نظرات اشتراک‌ها
فرم ساز JQuery
برای پیاده سازی آنچنان دانشی نیاز ندارد
اول مثال این صفحه‌ها را پیاده سازی کنید (بعد از کلیک بر روی دکمه ذخیره. پیش نمایش فرم را به شما نمایش میده)
json خروجی این المان را در جایی ذخیره کنید.
و در زمان نمایش فرم این مثال استفاده کنید(مثال از xml به JSON تغییر بدید) و دیتا ذخیره شده در قسمت قبل در این جا ست کنید.
زمانی هم که کاربر دکمه سابمیت(شما باید این دکمه را درست کنید به همراه تگ form) زد. شما مقدار Request در Action باید چک کنید آن هم به صورت داینامیک(با زدن حلقه For و...)
بعد خروجی حاصل برای کاربر ادمین به شکل
name="ابراهیم حمزه" - age="24"- و به همین ترتیب تا به آخر.
حداقل این روش برای فرم‌های ارتباط با ما جواب میدهد(در وردپرس هم پلاگین‌های بسیاری از این روش بهره میبرند و نتیجه را برای کاربر ادمین ایمیل میکنند- با همین فرمتی که من نمایش دادم.)
نظرات مطالب
پیاده سازی JSON Web Token با ASP.NET Web API 2.x
با سلام؛ کد رو به این شکل تغییر  دادم این دفعه خطای {"error":"unsupported_grant_type"}   میگیرم. درخواست به متد ValidateClientAuthentication در سمت سرور می‌رسه. بعد از بازگشت همچین خطایی نشون میده.
 private refreshToken(isAuthUserLoggedIn: boolean) {
      
        const headers = new HttpHeaders({ "Content-Type": "application/x-www-form-urlencoded" });
        const model = { refreshToken: this.tokenStoreService.getRawAuthToken(AuthTokenType.RefreshToken) };
        body = new HttpParams();
        body.set('grant_type', 'refresh_token');
        body.set('refresh_token', model.refreshToken);

        return this.http    
(`${this.appConfig.basePath}${this.apiConfigService.configuration.loginPath}`,
            body.toString(), { headers: headers })
            .pipe(
            map(response => response || {}),
            catchError((error: HttpErrorResponse) => ErrorObservable.create(error)),
            finalize(() => {
                this.scheduleRefreshToken(isAuthUserLoggedIn);
            })
            )
            .subscribe(result => {
                console.log("RefreshToken Result", result);
                this.tokenStoreService.storeLoginSession(result);
            });
    }

با تشکر
مطالب
طراحی یک گرید با Angular و ASP.NET Core - قسمت دوم - پیاده سازی سمت کلاینت
در قسمت قبل، کار پیاده سازی سمت سرور نمایش اطلاعات یک گرید، به پایان رسید. در این قسمت می‌خواهیم از سمت کلاینت، اطلاعات صفحه بندی و مرتب سازی را به سمت سرور ارسال کرده و همچنین نتیجه‌ی دریافتی از سرور را نمایش دهیم.



پیشنیازهای نمایش اطلاعات گرید به همراه صفحه بندی اطلاعات

در مطلب «Angular CLI - قسمت ششم - استفاده از کتابخانه‌های ثالث» نحوه‌ی نصب و معرفی کتابخانه‌ی ngx-bootstrap را بررسی کردیم. دقیقا همان مراحل، در اینجا نیز باید طی شوند و از این مجموعه تنها به کامپوننت Pagination آن نیاز داریم. همان قسمت ذیل گرید تصویر فوق که شماره صفحات را جهت انتخاب، نمایش داده‌است.
بنابراین ابتدا فرض بر این است که دو بسته‌ی بوت استرپ و ngx-bootstrap را نصب کرده‌اید:
> npm install bootstrap --save
> npm install ngx-bootstrap --save
در فایل angular-cli.json. شیوه‌نامه‌ی بوت استرپ را نیز افزوده‌اید:
  "apps": [
    {
      "styles": [
    "../node_modules/bootstrap/dist/css/bootstrap.min.css",
        "styles.css"
      ],
پس از آن باید به‌خاطر داشت که کامپوننت نمایش صفحه بندی این مجموعه PaginationModule نام دارد و باید در نزدیک‌ترین ماژول مورد نیاز، ثبت و معرفی شود:
import { PaginationModule } from "ngx-bootstrap";

@NgModule({
  imports: [
    PaginationModule.forRoot()
  ]
برای نمونه در این مثال، ماژولی به نام simple-grid.module.ts دربرگیرنده‌ی گرید مطلب جاری است و به صورت ذیل به برنامه اضافه شده‌است:
 >ng g m SimpleGrid -m app.module --routing
بنابراین تعریف PaginationModule باید به قسمت imports این ماژول اضافه شود و تعریف آن در app.module.ts تاثیری بر روی این قسمت نخواهد داشت.

کامپوننتی هم که مثال جاری را نمایش می‌دهد به صورت ذیل به ماژول SimpleGrid فوق اضافه شده‌است:
 >ng g c SimpleGrid/products-list


تهیه معادل‌های قراردادهای سمت سرور در سمت Angular

در قسمت قبل، تعدادی قرارداد مانند پارامترهای دریافتی از سمت کلاینت و ساختار اطلاعات ارسالی به سمت کلاینت را تعریف کردیم. اکنون جهت کار strongly typed با آن‌ها در سمت یک برنامه‌ی تایپ اسکریپتی Angular، کلاس‌های معادل آن‌ها را تهیه می‌کنیم.

ساختار شیء محصول دریافتی از سمت سرور
 >ng g cl SimpleGrid/app-product
با این محتوا
export class AppProduct {
  constructor(
    public productId: number,
    public productName: string,
    public price: number,
    public isAvailable: boolean
  ) {}
}
که در اینجا هر کدام از خواص ذکر شده، معادل camel case نمونه‌ی سمت سرور خود هستند (چون JSON.NET در ASP.NET Core، به صورت پیش فرض یک چنین خروجی را تولید می‌کند).

ساختار معادل پارامترهای صفحه بندی و مرتب سازی ارسالی به سمت سرور
 >ng g cl SimpleGrid/PagedQueryModel
با این محتوا
export class PagedQueryModel {
  constructor(
    public sortBy: string,
    public isAscending: boolean,
    public page: number,
    public pageSize: number
  ) {}
}
در اینجا همان ساختار IPagedQueryModel سمت سرور را مشاهده می‌کنید. از آن جهت مشخص سازی جزئیات صفحه بندی و نحوه‌ی مرتب سازی اطلاعات، استفاده می‌شود.

ساختار معادل اطلاعات صفحه بندی شده‌ی دریافتی از سمت سرور
 >ng g cl SimpleGrid/PagedQueryResult
با این محتوا
export class PagedQueryResult<T> {
  constructor(public totalItems: number, public items: T[]) {}
}
این ساختار جنریک نیز دقیقا معادل همان PagedQueryResult سمت سرور است و حاوی تعداد کل ردیف‌های یک کوئری و تنها قسمتی از اطلاعات صفحه بندی شده‌ی آن می‌باشد.

ساختار ستون‌های گرید نمایشی
 >ng g cl SimpleGrid/GridColumn
با این محتوا
export class GridColumn {
  constructor(
    public title: string,
    public propertyName: string,
    public isSortable: boolean
  ) {}
}
هر ستون نمایش داده شده، دارای یک برچسب، خاصیتی مشخص در سمت سرور و بیانگر قابلیت مرتب سازی آن می‌باشد. اگر isSortable به true تنظیم شود، با کلیک بر روی سرستون‌ها می‌توان اطلاعات را بر اساس آن ستون، مرتب سازی کرد.


