdPage)
{
   Console.WriteLine(" - " + ingredient.Name);
}
خروجی کد بالا :
 First Page :
 - Sugar
 - Egg
Second Page :
 - Milk
 - Flour
Third Page :
 - Butter
SkipWhile
عملگر SkipWhile، مثل عملگر TakeWhile، از یک گزاره برای ارزیابی عناصر توالی استفاده می‌کند. این عملگر تا زمانیکه عناصر توالی، گزاره را نقض نکنند، عناصر را نادیده می‌گیرد.

مثال:
Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.SkipWhile(x => x.Name != "Milk");
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا:
 Milk
Flour
Butter
مطالب
تکرار خودکار سرستون‌های یک جدول در صفحات مختلف، توسط iTextSharp

یکی از نیازهای تهیه یک گزارش خوب، تکرار سرستون‌ها در صفحات مختلف است. شاید در ابتدا این ایده مطرح شود که مثلا می‌خواهیم 25 ردیف را در هر صفحه نمایش دهیم. بر همین اساس می‌توان هر 25 ردیف یکبار، یک سطر footer و در ادامه در صفحه بعد یک سطر header را اضافه کرد و همینطور الی آخر. مهمترین ایراد این روش آن است که الزامی ندارد که واقعا 25 ردیف در یک صفحه جا شوند. عموما بر اساس اندازه‌ی محتوای نمایش داده شده، ممکن است یک صفحه 20 ردیف شود، صفحه‌ای دیگر 10 ردیف. این مورد تمام محاسبات را به هم خواهد ریخت. به همین جهت دو خاصیت مهم به نام‌های HeaderRows و FooterRows در شیء PdfPTable قابل تنظیم است. این دو خاصیت نیاز به اندکی توضیح دارند که در ادامه ذکر خواهد شد:
using System.Diagnostics;
using System.IO;
using iTextSharp.text;
using iTextSharp.text.pdf;

namespace HeadersAndFooters
{
class Program
{
static void Main(string[] args)
{
using (var pdfDoc = new Document(PageSize.A4))
{
var pdfWriter = PdfWriter.GetInstance(pdfDoc, new FileStream("Test.pdf", FileMode.Create));
pdfDoc.Open();

var table1 = new PdfPTable(1);
table1.HeaderRows = 2;
table1.FooterRows = 1;

//header row
table1.AddCell(new Phrase("header"));

//footer row
table1.AddCell(new Phrase("footer"));

//adding some rows
for (int i = 0; i < 70; i++)
{
table1.AddCell(new Phrase("Row " + i));
}

pdfDoc.Add(table1);
}

//open the final file with adobe reader for instance.
Process.Start("Test.pdf");
}
}
}
در این مثال، یک جدول ساده با یک ستون تعریف شده و سپس HeaderRows آن به 2 و FooterRows آن به 1 مقدار دهی شده‌‌اند.
HeaderRows = 2 به این معنا است که 2 سطری را که بلافاصله در ادامه اضافه می‌کنید، در محاسبات نمایش خودکار header یا footer قرار می‌گیرند. FooterRows = 1 به این معنا است که از این تعداد، آخرین سطر، معنای footer را می‌دهد. بنابراین اولین table1.AddCell ، همان header خودکار نمایش داده شده در بالای تمام صفحات خواهد بود و table1.AddCell بعدی جهت نمایش footer خودکار بکار می‌رود. این دو سطر کاربرد دیگری ندارند.
مثالی دیگر جهت مشخص شدن این مفاهیم:
table1.HeaderRows = 3;
table1.FooterRows = 1;
در اینجا HeaderRows = 3 یعنی پس از تعریف وهله‌ای از شیء PdfPTable، سه سطر اولی که اضافه می‌شوند جزو حیطه‌ی header و footer خودکار قرار دارند. در این بین چون FooterRows = 1 تعریف شده، 2 سطر اول header تکرار شونده صفحات مختلف را تشکیل می‌دهند و سومین سطر همان footer خواهد بود.

از این طراحی لذت می‌برید؟!

نظرات مطالب
آشنایی با مفاهیم نوع داده Enum و توسعه آن - قسمت دوم
وقتی کلاس Description در   فضای نام  System.ComponentModel وجود داره دلیلی نداره  کلاس مشابه ای تعریف کنیم.
بخاطر اینکه مصرف کننده محض نباشیم یک متد الحاقی به نام ()GetEnumList اضافه کردم که لیست اعضای یک Enum  رو برای استفاده در کمبو باکس و ... بر می‌گرودنه :
ابتدا کلاس زیر به کلاس ExtensionMethodCls اضافه می‌کنیم :
 public class EnumObject
        {
            public Enum ValueMember { get; set; }
            public int intValueMember
            {
                get { return int.Parse(ValueMember.ToString("D")); }
            }
            public string stringValueMember
            {
                get { return ValueMember.ToString(""); }
            }
            public string DisplayMember
            {
                get { return ValueMember.GetDescription(); }
            }
        }
و متد الحاقی زیر رو برای گرفتن لیست تعریف می‌کنیم:
      public static List<EnumObject> GetEnumList(this Enum enu)
        {
            List<EnumObject> li = new List<EnumObject>();
            foreach (var item in enu.GetType().GetEnumValues())
            {
                li.Add(new EnumObject { ValueMember = (Enum)item });
            }
            return li;
        }
نحوه استفاده  :
          comboBox1.DataSource = Grade.VeryGood.GetEnumList();
          comboBox1.DisplayMember = "DisplayMember";
          comboBox1.ValueMember = "ValueMember";
همون طوری که در کد بالا می‌بینید برای گرفتن لیست مجبور شدیم یکی از اعضای enum  رو انتخاب کنیم (Grade.VeryGood.GetEnumList()) شاید انتخاب یکی از اعضا و بعد درخواست لیست اعضا رو کردن کار قشنگی نباشه به همین دلیل متد زیر رو تعریف کردیم :
        public static List<EnumObject> EnumToList<T>()
        {
            Type enumType = typeof(T);
            if (enumType.BaseType != typeof(Enum))
                throw new ArgumentException("T must be of type System.Enum");

            List<EnumObject> li = new List<EnumObject>();
            foreach (var item in enumType.GetEnumValues())
            {
                li.Add(new EnumObject { ValueMember = (Enum)item });
            }
            return li;
        }
نحوه استفاده :
    comboBox1.DataSource =ExtensionMethodCls.EnumToList<Grade>();
          comboBox1.DisplayMember = "DisplayMember";
          comboBox1.ValueMember = "ValueMember";
کد کامل :
 public static class ExtensionMethodCls
    {
        public class EnumObject
        {
            public Enum ValueMember { get; set; }
            public int intValueMember
            {
                get { return int.Parse(ValueMember.ToString("D")); }
            }
            public string stringValueMember
            {
                get { return ValueMember.ToString(""); }
            }
            public string DisplayMember
            {
                get { return ValueMember.GetDescription(); }
            }
        }
 
    

        public static List<EnumObject> EnumToList<T>()
        {
            Type enumType = typeof(T);
            if (enumType.BaseType != typeof(Enum))
                throw new ArgumentException("T must be of type System.Enum");

            List<EnumObject> li = new List<EnumObject>();
            foreach (var item in enumType.GetEnumValues())
            {
                li.Add(new EnumObject { ValueMember = (Enum)item });
            }
            return li;
        }

        public static List<EnumObject> GetEnumList(this Enum enu)
        {
            List<EnumObject> li = new List<EnumObject>();
            foreach (var item in enu.GetType().GetEnumValues())
            {
                li.Add(new EnumObject { ValueMember = (Enum)item });
            }
            return li;
        }

        public static string GetDescription(this Enum enu)
        {

            Type type = enu.GetType();

            MemberInfo[] memInfo = type.GetMember(enu.ToString());

            if (memInfo != null && memInfo.Length > 0)
            {

                object[] attrs = memInfo[0].GetCustomAttributes(typeof(DescriptionAttribute), false);

                if (attrs != null && attrs.Length > 0)
                    return ((DescriptionAttribute)attrs[0]).Description;
            }

            return enu.ToString();

        }
    }
مطالب دوره‌ها
مراحل Refactoring یک قطعه کد برای اعمال تزریق وابستگی‌ها
برای رسیدن به الگوی معکوس سازی وابستگی‌ها عموما مراحل زیر طی می‌شوند:

الف) در متدهای لایه جاری خود واژه‌های کلیدی new و همچنین کلیه فراخوانی‌های استاتیک را بیابید.
ب) وهله سازی این‌ها را به یک سطح بالاتر (نقطه آغازین برنامه) منتقل کنید. اینکار باید بر اساس اتکای به Abstraction و برای مثال استفاده از اینترفیس‌ها صورت گیرد.
ج) اینکار را آنقدر تکرار کنید تا دیگر در کدهای لایه جاری خود واژه کلیدی new یا فراخوانی متدهای استاتیک مشاهده نشود.
د) در آخر وهله سازی object graphهای مورد نیاز را به یک IoC Container محول کنید.