تهیه سرویس ارسال اطلاعات صفحه بندی به سرور و دریافت اطلاعات از آن

پس از تدارک این مقدمات، اکنون کار تعریف سرویسی که این اطلاعات را به سمت سرور ارسال می‌کند و نتیجه را باز می‌گرداند، به صورت ذیل خواهد بود:
 >ng g s SimpleGrid/products-list -m simple-grid.module
این دستور سبب ایجاد کلاس ProductsListService شده و همچنین قسمت providers ماژول simple-grid را نیز بر این اساس به روز رسانی می‌کند.
پیش از تکمیل این سرویس، نیاز است متدی را جهت تبدیل یک شیء، به معادل کوئری استرینگ آن تهیه کنیم:
  toQueryString(obj: any): string {
    const parts = [];
    for (const key in obj) {
      if (obj.hasOwnProperty(key)) {
        const value = obj[key];
        if (value !== null && value !== undefined) {
          parts.push(encodeURIComponent(key) + "=" + encodeURIComponent(value));
        }
      }
    }
    return parts.join("&");
  }
در قسمت قبل امضای متد GetPagedProducts دارای ویژگی HttpGet است. بنابراین، نیاز است اطلاعات را به صورت کوئری استرینگ از سمت کلاینت دریافت کند و متد toQueryString فوق به صورت خودکار بر روی تمام خواص یک شیء دلخواه حرکت کرده و آن‌ها را تبدیل به یک رشته‌ی حاوی کوئری استرینگ‌ها می‌کند.
[HttpGet("[action]")]
public PagedQueryResult<Product> GetPagedProducts(ProductQueryViewModel queryModel)
برای نمونه متد toQueryString فوق است که سبب ارسال یک چنین درخواستی به سمت سرور می‌شود:
 http://localhost:5000/api/Product/GetPagedProducts?sortBy=productId&isAscending=true&page=2&pageSize=7

پس از این تعریف، سرویس ProductsListService  به صورت ذیل تکمیل خواهد شد:
@Injectable()
export class ProductsListService {
  private baseUrl = "api/Product";

  constructor(private http: Http) {}

  getPagedProductsList(
    queryModel: PagedQueryModel
  ): Observable<PagedQueryResult<AppProduct>> {
    return this.http
      .get(`${this.baseUrl}/GetPagedProducts?${this.toQueryString(queryModel)}`)
      .map(res => {
        const result = res.json();
        return new PagedQueryResult<AppProduct>(
          result.totalItems,
          result.items
        );
      });
  }
در اینجا از متد toQueryString، جهت تکمیل متد get ارسالی به سمت سرور استفاده شده‌است تا پارامترها را به صورت کوئری استرینگ‌ها تبدیل کرده و ارسال کند.
سپس در متد map آن، res.json دقیقا همان ساختار PagedQueryResult سمت سرور را به همراه دارد. اینجا است که فرصت خواهیم داشت نمونه‌ی سمت کلاینت آن‌را که در ابتدای بحث تهیه کردیم، وهله سازی کرده و بازگشت دهیم (نگاشت فیلدهای دریافتی از سمت سرور به سمت کلاینت).


تکمیل کامپوننت نمایش گرید

قسمت آخر این مطلب، استفاده‌ی از این ساختارها و سرویس‌ها و نمایش اطلاعات دریافتی از آن‌ها است. برای این منظور ابتدا نیاز است سرستون‌های این گرید را تهیه کرد:


  <table class="table table-striped table-hover table-bordered table-condensed">
    <thead>
      <tr>
        <th class="text-center" style="width:3%">#</th>
        <th *ngFor="let column of columns" class="text-center">
          <div *ngIf="column.isSortable" (click)="sortBy(column.propertyName)" style="cursor: pointer">
            {{ column.title }}
            <i *ngIf="queryModel.sortBy === column.propertyName" class="glyphicon"
              [class.glyphicon-sort-by-order]="queryModel.isAscending" [class.glyphicon-sort-by-order-alt]="!queryModel.isAscending"></i>
          </div>
          <div *ngIf="!column.isSortable" style="cursor: pointer">
            {{ column.title }}
          </div>
        </th>
      </tr>
    </thead>
در اینجا ابتدا بررسی می‌شود که آیا یک ستون قابلیت مرتب سازی را دارد، یا خیر؟ اگر اینطور است، در کنار آن یک گلیف آیکن مرتب سازی درج می‌شود. اگر خیر، صرفا متن عنوان آن نمایش داده خواهد شد. می‌شد تمام این موارد را به ازای هر ستون به صورت مجزایی ارائه داد، اما در این حالت به کدهای تکراری زیادی می‌رسیدیم. به همین جهت از یک حلقه بر روی تعریف ستون‌های این گرید استفاده شده‌است. آرایه‌ی این ستون‌ها نیز به صورت ذیل تعریف می‌شود:
export class ProductsListComponent implements OnInit {
  columns: GridColumn[] = [
    new GridColumn("Id", "productId", true),
    new GridColumn("Name", "productName", true),
    new GridColumn("Price", "price", true),
    new GridColumn("Available", "isAvailable", true)
  ];

همچنین در کدهای قالب این کامپوننت، مدیریت کلیک بر روی یک سر ستون را نیز مشاهده می‌کنید:
export class ProductsListComponent implements OnInit {
  itemsPerPage = 7;
  queryModel = new PagedQueryModel("productId", true, 1, this.itemsPerPage);

  sortBy(columnName) {
    if (this.queryModel.sortBy === columnName) {
      this.queryModel.isAscending = !this.queryModel.isAscending;
    } else {
      this.queryModel.sortBy = columnName;
      this.queryModel.isAscending = true;
    }
    this.getPagedProductsList();
  }
}
در این‌حالت اگر ستونی که بر روی آن کلیک شده، پیشتر مرتب سازی شده‌است، صرفا خاصیت صعودی بودن آن برعکس خواهد شد. در غیراینصورت، نام خاصیت درخواستی مرتب سازی و جهت آن نیز مشخص می‌شود. سپس مجددا این گرید توسط متد getPagedProductsList رندر خواهد شد.

کار رندر بدنه‌ی اصلی گرید توسط همین چند سطر در قالب آن مدیریت می‌شود:
    <tbody>
      <tr *ngFor="let item of queryResult.items; let i = index">
        <td class="text-center">{{ itemsPerPage * (currentPage - 1) + i + 1 }}</td>
        <td class="text-center">{{ item.productId }}</td>
        <td class="text-center">{{ item.productName }}</td>
        <td class="text-center">{{ item.price | number:'.0' }}</td>
        <td class="text-center">
          <input id="item-{{ item.productId }}" type="checkbox" [checked]="item.isAvailable"
            disabled="disabled" />
        </td>
      </tr>
    </tbody>
  </table>
اولین ستون آن، اندکی ابتکاری است. در اینجا شماره ردیف‌های خودکاری در هر صفحه درج خواهند شد. این شماره ردیف نیز جزو ستون‌های منبع داده‌ی فرضی برنامه نیست. به همین جهت برای درج آن، توسط let i = index در ngFor، به شماره ایندکس ردیف جاری دسترسی پیدا می‌کنیم. سپس توسط محاسباتی بر اساس تعداد ردیف‌های هر صفحه و شماره‌ی صفحه‌ی جاری، می‌توان شماره ردیف فعلی را محاسبه کرد.