یک مثال: ابتدا بررسی یک قطعه کد متداول

using System.Net;
using System.Text;
using System.Text.RegularExpressions;
using System.Web.Mvc;

namespace DI06.Controllers
{
    public class HomeController : Controller
    {
        public ActionResult Index()
        {
            string result = string.Empty;
            using (var client = new WebClient { Encoding = Encoding.UTF8 })
            {
                result = client.DownloadString("https://www.dntips.ir/");
            }
            var match = new Regex(@"(?s)<title>(.+?)</title>", RegexOptions.IgnoreCase).Match(result);
            var title = match.Groups[1].Value.Trim();

            ViewBag.PageTitle = title;
            return View();
        }
    }
}
فرض کنید یک برنامه ASP.NET MVC را به نحو فوق تهیه کرده‌ایم. در کدهای کنترلر آن قصد داریم محتویات Html یک صفحه خاص را دریافت و سپس عنوان آن‌را استخراج کرده و نمایش دهیم.
مشکلات کد فوق:
الف) قرار گرفتن منطق تجاری پیاده سازی کدها مستقیما داخل کدهای یک اکشن متد؛ این مساله در دراز مدت به تکرار شدید کدها منجر خواهد شد که نهایتا قابلیت نگهداری آن‌را کاهش می‌دهند.
ب) در این کد حداقل دو بار واژه کلیدی new ذکر شده است. مورد اول یا new WebClient، از همه مهم‌تر است؛ از این جهت که نوشتن آزمون واحد را برای این کنترلر بسیار مشکل می‌کند. آزمون‌های واحد باید سریع و بدون نیاز به منابع خارجی، قابل اجرا باشند. تعویض آن هم مطابق کدهای تدارک دیده شده کار ساده‌ای نیست.


بهبود کیفیت قطعه کد متداول فوق با استفاده از الگوی معکوس سازی وابستگی‌ها

در اصل معکوس سازی وابستگی‌ها عنوان کردیم لایه بالایی سیستم نباید مستقیما به لایه‌های زیرین در حال استفاده از آن، وابسته باشد. این وابستگی باید معکوس شده و همچنین بر اساس Abstraction یا برای مثال استفاده از اینترفیس‌ها صورت گیرد.
به همین منظور یک پروژه دیگر را از نوع Class library، مثلا به نام DI06.Services به Solution جاری اضافه می‌کنیم.
namespace DI06.Services
{
    public interface IWebClientServices
    {
        string FetchUrl(string url);
        string GetWebPageTitle(string url);
    }
}

using System.Net;
using System.Text;
using System.Text.RegularExpressions;

namespace DI06.Services
{
    public class WebClientServices : IWebClientServices
    {
        public string FetchUrl(string url)
        {
            using (var client = new WebClient { Encoding = Encoding.UTF8 })
            {
                return client.DownloadString(url);
            }
        }

        public string GetWebPageTitle(string url)
        {
            var html = FetchUrl(url);
            var match = new Regex(@"(?s)<title>(.+?)</title>", RegexOptions.IgnoreCase).Match(html);
            return match.Groups[1].Value.Trim();
        }
    }
}
در این لایه، سرویس WebClient ایی را تدارک دیده‌ایم. این سرویس می‌تواند محتوای Html یک آدرس را برگرداند و یا عنوان آن آدرس خاص را استخراج نماید.
هنوز کار معکوس سازی وابستگی‌ها رخ نداده است. صرفا اندکی تمیزکاری و انتقال پیاده سازی منطق تجاری به یک سری کلاس‌هایی با قابلیت استفاده مجدد صورت گرفته است. به این ترتیب اگر باگی در این کدها وجود داشته باشد و همچنین از آن در چندین نقطه برنامه استفاده شده باشد، اصلاح این کلاس مرکزی، به یکباره تمامی قسمت‌های مختلف برنامه را تحت تاثیر مثبت قرار داده و از تکرار کدها و فراموشی احتمالی بهبود قسمت‌های مشابه جلوگیری می‌کند.
کار معکوس سازی وابستگی‌ها در یک لایه بالاتر صورت خواهد گرفت:
using System.Web.Mvc;
using DI06.Services;

namespace DI06.Controllers
{
    public class HomeController : Controller
    {
        readonly IWebClientServices _webClientServices;
        public HomeController(IWebClientServices webClientServices)
        {
            _webClientServices = webClientServices;
        }

        public ActionResult Index()
        {
            ViewBag.PageTitle = _webClientServices.GetWebPageTitle("https://www.dntips.ir/");
            return View();
        }
    }
}
اینبار کنترلر Home را توسط تزریق وابستگی‌ها در سازنده کنترلر، بازنویسی کرده‌ایم. کد نهایی بسیار تمیزتر از حالت قبل است. دیگر پیاده سازی متد GetWebPageTitle مستقیما داخل یک اکشن متد قرار نگرفته است. همچنین این کنترلر اصلا نمی‌داند که قرار است از کدام پیاده سازی اینترفیس IWebClientServices استفاده کند. اگر در تنظیمات اولیه IoC Container مورد استفاده، کلاس WebClientServices ذکر شده باشد، از آن استفاده خواهد کرد؛ یا اگر حتی کلاس WebClientServicesFake نیز معرفی گردد (جهت انجام آزمون غیر وابسته به new WebClient)، باز هم بدون کوچکترین تغییری در کدهای آن قابل استفاده خواهد بود.

در مورد نحوه تنظیمات اولیه یک IoC Container و یا پیشنیازهای ASP.NET MVC جهت آماده شدن برای تزریق خودکار وابستگی‌ها در سازنده کنترلرها، پیشتر مطالبی را در این سری مطالعه کرده‌اید؛ در اینجا نیز اصول مورد استفاده یکی است و تفاوتی نمی‌کند.
مطالب
آشنایی با Gridify
Gridify چیست ؟

به طور خلاصه Gridify یک کتابخانه ساده و سریع است که عملیات‌های Filtering , Pagination و Sorting را با استفاده از شرط‌های متنی (string based) امکان پذیر میکند.
به طور مثال فرض کنید که یک API را برای دریافت لیست کاربران با نام UsersList نوشته‌اید. مثال:
 [HttpGet("[action]")]
 public async Task<IActionResult> UsersList()
 {
    var users =  await _dbContext.Users.AsNoTracking().ToListAsync();
    return Ok(users);
 }
طبیعتا بخش FrontEnd نرم افزار شما نیاز دارد این اطلاعات را به کاربر نمایش دهد. به همین جهت در بیشتر مواقع از یک گرید برای نمایش این اطلاعات استفاده میشود.
پس از دریافت اطلاعات از سرور با مشکلات زیر مواجه خواهیم شد.
  1. عدم پشتیبانی از Pagination: چون API، تمامی کاربران را به سمت کلاینت ارسال میکند؛ به همین جهت، هم با مشکل کارآیی (performance) در آینده مواجه میشویم و هم امکان گذاشتن صفحه بندی (Pagination) وجود نخواهد داشت. 
  2. عدم پشتیبانی از Sorting: اگر در گرید نمایش داده شده کاربر بخواهد اطلاعات را Sort کند، چون چنین امکانی هنوز برای API ما تعریف نشده، این عملیات سمت سرور امکان پذیر نیست.
  3. عدم پشتیبانی از Filtering: همیشه نمایش تمامی اطلاعات مفید نیست. در اکثر مواقع ما نیاز داریم تا قسمتی از اطلاعات را با شرطی خاص، برگردانیم. به طور مثال لیست کاربران فعال در سامانه یا لیست کاربران غیرفعال. 
این مشکلات بدون استفاده از هیچ کتابخانه‌ای قابل حل است ولی نه به سادگی؛ به طور مثال یا باید چندین API مختلف با امکانات مختلف بنویسیم، یا یک API را برای پشتیبانی از این موارد تغییر بسیار دهیم. من برای اینکه از بحث دور نشویم، به پیاده سازی نمونه دستی پشتیبانی از این موارد در اینجا نمی‌پردازم، چرا که اگر یکبار تلاشی را برای اینکار انجام داده باشیم، طبیعتا  مشکلات و کد کثیفی که در نهایت تولید شده است، یادآوری خواهد شد. 
برای رفع این مشکلات میتوان از کتابخانه Gridify استفاده کرد. مثال :
 [HttpGet("[action]")]
 public async Task<IActionResult> UsersList(GridifyQuery filter)
 {
    var users =  await _dbContext.Users.AsNoTracking().GridifyAsync(filter);
    return Ok(users);
 }
در مثال بالا با استفاده از کلاس GridifyQuery میتوانیم به کنترل هر سه مشکل Sorting - Pagination - Filtering سمت کلاینت بپردازیم. (در ادامه با این کلاس بیشتر آشنا خواهیم شد).