در اینجا حلقه‌ای بر روی queryResult.items تشکیل شده‌است. این منبع داده به صورت ذیل در کامپوننت متناظر مقدار دهی می‌شود:
export class ProductsListComponent implements OnInit {
  itemsPerPage = 7;
  currentPage: number;
  numberOfPages: number;
  isLoading = false;
  queryModel = new PagedQueryModel("productId", true, 1, this.itemsPerPage);
  queryResult = new PagedQueryResult<AppProduct>(0, []);

  constructor(private productsListService: ProductsListService) {}

  ngOnInit() {
    this.getPagedProductsList();
  }

  private getPagedProductsList() {
    this.isLoading = true;
    this.productsListService
      .getPagedProductsList(this.queryModel)
      .subscribe(result => {
        this.queryResult = result;
        this.isLoading = false;
      });
  }
}
ابتدا سرویس ProductsListService را که در ابتدای بحث تکمیل شد، به سازنده‌ی این کامپوننت تزریق می‌کنیم. به کمک آن می‌توان در متد getPagedProductsList، ابتدا queryModel جاری را که شامل اطلاعات مرتب سازی و صفحه بندی است، به سرور ارسال کرده و سپس نتیجه‌ی نهایی را به queryResult انتساب دهیم. به این ترتیب تعداد کل رکوردها و همچنین آیتم‌های صفحه‌ی جاری دریافت می‌شوند. اکنون حلقه‌ی ngFor نمایش بدنه‌ی گرید، کار تکمیل صفحه‌ی جاری را انجام خواهد داد.

قسمت آخر کار، افزودن کامپوننت نمایش شماره صفحات است:


  <div align="center">
    <pagination [maxSize]="8" [boundaryLinks]="true" [totalItems]="queryResult.totalItems"
      [rotate]="false" previousText="&lsaquo;" nextText="&rsaquo;" firstText="&laquo;"
      lastText="&raquo;" (numPages)="numberOfPages = $event" [(ngModel)]="currentPage"
      (pageChanged)="onPageChange($event)"></pagination>
  </div>
  <pre class="card card-block card-header">Page: {{currentPage}} / {{numberOfPages}}</pre>
در اینجا از کامپوننت pagination مجموعه‌ی ngx-bootstarp استفاده شده‌است و یک سری از خواص مستند شده‌ی آن‌، مقدار دهی شده‌اند؛ مانند متن‌های صفحه‌ی بعد و قبل و امثال آن. مدیریت کلیک بر روی شماره‌های آن، در کامپوننت جاری به صورت ذیل است:
export class ProductsListComponent implements OnInit {
  itemsPerPage = 7;
  currentPage: number;
  numberOfPages: number;

  onPageChange(event: any) {
    this.queryModel.page = event.page;
    this.getPagedProductsList();
  }
}
علت تعریف دو خاصیت اضافه‌ی currentPage و numberOfPages، استفاده‌ی از آن‌ها در قسمت ذیل این شماره‌ها (خارج از کامپوننت نمایش شماره صفحات) جهت نمایش page 1/x است.
هر زمانیکه کاربر بر روی شما‌ره‌ای کلیک می‌کند، رخ‌داد onPageChange فراخوانی شده و در این‌حالت تنها کافی است شماره صفحه‌ی درخواستی queryModel جاری را به روزرسانی کرده و سپس آن‌را در اختیار متد getPagedProductsList جهت دریافت اطلاعات این صفحه‌ی درخواستی قرار دهیم.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید.
مطالب
مفاهیم پایه سیستم های کنترل نسخه؛ قسمت سوم : جمع بندی
در اولین قسمت این سری، گیت و در قسمت دوم ، SVN را بررسی کردیم؛ در این مقاله قصد داریم یک جمع بندی از این دو مقاله داشته باشیم.
احتمالا در مورد این دو سیستم حرف‌های زیادی شنیده‌اید و احتمالا بیشتر آن‌ها در مورد گیت نظر مساعدتری داشته‌اند؛ ولی تفاوت‌هایی بین این دو سیستم هست که باید به نسبت هدف و نیازی که دارید آن را مشخص کنید. یکی از اصلی‌ترین این تفاوت‌ها این است که svn یک سیستم مرکزی است؛ ولی گیت اینگونه نیست که در ادامه تفاوت این دو مورد را تشریح می‌کنیم.
یک. SVN یک مخزن مرکزی دارد که همه‌ی تغییراتی که روی کپی‌ها انجام می‌شود، باید به سمت مخزن مرکزی Commit یا ارسال شوند. ولی در سیستم گیت یک سیستم مرکزی وجود ندارد و هر مخزنی که fork یا Clone می‌شود، یک مخزن جداگانه به حساب می‌آید و Commit شدن تنها به مخزن کپی شده صورت میگیرد و در صورت pull request ادغام با مخزن اولیه خودش صورت میگیرد.
دو. گیت به نسبت svn از پیچیدگی بیشتری برخوردار است؛ ولی برای پروژه‌های بزرگتر که کاربران زیادی با آن کار می‌کنند و احتمال شاخه بندی‌های زیادتر، در آن وجود دارد بهتر عمل می‌کند. موقعی که یک پروژه یا تیم کوچکی روی آن کار می‌کنند به دلیل commit شدن مستقیمی که svn دارد، کار راحت‌تر و آسان‌تر صورت می‌گیرد ولی با زیاد شدن کاربران و حجم کار، گیت کارآیی بالاتری دارد.
سه. از آن جا که گیت نیاز به fork شدن دارد و یک مخزن کاملا مجزا از پروژه اصلی تولید می‌کند؛ سرعت بهتری نسبت به svn که یک کپی از زیر مجموعه ساختار اصلی ایجاد می‌کند دارد.
چهار. شاخه بندی یک مفهوم اصلی و مهم در گیت به شمار می‌آید که اکثر کاربران همه روزه از آن استفاده می‌کنند و این اجازه را می‌دهد که که تغییرات و تاریخچه فعالیت هر کاربر را بر روی هر شاخه، جداگانه ببینیم. در svn پیاده سازی شاخه‌ها یا تگ‌ها سخت و مشکل است. همچنین شاخه بندی کار در svn به شکل سابق با کپی کردن صورت گرفته که گاهی اوقات به دلایلی که در قسمت قبل گفتیم، باعث ناسازگاری می‌گردد.
پنج. حجم مخازن گیت به نسبت svn خیلی کمتر است برای نمونه پروژه موزیلا 30 درصد حجم کمتری در مخزن گیت دارد. یکی از دلایلی که svn حجم بیشتری میگیرد این است که به ازای هر فایل دو فایل موجود است یکی که همان فایل اصلی است که کاربر با آن کار می‌کند و دیگری یک فایل دیگر در شاخه svn. است که برای کمک به عملیاتی چون وضعیت، تفاوت ها، ثبت تغییرات به کار می‌رود. در صورتی که در آن سمت، گیت، تنها به یک فایل شاخص 100 بایتی برای هر  دایرکتوری کاری نیاز دارد
شش. گیت عملیات کاربری را به جز fetch و push، خیلی سریع انجام میدهد. این عملیات شامل یافتن تفاوت‌ها، نمایش تاریخچه، ثبت تغییرات، ادغام شاخه‌ها و جابجایی بین شاخه‌ها می‌گردد.
هفت. در سیستم SVN به دلیل ساختار درختی که دارد، می‌توانید زیر مجموعه‌ی یک مخزن را بررسی کنید ولی در سیستم گیت اینکار امکان پذیر نیست. البته باید به این نکته توجه داشت که برای یک پروژه‌ی بزرگ شما مجبور هستید همیشه کل مخزن را دانلود کنید. حتی اگر تنها نسخه‌ی خاصی از این زیرمجموعه را در نظر داشته باشید. به همین علت در شهرهایی که اینترنت گرانقیمت و یا سرعت پایین عرضه می‌شود، گیت به صرفه‌تر است و زمان کمتری برای دانلود آن می‌ برد.
موارد تعریف شده زیر طبق گفته ویکی سایت Kernel.Org ذکر می‌شود:
  • گیت از سیستم SVN سریعتر عمل می‌کند.
  • در سیستم گیت هر شاخه بندی کل تاریخچه خود را به دنبال دارد.
  • فایل git که تنظیمات مخزن داخلش قرار دارد، ساختار ساده‌ای دارد و به راحتی می‌توان در صورت ایجاد مشکل، آن را حل کرد و به ندرت هم پیش می‌آید که مشکلی برایش پیش بیاید.
  • پشتیبانی گیری از یک سیستم مرکزی مثل SVN راحت‌تر از پشتیبانی گیری از پوشه‌های توزیع شده در مخزن گیت است.
  • ابزارهای کاربری svn تا به الان پیشرفت‌های چشمگیری داشته است. پلاگین‌ها و برنامه‌های بیشتری نسبت به سیستم گیت دارد. یکی از معروفترین این پلاگین‌ها، ابزار  tortoisesvn  است (البته ابزارهای گیت امروز رشد چشمگیرتری داشته اند که در قسمت اول نمونه‌های آن ذکر شد).
  • سیستم svn برای نسخه بندی و تشخیص تفاوت‌ها از یک سیستم ساده اعداد ترتیبی استفاده می‌کند که اولین ثبت با شماره یک آغاز شده و به ترتیب ادامه می‌یابد و برای کاربران هم خواندنش راحت است و هم قابل پیش بینی است. به همین جهت برای بررسی تاریخچه‌ها و دیگر گزارش‌ها تا حدی راحت عمل می‌کند. در سیستم شاخه بندی این سیستم شماره گذاری چندان مطلوب نیست و متوجه نمی‌شوید که این شاخه از کجا نشات گرفته است. در حال حاضر برای پروژه‌ی موزیلا این عدد به 6 رقم رسیده است ولی در آن سمت، سیستم گیت از هش SH-1 استفاده می‌کند که یک رشته 40 کاراکتری است و 8 رقم اول آن به منشاء اشاره می‌کند که باعث می‌شود متوجه بشویم که این شاخه از کجا آمده است ولی از آنجا که این عدد یکتا ترتیبی نیست، برای خواندن و گزارشگیری‌هایی که در SVN راحت صورت می‌گیرد، در گیت ممکن نیست یا مشکل است.
  • گیت رویدادهای ادغام و شاخه بندی را بهتر انجام می‌دهد.

مطالب
ذخیره تنظیمات متغیر مربوط به یک وب اپلیکیشن ASP.NET MVC با استفاده از EF
طی این  مقاله، نحوه‌ی ذخیره سازی تنظیمات متغیر و پویای یک برنامه را به صورت Strongly Typed ارائه خواهم داد. برای این منظور، یک API را که از Lazy Loading ، Cache ، Reflection و Entity Framework بهره میگیرد، خواهیم ساخت.
برنامه‌ی هدف ما که از این API استفاده می‌کند، یک اپلیکیشن Asp.net MVC است. قبل از شروع به ساخت API مورد نظر، یک دید کلی در مورد آنچه که قرار است در نهایت توسعه یابد، در زیر مشاهده میکنید:
public SettingsController(ISettings settings)
{
  // example of saving 
  _settings.General.SiteName = "دات نت تیپس";
  _settings.Seo.HomeMetaTitle = ".Net Tips";
  _settings.Seo.HomeMetaKeywords = "َAsp.net MVC,Entity Framework,Reflection";
  _settings.Seo.HomeMetaDescription = "ذخیره تنظیمات برنامه";
  _settings.Save();
}

همانطور که در کدهای بالا مشاهده میکنید، شی setting_ ما دارای دو پراپرتی فقط خواندنی بنام‌های General و Seo است که شامل  تنظیمات مورد نظر ما هستند و این دو کلاس از کلاس پایه‌ی SettingBase ارث بری کرده‌اند. دو دلیل برای انجام این کار وجود دارد:
  1. تنظیمات به صورت گروه بندی شده در کنار  هم قرار گرفته‌اند و یافتن تنظیمات برای زمانی که نیاز به دسترسی  به آنها داریم، راحت‌تر و ساده‌تر خواهد بود. 
  2. به این شکل تنظیمات قابل دسترس در یک گروه، از دیتابیس بازیابی خواهند شد.

اصلا چرا باید این تنظیمات را در دیتابیس ذخیره کنیم؟ 

شاید فکر کنید چرا باید تنظیمات را در دیتابیس ذخیره کنیم در حالی که فایل web.config در درسترس است و می‌توان توسط کلاس ConfigurationManager به اطلاعات آن دسترسی داشت.
جواب: دلیل این است که با تغییر فایل web.config، برنامه‌ی وب شما ری استارت خواهد شد (چه زمان‌هایی یک برنامه Asp.net ری استارت میشود).
برای جلوگیری از این مساله، راه حل مناسب برای ذخیره سازی اطلاعاتی که نیاز به تغییر در زمان اجرا دارند، استفاده از از دیتابیس می‌باشد. در این مقاله از Entity Framework و پایگاه داده Sql Sever استفاده می‌کنم.

مراحل ساخت Setting API مورد نظر به شرح زیر است:
  1. ساخت یک Asp.net Web Application 
  2. ساخت مدل Setting و افزودن آن به کانتکست Entity Framework 
  3. ساخت کلاس SettingBase برای بازیابی و ذخیره سازی تنظیمات با رفلکشن
  4. ساخت کلاس GenralSettins و SeoSettings که از کلاس SettingBase ارث بری کرده‌اند.
  5. ساخت کلاس Settings به منظور مدیریت تمام انواع تنظیمات 

یک برنامه‌ی Asp.Net Web Application را از نوع MVC ایجاد کنید. تا اینجا مرحله‌ی اول ما به پایان رسید؛ چرا که ویژوال استودیو کار‌های مورد نیاز ما را انجام خواهد داد.
 لازم است مدل خود را به ApplicationDbContext موجود در فایل IdentityModels.cs معرفی کنیم. به شکل زیر:
namespace DynamicSettingAPI.Models
{
    public interface IUnitOfWork
    {
        DbSet<Setting> Settings { get; set; }
        int SaveChanges();
    }
} 