استفاده از Gridify به API‌ها محدود نمیشود. به طور کلی ما میتوانیم در هر نوع لیستی که امکان استفاده از IQueryable  را به ما میدهد از آن استفاده نماییم. 
فرض کنید در یک برنامه Console Application قصد داریم یک فیلتر را از کاربر دریافت کرده و آن را روی لیست خروجی خود اعمال کنیم. به دلیل اینکه امکان جستجوی متنی در دات نت وجود ندارد، برای انجام اینکار مجبور خواهیم شد که برای تک تک فیلدهایی که قرار است برای فیلترینگ پشتیبانی کنیم، یک query جداگانه بنویسیم؛ ولی این عملیات توسط کتابخانه Gridify امکان پذیر است. به طور مثال فرض کنید قصد داریم در لیست کاربران، کاربرانی را  با نام Ali، پیدا کنیم. 
var result = Users.AsQueryable().ApplyFiltering("name==Ali");
این کد دقیقا معادل کد زیر است.
var result = Users.AsQueryable().Where(q => q.Name == "Ali");
در اینجا با استفاده از کتابخانه Gridify ما توانستیم یک static Linq را به یک dynamic Linq که در runtime مقدار دهی خواهد شد، تغییر دهیم. به همین جهت استفاده از مورد اول در برنامه‌ی Console ما امکان پذیر است. تا اینجا ما با امکانات کلی این کتابخانه آشنا شدیم. در مقالات بعدی سعی میکنم به سایر امکانات این کتابخانه و بیشتر به جزئیات بپردازم. همینطور برای کسب اطلاعات بیشتر میتوانید به لینک زیر مراجعه نمایید.
مطالب
Roslyn #6
معرفی Analyzers

پیشنیاز این بحث نصب مواردی است که در مطلب «شروع به کار با Roslyn » در قسمت دوم عنوان شدند:
الف) نصب SDK ویژوال استودیوی 2015
ب) نصب قالب‌های ایجاد پروژه‌های مخصوص Roslyn

البته این قالب‌ها چیزی بیشتر از ایجاد یک پروژه‌ی کلاس Library جدید و افزودن ارجاعاتی به بسته‌ی نیوگت Microsoft.CodeAnalysis، نیستند. اما درکل زمان ایجاد و تنظیم این نوع پروژه‌ها را خیلی کاهش می‌دهند و همچنین یک پروژه‌ی تست را ایجاد کرده و تولید بسته‌ی نیوگت و فایل VSIX را نیز بسیار ساده می‌کنند.


هدف از تولید Analyzers

بسیاری از مجموعه‌ها و شرکت‌ها، یک سری قوانین و اصول خاصی را برای کدنویسی وضع می‌کنند تا به کدهایی با قابلیت خوانایی بهتر و نگهداری بیشتر برسند. با استفاده از Roslyn و آنالیز کننده‌های آن می‌توان این قوانین را پیاده سازی کرد و خطاها و اخطارهایی را به برنامه نویس‌ها جهت رفع اشکالات موجود، نمایش داده و گوشزد کرد. بنابراین هدف از آنالیز کننده‌های Roslyn، سهولت تولید ابزارهایی است که بتوانند برنامه نویس‌ها را ملزم به رعایت استانداردهای کدنویسی کنند.
همچنین معلم‌ها نیز می‌توانند از این امکانات جهت ارائه‌ی نکات ویژه‌‌ای به تازه‌کاران کمک بگیرند. برای مثال اگر این قسمت از کد اینگونه باشد، بهتر است؛ مثلا بهتر است فیلدهای سطح کلاس، خصوصی تعریف شوند و امکان دسترسی به آن‌ها صرفا از طریق متدهایی که قرار است با آن‌ها کار کنند صورت گیرد.
این آنالیز کنند‌ها به صورت پویا در حین تایپ کدها در ویژوال استودیو فعال می‌شوند و یا حتی به صورت خودکار در طی پروسه‌ی Build پروژه نیز می‌توانند ظاهر شده و خطاها و اخطارهایی را گزارش کنند.


بررسی مثال معتبری که می‌تواند بهتر باشد

در اینجا یک کلاس نمونه را مشاهده می‌کنید که در آن فیلدهای کلاس به صورت public تعریف شده‌اند.
    public class Student
    {
        public string FirstName;
        public string LastName;
        public int TotalPointsEarned;

        public void TakeExam(int pointsForExam)
        {
            TotalPointsEarned += pointsForExam;
        }

        public void ExtraCredit(int extraPoints)
        {
            TotalPointsEarned += extraPoints;
        }


        public int PointsEarned { get { return TotalPointsEarned; } }
    }
هرچند این کلاس از دید کامپایلر بدون مشکل است و کامپایل می‌شود، اما از لحاظ اصول کپسوله سازی اطلاعات دارای مشکل است و نباید جمع امتیازات کسب شده‌ی یک دانش آموز به صورت مستقیم و بدون مراجعه‌ی به متدهای معرفی شده، از طریق فیلدهای عمومی آن قابل تغییر باشد.
بنابراین در ادامه هدف ما این است که یک Roslyn Analyzer جدید را طراحی کنیم تا از طریق آن هشدارهایی را جهت تبدیل فیلدهای عمومی به خصوصی، به برنامه نویس نمایش دهیم.