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>,IUnitOfWork
    {
        public DbSet<Setting> Settings { get; set; }
        public ApplicationDbContext()
            : base("DefaultConnection", throwIfV1Schema: false)
        {
        }

        public static ApplicationDbContext Create()
        {
            return new ApplicationDbContext();
        }
    }


namespace DynamicSettingAPI.Models
{
    public class Setting
    {
        public string Name { get; set; }
        public string Type { get; set; }
        public string Value { get; set; }
    }
}
مدل تنظیمات ما خیلی ساده است و دارای سه پراپرتی به نام‌های Name ، Type ، Value هست که به ترتیب برای دریافت مقدار تنظیمات، نام کلاسی که از کلاس SettingBase ارث برده و نام تنظیمی که لازم داریم ذخیره کنیم، در نظر گرفته شده‌اند. 
لازم است تا متد OnModelCreating مربوط به ApplicationDbContext را نیز تحریف کنیم تا کانفیگ مربوط به مدل خود را نیز اعمال نمائیم.
 protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Setting>()
                    .HasKey(x => new { x.Name, x.Type });

            modelBuilder.Entity<Setting>()
                        .Property(x => x.Value)
                        .IsOptional();

            base.OnModelCreating(modelBuilder);
        }
ساختاری به شکل زیر مد نظر ماست:

  کلاس SettingBase ما همچین ساختاری را خواهد داشت:
namespace DynamicSettingAPI.Service
{
    public abstract class SettingsBase
    {
        //1
        private readonly string _name;
        private readonly PropertyInfo[] _properties;

        protected SettingsBase()
        {
            //2
            var type = GetType();
            _name = type.Name;
            _properties = type.GetProperties();
        }

        public virtual void Load(IUnitOfWork unitOfWork)
        {
            //3 get setting for this type name
            var settings = unitOfWork.Settings.Where(w => w.Type == _name).ToList();

            foreach (var propertyInfo in _properties)
            {
                //get the setting from setting list
                var setting = settings.SingleOrDefault(s => s.Name == propertyInfo.Name);
                if (setting != null)
                {
                    //4 set 
                    propertyInfo.SetValue(this, Convert.ChangeType(setting.Value, propertyInfo.PropertyType));
                }
            }
        }
        public virtual void Save(IUnitOfWork unitOfWork)
        {
            //5 get all setting for this type name
            var settings = unitOfWork.Settings.Where(w => w.Type == _name).ToList();

            foreach (var propertyInfo in _properties)
            {
                var propertyValue = propertyInfo.GetValue(this, null);
                var value = (propertyValue == null) ? null : propertyValue.ToString();

                var setting = settings.SingleOrDefault(s => s.Name == propertyInfo.Name);
                if (setting != null)
                {
                    // 6 update existing value
                    setting.Value = value;
                }
                else
                {
                    // 7 create new setting
                    var newSetting = new Setting()
                    {
                        Name = propertyInfo.Name,
                        Type = _name,
                        Value = value,
                    };
                    unitOfWork.Settings.Add(newSetting);
                }
            }
        }
    }
}
این کلاس قرار است توسط کلاس‌های تنظیمات ما به ارث برده شود و در واقع کارهای مربوط به رفلکشن را در این کلاس کپسوله کرده‌ایم. همانطور که مشخص است ما دو فیلد را به نام‌های name_ و properties_ به صورت فقط خواندنی در نظر گرفته ایم که نام کلاس مورد نظر ما که از این کلاس به ارث خواهد برد، به همراه پراپرتی‌های آن، در این ظرف‌ها قرار خواهند گرفت.
متد Load وظیفه‌ی واکشی تمام تنظیمات مربوط به Type و ست کردن مقادیر به دست آمده را به خصوصیات کلاس ما، برعهده دارد. کد زیر مقدار دریافتی از دیتابیس را به نوع داده پراپرتی مورد نظر تبدیل کرده و نتیجه را به عنوان Value پراپرتی ست میکند. 
propertyInfo.SetValue(this, Convert.ChangeType(setting.Value, propertyInfo.PropertyType));
متد Save نیز وظیفه‌ی ذخیره سازی مقادیر موجود در خصوصیات کلاس تنظیماتی را که از کلاس SettingBase ما به ارث برده است، به عهده دارد. 
این متد دیتا‌های موجود دردیتابیس را که متعلق به کلاس ارث برده مورد نظر ما هستند، واکشی میکند و در یک حلقه، اگر خصوصیتی در دیتابیس موجود بود، آن را ویرایش کرده وگرنه یک رکورد جدید را ثبت میکند.

  کلاس‌های تنظیمات شخصی سازی شده خود را به شکل زیر تعریف میکنیم :
  public class GeneralSettings : SettingsBase
    {
        public string SiteName { get; set; }
        public string AdminEmail { get; set; }
        public bool RegisterUsersEnabled { get; set; }
    }

 public class GeneralSettings : SettingsBase
    {
        public string SiteName { get; set; }
        public string AdminEmail { get; set; }
    }
نیازی به توضیح ندارد.
برای اینکه تنظیمات را به صورت یکجا داشته باشیم و Abstraction ای را برای استفاده از این API ارائه دهیم، یک اینترفیس و یک کلاس که اینترفیس مذکور را پیاده کرده است در نظر میگیریم: 
public interface ISettings
{
    GeneralSettings General { get; }
    SeoSettings Seo { get; }
    void Save();
}

public class Settings : ISettings
{
    // 1
    private readonly Lazy<GeneralSettings> _generalSettings;
    // 2
    public GeneralSettings General { get { return _generalSettings.Value; } }

    private readonly Lazy<SeoSettings> _seoSettings;
    public SeoSettings Seo { get { return _seoSettings.Value; } }

    private readonly IUnitOfWork _unitOfWork;
    public Settings(IUnitOfWork unitOfWork)
    {
        _unitOfWork = unitOfWork;
        // 3
        _generalSettings = new Lazy<GeneralSettings>(CreateSettings<GeneralSettings>);
        _seoSettings = new Lazy<SeoSettings>(CreateSettings<SeoSettings>);
    }

    public void Save()
    {
        // only save changes to settings that have been loaded
        if (_generalSettings.IsValueCreated)
            _generalSettings.Value.Save(_unitOfWork);

        if (_seoSettings.IsValueCreated)
            _seoSettings.Value.Save(_unitOfWork);

        _unitOfWork.SaveChanges();
    }
    // 4
    private T CreateSettings<T>() where T : SettingsBase, new()
    {
        var settings = new T();
        settings.Load(_unitOfWork);
        return settings;
    }
}
این اینترفیس مشخص می‌کند که ما به چه نوع تنظیماتی، دسترسی داریم و متد Save آن برای آپدیت کردن تنظیمات، در نظر گرفته شده است. هر کلاسی که از کلاس SettingBase ارث بری کرده را به صورت فیلد فقط خواندنی و با استفاده از کلاس Lazy درون آن ذکر میکنیم و به این صورت کلاس تنظیمات ما زمانی ساخته خواهد شد که برای اولین بار به آن دسترسی داشته باشیم.
متد CreateSetting وظیفه‌ی لود دیتا را از دیتابیس، بر عهده دارد که برای این منظور، متد لود Type مورد نظر را فراخوانی میکند. این متد وقتی به کلاس تنظیمات مورد نظر برای اولین بار دسترسی پیدا کنیم، فراخوانی خواهد شد.

 حتما امکان این وجود دارد که شما از امکان Caching هم بهره ببرید برای مثال همچین متد و سازنده‌ای را در کلاس Settings در نظر بگیرید:
private readonly ICache _cache;
public Settings(IUnitOfWork unitOfWork, ICache cache)
{
    // ARGUMENT CHECKING SKIPPED FOR BREVITY
    _unitOfWork = unitOfWork;
    _cache = cache;
    _generalSettings = new Lazy<GeneralSettings>(CreateSettingsWithCache<GeneralSettings>);
    _seoSettings = new Lazy<SeoSettings>(CreateSettingsWithCache<SeoSettings>);
}

private T CreateSettingsWithCache<T>() where T : SettingsBase, new()
{
    // this is where you would implement loading from ICache
    throw new NotImplementedException();
}
در آخر هم به شکل زیر میتوان (به عنوان دمو فقط ) از این API استفاده کرد.
   public ActionResult Index()
        {
            using (var uow = new ApplicationDbContext())
            {
                var _settings = new Settings(uow);
                _settings.General.SiteName = "دات نت تیپس";
                _settings.General.AdminEmail = "admin@gmail.com";
                _settings.General.RegisterUsersEnabled = true;
                _settings.Seo.HomeMetaTitle = ".Net Tips";
                _settings.Seo.MetaKeywords = "Asp.net MVC,Entity Framework,Reflection";
                _settings.Seo.HomeMetaDescription = "ذخیره تنظیمات برنامه";

                var settings2 = new Settings(uow);
                var output = string.Format("SiteName: {0} HomeMetaDescription: {1}  MetaKeywords:  {2}  MetaTitle:  {3}  RegisterEnable:  {4}",
                    settings2.General.SiteName,
                    settings2.Seo.HomeMetaDescription,
                    settings2.Seo.MetaKeywords,
                    settings2.Seo.HomeMetaTitle,
                    settings2.General.RegisterUsersEnabled.ToString()
                    );
                return Content(output);
            }

        }

خروجی :

نکته: در پروژه ای که جدیدا در سایت ارائه داده‌ام و در حال تکمیل آن هستم، از بهبود یافته‌ی این مقاله استفاده می‌شود. حتی برای اسلاید شو‌های سایت هم میشود از این روش استفاده کرد و از فرمت json بهره برد برای این منظور. حتما در پروژه‌ی مذکور همچین امکانی را هم در نظر خواهم گرفتم.
پیشنها میکنم سورس SmartStore را بررسی کنید. آن هم به شکل مشابهی ولی پیشرفته‌تر از این مقاله، همچین امکانی را دارد.
مطالب
بررسی کارآیی کوئری‌ها در SQL Server - قسمت پنجم - خواندن Query Plans
برای هر کوئری که به SQL Server ارسال می‌شود، یک Plan تولید خواهد شد. این عملیات نیز توسط بخش Query Optimizer آغاز می‌گردد. به آن می‌توان همانند فریم‌ورکی که درون SQL Server قرار گرفته و کارش یافتن یک Query Plan مناسب مخصوص کوئری رسیده‌است، نگاه کرد. ابتدا عملیات Parsing صورت می‌گیرد. توسط آن Syntax کوئری رسیده بررسی شده و صحت آن تائید می‌گردد. پس از آن یک Parser tree تولید می‌شود که نمای درونی آن کوئری است. سپس فاز Binding رخ می‌دهد که در آن بررسی می‌شود که آیا تمام اشیاء موجود درخواستی توسط کوئری وجود داشته و توسط کاربر قابل دسترسی هستند. خروجی این فاز یک Query Tree است که به فاز بهینه سازی ارسال می‌شود. یک Query Tree به همراه اعمالی منطقی است. این اعمال منطقی توصیف رخ‌دادهایی می‌باشند که قرار است اتفاق بیفتند؛ مانند خواندن اطلاعات از یک جدول، مرتب سازی اطلاعات، ایجاد جوین و غیره. سپس بهینه ساز، این اعمال منطقی را تبدیل به اعمال فیزیکی می‌کند. برای مثال خواندن اطلاعات از یک جدول، تبدیل به یک Index seek می‌شود. یک جوین تبدیل به یک حلقه‌ی تو در تو می‌شود. در آخر این اعمال فیزیکی در کنار هم قرار گرفته و Query Plan را تشکیل می‌دهند و ما به عنوان یک توسعه دهنده می‌توانیم با بررسی این Plan دریابیم که SQL Server با کوئری رسیده، چگونه برخورد کرده و قرار است چگونه آن‌را اجرا کند.


Plan چیست؟



در اینجا Plan کوئری ساده‌ای را مشاهده می‌کنید. کار آن انتخاب نام، نام خانوادگی و آدرس ایمیل افرادی است که نام خانوادگی آن‌ها با Whit شروع می‌شود و بر روی دو جدول که با هم جوین شده‌اند عمل می‌کند.
اولین موردی را که باید در یک Plan به آن دقت کرد، عملگرهای آن است که شامل select، nested loop، index seek و clustered index seek می‌باشند. index seek بر روی جدول اشخاص و clustered index seek بر روی جدول ایمیل‌ها صورت می‌گیرد. nested loop بیانگر جوین بین جداول است. این عملگرها بیانگر اعمال فیزیکی هستند که رخ داده‌اند.
همچنین تعدادی پیکان (arrow) را هم مشاهده می‌کنید که بیانگر جهت سیلان داده‌ها است. اطلاعات از طریق index seek و clustered index seek به nested loop می‌رسند و در نهایت به عملگر select ارائه خواهند شد.
در این تصویر، هزینه‌های تخمینی مرتبط با هر عملگر نیز قابل مشاهده‌است که نسبت به کل کوئری محاسبه شده‌اند. این هزینه، بدون واحد است و به معنای میزان زمان و یا CPU صرف شده‌ی برای انجام عمل خاصی نیست و صرفا برای مقایسه‌ی هزینه‌ی نسبی عملگرها در کل یک Plan کاربرد دارد. باید دقت داشت که هزینه‌های نمایش داده شده‌ی در یک Plan، همیشه تخمینی هستند. در قسمت‌های قبل در مورد نحوه‌ی دریافت estimated plan و actual plan بحث کردیم. هیچگاه چیزی به نام Actual cost در یک Actual plan وجود ندارد و همیشه تخمینی است. روش محاسبه‌ی آن‌ها توسط الگوریتم‌های بهینه ساز است و مستقل از سخت افزار مورد استفاده.

در یک پلن، مدت زمان انجام یک کوئری، میزان I/O ، locks و wait statistics قابل مشاهده نیستند. البته اگر از SQL Server 2016 به بعد استفاده می‌کنید و یک Actual plan را محاسبه کرده‌اید، مدت زمان انجام یک کوئری و میزان I/O نیز در Plan قابل مشاهده‌اند.


از چه جهتی باید یک Plan را خواند؟

اگر هدف، بررسی «سیلان کنترل» است (Control flow)، باید یک Plan را از «چپ به راست» خواند. یعنی از عملگر select شروع می‌کنیم که کوئری ما را کنترل می‌کند. سپس به nested loop می‌رسیم که نام و نام خانوادگی را از جدول اشخاص دریافت می‌کند. این nested loop نیز با کمک ایندکس‌های تعریف شده، شرط کوئری را بر آورده می‌کند.
اما جهت «سیلان اطلاعات» در یک Plan از «راست به چپ» است (Data flow). اطلاعات از طریق index seekها به حلقه و سپس select می‌رسند.