با اجرای افزونه‌ی View->Other windows->Syntax visualizer، تصویر فوق نمایان خواهد شد. بنابراین در اینجا نیاز است FieldDeclaration‌ها را یافته و سپس tokenهای آن‌ها را بررسی کنیم و مشخص کنیم که آیا نوع یا Kind آن‌ها public است (PublicKeyword) یا خیر؟ اگر بلی، آن مورد را به صورت یک Diagnostic جدید گزارش می‌دهیم.


ایجاد اولین Roslyn Analyzer

پس از نصب پیشنیازهای بحث، به شاخه‌ی قالب‌های extensibility در ویژوال استودیو مراجعه کرده و یک پروژه‌ی جدید از نوع Analyzer with code fix را آغاز کنید.


قالب Stand-alone code analysis tool آن دقیقا همان برنامه‌های کنسول بحث شده‌ی در قسمت‌های قبل است که تنها ارجاعی را به بسته‌ی نیوگت Microsoft.CodeAnalysis به صورت خودکار دارد.
قالب پروژه‌ی Analyzer with code fix علاوه بر ایجاد پروژه‌های Test و VSIX جهت بسته بندی آنالایزر تولید شده، دارای دو فایل DiagnosticAnalyzer.cs و CodeFixProvider.cs پیش فرض نیز هست. این دو فایل قالب‌هایی را جهت شروع به کار تهیه‌ی آنالیز کننده‌های مبتنی بر Roslyn ارائه می‌دهند. کار DiagnosticAnalyzer آنالیز کد و ارائه‌ی خطاهایی جهت نمایش به ویژوال استودیو است و CodeFixProvider این امکان را مهیا می‌کند که این خطای جدید عنوان شده‌ی توسط آنالایزر، چگونه باید برطرف شود و راه‌کار بازنویسی Syntax tree آن‌را ارائه می‌دهد.
همین پروژه‌ی پیش فرض ایجاد شده نیز قابل اجرا است. اگر بر روی F5 کلیک کنید، یک کپی جدید و محصور شده‌ی ویژوال استودیو را باز می‌کند که در آن افزونه‌ی در حال تولید به صورت پیش فرض و محدود نصب شده‌است. اکنون اگر پروژه‌ی جدیدی را جهت آزمایش، در این وهله‌ی محصور شده‌ی ویژوال استودیو باز کنیم، قابلیت اجرای خودکار آنالایزر در حال توسعه را فراهم می‌کند. به این ترتیب کار تست و دیباگ آنالایزرها با سهولت بیشتری قابل انجام است.
این پروژه‌ی پیش فرض، کار تبدیل نام فضاهای نام را به upper case، به صورت خودکار انجام می‌دهد (که البته بی‌معنا است و صرفا جهت نمایش و ارائه‌ی قالب‌های شروع به کار مفید است).
نکته‌ی دیگر آن، تعریف تمام رشته‌های مورد نیاز آنالایزر در یک فایل resource به نام Resources.resx است که در جهت بومی سازی پیام‌های خطای آن می‌تواند بسیار مفید باشد.

در ادامه کدهای فایل DiagnosticAnalyzer.cs را به صورت ذیل تغییر دهید:
using System.Collections.Immutable;
using System.Linq;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;
using Microsoft.CodeAnalysis.Diagnostics;
 
namespace CodingStandards
{
    [DiagnosticAnalyzer(LanguageNames.CSharp)]
    public class CodingStandardsAnalyzer : DiagnosticAnalyzer
    {
        public const string DiagnosticId = "CodingStandards";

        // You can change these strings in the Resources.resx file. If you do not want your analyzer to be localize-able, you can use regular strings for Title and MessageFormat.
        internal static readonly LocalizableString Title = new LocalizableResourceString(nameof(Resources.AnalyzerTitle), Resources.ResourceManager, typeof(Resources));
        internal static readonly LocalizableString MessageFormat = new LocalizableResourceString(nameof(Resources.AnalyzerMessageFormat), Resources.ResourceManager, typeof(Resources));
        internal static readonly LocalizableString Description = new LocalizableResourceString(nameof(Resources.AnalyzerDescription), Resources.ResourceManager, typeof(Resources));
        internal const string Category = "Naming";

        internal static DiagnosticDescriptor Rule = 
            new DiagnosticDescriptor(
                DiagnosticId, 
                Title, 
                MessageFormat, 
                Category, 
                DiagnosticSeverity.Error, 
                isEnabledByDefault: true, 
                description: Description);
 
        public override ImmutableArray<DiagnosticDescriptor> SupportedDiagnostics
        {
            get { return ImmutableArray.Create(Rule); }
        }

        public override void Initialize(AnalysisContext context)
        {
            // TODO: Consider registering other actions that act on syntax instead of or in addition to symbols
            context.RegisterSyntaxNodeAction(analyzeFieldDeclaration, SyntaxKind.FieldDeclaration);
        }

        static void analyzeFieldDeclaration(SyntaxNodeAnalysisContext context)
        {
            var fieldDeclaration = context.Node as FieldDeclarationSyntax;
            if (fieldDeclaration == null) return;
            var accessToken = fieldDeclaration
                                .ChildTokens()
                                .SingleOrDefault(token => token.Kind() == SyntaxKind.PublicKeyword);

            // Note: Not finding protected or internal
            if (accessToken.Kind() != SyntaxKind.None)
            {
                // Find the name of the field:
                var name = fieldDeclaration.DescendantTokens()
                              .SingleOrDefault(token => token.IsKind(SyntaxKind.IdentifierToken)).Value;
                var diagnostic = Diagnostic.Create(Rule, fieldDeclaration.GetLocation(), name, accessToken.Value);
                context.ReportDiagnostic(diagnostic);
            }
        }
    }
}
توضیحات:

اولین کاری که در این کلاس انجام شده، خواندن سه رشته‌ی AnalyzerDescription (توضیحی در مورد آنالایزر)، AnalyzerMessageFormat (پیامی که به کاربر نمایش داده می‌شود) و AnalyzerTitle (عنوان پیام) از فایل Resources.resx است. این فایل را گشوده و محتوای آن‌را مطابق تنظیمات ذیل تغییر دهید:


سپس کار به متد Initialize می‌رسد. در اینجا برخلاف مثال‌های قسمت‌های قبل، context مورد نیاز، توسط پارامترهای override شده‌ی کلاس پایه DiagnosticAnalyzer فراهم می‌شوند. برای مثال در متد Initialize، این فرصت را خواهیم داشت تا به ویژوال استودیو اعلام کنیم، قصد آنالیز فیلدها یا FieldDeclaration را داریم. پارامتر اول متد RegisterSyntaxNodeAction یک delegate یا Action است. این Action کار فراهم آوردن context کاری را برعهده دارد که نحوه‌ی استفاده‌ی از آن‌را در متد analyzeFieldDeclaration می‌توانید ملاحظه کنید.
سپس در اینجا نوع نود در حال آنالیز (همان نودی که کاربر در ویژوال استودیو انتخاب کرده‌است یا در حال کار با آن است)، به نوع تعریف فیلد تبدیل می‌شود. سپس توکن‌های آن استخراج شده و بررسی می‌شود که آیا یکی از این توکن‌ها کلمه‌ی کلیدی public هست یا خیر؟ اگر این فیلد عمومی تعریف شده بود، نام آن‌را یافته و به عنوان یک Diagnostic جدید بازگشت و گزارش می‌دهیم.


ایجاد اولین Code fixer

در ادامه فایل CodeFixProvider.cs پیش فرض را گشوده و تغییرات ذیل را به آن اعمال کنید. در اینجا مهم‌ترین تغییر صورت گرفته نسبت به قالب پیش فرض، اضافه شدن متد makePrivateDeclarationAsync بجای متد MakeUppercaseAsync از پیش موجود آن است:
using System.Collections.Immutable;
using System.Composition;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CodeFixes;
using Microsoft.CodeAnalysis.CodeActions;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;
 
namespace CodingStandards
{
    [ExportCodeFixProvider(LanguageNames.CSharp, Name = nameof(CodingStandardsCodeFixProvider)), Shared]
    public class CodingStandardsCodeFixProvider : CodeFixProvider
    {
        public sealed override ImmutableArray<string> FixableDiagnosticIds
        {
            get { return ImmutableArray.Create(CodingStandardsAnalyzer.DiagnosticId); }
        }

        public sealed override FixAllProvider GetFixAllProvider()
        {
            return WellKnownFixAllProviders.BatchFixer;
        }

        public sealed override async Task RegisterCodeFixesAsync(CodeFixContext context)
        {
            var root = await context.Document.GetSyntaxRootAsync(context.CancellationToken).ConfigureAwait(false);

            // TODO: Replace the following code with your own analysis, generating a CodeAction for each fix to suggest
            var diagnostic = context.Diagnostics.First();
            var diagnosticSpan = diagnostic.Location.SourceSpan;