چگونه یک Query Plan را شروع به بررسی کنیم؟

ابتدا در management studio از منوی Query، گزینه‌ی Include actual execution plan را انتخاب می‌کنیم. سپس کوئری زیر را اجرا می‌کنیم:
USE [WideWorldImporters];
GO

SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [c].[CountryName] = 'United States';
GO
نتیجه‌ی آن تولید Query Plan زیر است:


در اینجا چهار عملگر select، nested loop، clustered index seek و clustered index scan مشاهده می‌شوند. شاید اینطور به نظر برسد که در این Plan، ابتدا clustered index scan و clustered index seek انجام می‌شوند و سپس به nested loop می‌رسیم (اگر Plan را بر اساس سیلان داده، از راست به چپ بخوانیم)؛ اما اینطور نیست. عملگرها در اینجا در حقیقت یک سری iterator هستند که با دریافت ردیف‌های مرتبط، بلافاصله آن‌ها را به nested loop ارسال می‌کنند. این nested loop نیز ردیف‌هایی را که با جوین انجام شده تطابق دارند، به سمت select ارسال می‌کند.
اگر به تصویر دقت کنید هر کدام از ایندکس‌ها به یک جدول اشاره می‌کنند که نام آن بالای عدد هزینه درج شده‌است. برای مشاهده نام کامل شیء متناظر با آن، می‌توان اشاره‌گر ماوس را بر روی ایندکس حرکت داد و به اطلاعات قسمت Object دقت کرد:


و یا اگر اطلاعات کاملتری از این popup را نیاز داشتید، عملگر مدنظر را انتخاب کرده و سپس دکمه‌ی F4 را فشار دهید:



در برگه‌ی خواص ظاهر شده می‌توان ریز جزئیات تمام اطلاعات مرتبط با عملگر انتخاب شده را مشاهده کرد. برای مثال در اینجا حتی اطلاعات Logical reads را بدون روشن کردن SET STATISTICS IO ON می‌توان مشاهده کرد:


همچنین با توجه به انتخاب گزینه‌ی Include actual execution plan، تعداد ردیف‌های بازگشت داده شده‌ی واقعی و تخمینی، با هدایت اشاره‌گر ماوس بر روی یکی از اشیاء مرتبط با بررسی ایندکس‌ها، قابل مشاهده هستند:


گزارش این تعداد ردیف‌ها، با حرکت اشاره‌گر ماوس، بر روی پیکان‌های منتهی به nested loop و یا select نیز قابل مشاهده هستند:


به این ترتیب می‌توان دریافت که چه مقدار اطلاعات در طول این Plan و قسمت‌های مختلف آن، از سمت راست به چپ، در حال جابجایی است.

اکنون در ادامه سعی می‌کنیم توسط DMO's، این Plan را از Plan cache دریافت کنیم:
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT [cp].[size_in_bytes],
    [cp].[cacheobjtype],
    [cp].[objtype],
    [cp].[plan_handle],
    [dest].[text],
    [plan].[query_plan]
FROM [sys].[dm_exec_cached_plans] [cp]
CROSS APPLY [sys].[dm_exec_sql_text]([cp].[plan_handle]) [dest]
CROSS APPLY [sys].[dm_exec_query_plan]([cp].[plan_handle]) [plan]
WHERE [dest].[text] LIKE '%StateProvinces%'
OPTION(MAXDOP
1,
RECOMPILE);
ستون آخر این کوئری به query_plan اشاره می‌کند که در management studio به صورت یک لینک قابل کلیک ظاهر می‌شود. اگر بر روی آن کلیک کنیم، به تصویر زیر خواهیم رسید:


همانطور که مشاهده می‌کنید، اینبار تنها اطلاعات تخمینی در این Plan ظاهر شده‌اند؛ چون اطلاعات آن از کش خوانده شده‌است. همچنین در اینجا اطلاعات I/O مانند حالت Actual Plan، در برگه‌ی خواص عملگرهای این Plan، قابل مشاهده نیستند.


نگاهی به اطلاعات XML ای یک Plan

اگر کوئری زیر را با فرض انتخاب Include actual execution plan در منوی Query اجرا کنیم:
SELECT
    [o].[OrderID],
    [ol].[OrderLineID],
    [o].[OrderDate],
    [o].[CustomerID],
    [ol].[Quantity],
    [ol].[UnitPrice]
FROM [Sales].[Orders] [o]
    JOIN [Sales].[OrderLines] [ol]
    ON [o].[OrderID] = [ol].[OrderID];
GO
به این Plan خواهیم رسید که نوع بررسی ایندکس‌ها و جوین آن متفاوت است:


در اینجا با کلیک راست بر روی Plan، می‌توان گزینه‌ی Show Execution Plan XML را نیز انتخاب کرد. گاهی از اوقات کار کردن با این اطلاعات، به صورت XML ای ساده‌تر است و فرمت آن از هر نگارش به نگارش دیگر SQL Server می‌تواند متفاوت باشد.
برای مثال اگر در برگه‌ی نمایش این اطلاعات، دکمه‌های ctrl+f را فشرده و به دنبال runtime بگردیم، خیلی سریعتر می‌توان به اطلاعات I/O ،CPU و تعداد ردیف‌های بازگشت داده شده، رسید.


و یا حتی اطلاعات wait statistics را نیز می‌توان به سادگی در اینجا مشاهده کرد تا مشخص شود چرا یک کوئری خوب عمل نمی‌کند:



اجرای چند کوئری با هم و بررسی Query Plan آن‌ها

اگر دو کوئری زیر را با فرض انتخاب Include actual execution plan در منوی Query با هم اجرا کنیم:
USE [WideWorldImporters];
GO

SELECT
    [CustomerID],
    [TransactionAmount]
FROM [Sales].[CustomerTransactions]
WHERE [CustomerID] = 1056;
GO


SELECT
    [o].[OrderID],
    [ol].[OrderLineID],
    [o].[OrderDate],
    [o].[CustomerID],
    [ol].[Quantity],
    [ol].[UnitPrice]
FROM [Sales].[Orders] [o]
    JOIN [Sales].[OrderLines] [ol]
    ON [o].[OrderID] = [ol].[OrderID];
GO
به این Plan خواهیم رسید که نکته‌ی مهم آن، هزینه‌ی انجام کوئری‌ها است:


هزینه‌ی اولین کوئری نسبت به کل batch جاری، 10 درصد است و هزینه‌ی دومین کوئری، 90 درصد. بنابراین اگر چندین کوئری را با هم اجرا کنیم، به این صورت می‌توان هزینه‌ی هر کدام را نسبت به کل عملیات، تخمین بزنیم. در هر کوئری نیز هزینه‌هایی درج شده‌اند که صرفا متعلق به همان کوئری هستند. برای مثال در اولین کوئری، key lookup سنگین‌ترین عملگر کل کوئری است.
مطالب
بررسی کارآیی کوئری‌ها در SQL Server - قسمت ششم - بررسی عملگرهای دسترسی به داده‌ها در یک Query Plan
پس از آشنایی مقدماتی با نحوه‌ی خواندن یک Query Plan، اکنون نوبت به بررسی عملگرهایی است که در آن مشاهده می‌شوند و همچنین تغییرات در کوئری‌ها چگونه بر روی آن‌ها تاثیر گذاشته و آن‌ها را تغییر می‌دهند و این تغییرات چه تاثیری را بر روی کارآیی خواهند داشت.


عملگرهای Scans و Seeks

در حالت کلی می‌توان دو نوع جدول بدون و با ایندکس را درنظر گرفت. در حالت جداول بدون ایندکس، برای جستجوی اطلاعات نیاز به Table Scan وجود دارد و برعکس آن شامل یک Clustered index scan خواهد بود. گاهی از اوقات Clustered index scanها بهترین روش دریافت اطلاعات هستند و گاهی از اوقات خیر و نیاز به بررسی بیشتری دارند. بنابراین قانون کلی، حذف آن‌ها به محض مشاهده، نیست.
نوع دیگر عملگرهای دسترسی به داده‌ها، Seeks هستند که شامل Clustered index seeks و Non-clustered index seeks می‌شوند. در بسیاری از موارد عنوان می‌شود که Seeks کارآیی بهتری را به همراه دارند. هرچند این مورد نیاز به بررسی بیشتری دارد که در ادامه با مثال‌هایی آن‌ها را مرور خواهیم کرد.