            // Find the type declaration identified by the diagnostic.
            var declaration = root.FindToken(diagnosticSpan.Start)
                                   .Parent.AncestorsAndSelf().OfType<FieldDeclarationSyntax>()
                                   .First();

            // Register a code action that will invoke the fix.
            context.RegisterCodeFix(
                CodeAction.Create("Make Private", 
                c => makePrivateDeclarationAsync(context.Document, declaration, c)),
                diagnostic);
        }

        async Task<Document> makePrivateDeclarationAsync(Document document, FieldDeclarationSyntax declaration, CancellationToken c)
        {
            var accessToken = declaration.ChildTokens()
                .SingleOrDefault(token => token.Kind() == SyntaxKind.PublicKeyword);

            var privateAccessToken = SyntaxFactory.Token(SyntaxKind.PrivateKeyword);

            var root = await document.GetSyntaxRootAsync(c);
            var newRoot = root.ReplaceToken(accessToken, privateAccessToken);

            return document.WithSyntaxRoot(newRoot);
        }
    }
}
اولین کاری که در یک code fixer باید مشخص شود، تعیین FixableDiagnosticIds آن است. یعنی کدام آنالایزرهای از پیش تعیین شده‌ای قرار است توسط این code fixer مدیریت شوند که در اینجا همان Id آنالایزر قسمت قبل را مشخص کرده‌ایم. به این ترتیب ویژوال استودیو تشخیص می‌دهد که خطای گزارش شده‌ی توسط CodingStandardsAnalyzer قسمت قبل، توسط کدام code fixer موجود قابل رفع است.
کاری که در متد RegisterCodeFixesAsync انجام می‌شود، مشخص کردن اولین مکانی است که مشکلی در آن گزارش شده‌است. سپس به این مکان منوی Make Private با متد متناظر با آن معرفی می‌شود. در این متد، اولین توکن public، مشخص شده و سپس با یک توکن private جایگزین می‌شود. اکنون این syntax tree بازنویسی شده بازگشت داده می‌شود. با Syntax Factory در قسمت سوم آشنا شدیم.

خوب، تا اینجا یک analyzer و یک code fixer را تهیه کرده‌ایم. برای آزمایش آن دکمه‌ی F5 را فشار دهید تا وهله‌ای جدید از ویژوال استودیو که این آنالایزر جدید در آن نصب شده‌است، آغاز شود. البته باید دقت داشت که در اینجا باید پروژه‌ی CodingStandards.Vsix را به عنوان پروژه‌ی آغازین ویژوال استودیو معرفی کنید؛ چون پروژه‌ی class library آنالایزرها را نمی‌توان مستقیما اجرا کرد. همچنین یکبار کل solution را نیز build کنید.
پس از اینکه وهله‌ی جدید ویژوال استودیو شروع به کار کرد (بار اول اجرای آن کمی زمانبر است؛ زیرا باید تنظیمات وهله‌ی ویژه‌ی اجرای افزونه‌ها را از ابتدا اعمال کند)، همان پروژه‌ی Student ابتدای بحث را در آن باز کنید.


نتیجه‌ی اعمال این افزونه‌ی جدید را در تصویر فوق ملاحظه می‌کنید. زیر سطرهای دارای فیلد عمومی، خط قرمز کشیده شده‌است (به علت تعریف DiagnosticSeverity.Error). همچنین حالت فعلی و حالت برطرف شده را نیز با رنگ‌های قرمز و سبز می‌توان مشاهده کرد. کلیک بر روی گزینه‌ی make private، سبب اصلاح خودکار آن سطر می‌گردد.


روش دوم آزمایش یک Roslyn Analyzer

همانطور که از انتهای بحث قسمت دوم به‌خاطر دارید، این آنالایزرها را می‌توان به کامپایلر نیز معرفی کرد. روش انجام اینکار در ویژوال استودیوی 2015 در تصویر ذیل نمایش داده شده‌است.


نود references را باز کرده و سپس بر روی گزینه‌ی analyzers کلیک راست نمائید. در اینجا گزینه‌ی Add analyzer را انتخاب کنید. در صفحه‌ی باز شده بر روی دکمه‌ی browse کلیک کنید. در اینجا می‌توان فایل اسمبلی موجود در پوشه‌ی CodingStandards\bin\Debug را به آن معرفی کرد.


بلافاصله پس از معرفی این اسمبلی، آنالایزر آن شناسایی شده و همچنین فعال می‌گردد.


در این حالت اگر برنامه را کامپایل کنیم، با خطاهای جدید فوق متوقف خواهیم شد و برنامه کامپایل نمی‌شود (به علت تعریف DiagnosticSeverity.Error).