بررسی عملگر Table scan در یک Query Plan

در ادامه تعدادی از عملگرهای مرتبط با data access را از لحاظ نحوه‌ی انتخاب و تغییر آن‌ها توسط بهینه ساز کوئری‌های SQL Server بررسی می‌کنیم. برای این منظور ابتدا در management studio از منوی Query، گزینه‌ی Include actual execution plan را انتخاب می‌کنیم. سپس کوئری‌های زیر را اجرا می‌کنیم:
SET STATISTICS IO ON;
GO
SET STATISTICS TIME ON;
GO

SELECT *
INTO [Sales].[Copy_Orders]
FROM [Sales].[Orders];
GO

SELECT
    [CustomerID],
    [OrderID],
    [OrderDate]
FROM [Sales].[Copy_Orders]
WHERE [CustomerID] > 550;
GO
در اینجا در ابتدا، تمام رکوردهای جدول [Sales].[Orders]، به جدول [Sales].[Copy_Orders] کپی می‌شوند. سپس یک کوئری را بر روی این جدول کپی، اجرا کرده‌ایم.


همانطور که مشاهده می‌کنید، برای برآورده کردن قسمت where این کوئری، یک Table Scan صورت گرفته‌است؛ چون این جدول کپی، به همراه هیچ ایندکسی نیست. به همین جهت برای یافتن رکوردهای مدنظر، راه دیگری بجز اسکن کل جدول بانک اطلاعاتی وجود ندارد که بسیار ناکارآمد است.
همچنین اگر به برگه‌ی messages دقت کنیم، با توجه به روشن بودن STATISTICS IO، میزان logical reads نیز قابل مشاهده‌است:
(33035 rows affected)
Table 'Copy_Orders'. Scan count 1, logical reads 689, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
به علاوه اجرای آن نیز کمی بیشتر از نیم ثانیه، طول کشیده‌است:
SQL Server Execution Times:
CPU time = 79 ms,  elapsed time = 762 ms.


بررسی عملگر Index Seek در یک Query Plan

اکنون سؤال اینجا است که آیا می‌توان این وضعیت را بهبود بخشید؟
بله. برای این منظور یک NONCLUSTERED INDEX را بر روی جدول کپی، ایجاد می‌کنیم؛ به نحوی که CustomerID لحاظ شده‌ی در قسمت where کوئری را پوشش دهد:
CREATE NONCLUSTERED INDEX [IX_Copy_Orders_CustomerID]
ON [Sales].[Copy_Orders] (
[CustomerID]
)
INCLUDE (
[OrderID], [OrderDate]
);
GO
چون مطابق کوئری، [OrderID] و [OrderDate] در قسمت where ذکر نشده‌اند، در اینجا INCLUDE شده‌اند.

در ادامه مجددا همان کوئری را اجرا می‌کنیم:
SELECT
    [CustomerID],
    [OrderID],
    [OrderDate]
FROM [Sales].[Copy_Orders]
WHERE [CustomerID] > 550;
GO
که سبب تولید کوئری پلن زیر می‌شود:


اینبار عملگر Table Scan قبلی به یک عملگر Index Seek بر روی NONCLUSTERED INDEX تعریف شده، تغییر کرده‌است و اگر به آمار I/O آن دقت کنیم، logical reads 106 قابل مشاهده‌است که بهبود قابل ملاحظه‌ای است نسبت به عدد 689 قبلی.


بررسی عملگر Clustered index scan در یک Query Plan

در ادامه همین کوئری را بر روی جدول [Sales].[Orders] اصلی اجرا می‌کنیم:
SELECT
    [CustomerID],
    [OrderID],
    [OrderDate]
FROM [Sales].[Orders]
WHERE [CustomerID] > 550;
GO
که به صورت پیش‌فرض شامل این ایندکس‌ها است:


اجرای کوئری فوق، چنین کوئری پلنی را تولید می‌کند:


جدول [Sales].[Orders]، یک CLUSTERED INDEX را بر روی [OrderID] دارد و یک NONCLUSTERED INDEX را بر روی [CustomerID].
در کوئری پلن تولید شده، یک Clustered index scan مشاهده می‌شود. علت اینجا است که هرچند در جدول [Sales].[Orders] یک NONCLUSTERED INDEX بر روی  [CustomerID] تعریف شده‌است:
CREATE NONCLUSTERED INDEX [FK_Sales_Orders_CustomerID] ON [Sales].[Orders]
(
[CustomerID] ASC
)
اما قسمت INCLUDE ایندکس قبلی را که تعریف کردیم، ندارد و به همراه [CustomerID] و [OrderDate] نیست. به همین جهت اینبار logical reads 692 است.

بنابراین وجود عملگر Clustered index scan در یک کوئری پلن، یعنی نیاز به خواندن و اسکن کل جدول وجود دارد. برای اثبات آن، همین کوئری قبلی را که بر روی [Sales].[Orders] انجام دادیم، اینبار بدون قسمت where آن اجرا کنید. یعنی کوئری بر روی کل جدول انجام شود:
SELECT
    [CustomerID],
    [OrderID],
    [OrderDate]
FROM [Sales].[Orders]
سپس به برگه‌ی messages مراجعه کرده و عدد logical reads آن‌را مشاهده کنید. این عدد دقیقا با عدد logical reads کوئری where دار، یکی است؛ که بیانگر اسکن کامل جدول در حالت Clustered index scan است.

سؤال: آیا Clustered index scan همواره کل یک جدول را اسکن می‌کند؟
پاسخ: خیر. اگر یک کوئری برای مثال دارای top/min/max باشد، کل جدول اسکن نخواهد شد:
SELECT TOP 10
    [CustomerID],
    [OrderID],
    [OrderDate]
FROM [Sales].[Orders]
WHERE [CustomerID] > 550;
تفاوت این کوئری با کوئری‌های قبلی، در داشتن یک top 10 است. اگر آن‌را اجرا کنیم، به کوئری پلن زیر خواهیم رسید:


هرچند در اینجا هم یک Clustered index scan صورت گرفته، اما اگر به برگه‌ی messages آن مراجعه کنیم، آمار I/O آن بیانگر تنها logical reads 5 است که معادل اسکن کل جدول نیست:
(10 rows affected)
Table 'Orders'. Scan count 1, logical reads 5, physical reads 0, read-ahead reads 510, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.


مقایسه‌ی عملگرهای Index Scan و Index Seek

ابتدا کوئری زیر را اجرا می‌کنیم:
SELECT
    [CustomerID],
    [OrderID]
FROM [Sales].[Orders]
WHERE [OrderID] > 30000;
این کوئری با کوئری قبلی از لحاظ قسمت select اندکی متفاوت بوده و در آن OrderDate حذف شده‌است. در قسمت where نیز کوئری بر روی OrderID صورت گرفته‌است.
در این جدول ایندکسی بر روی CustomerID وجود دارد و همچنین کلید اصلی جدول، OrderID است.

پس از اجرای این کوئری، به کوئری پلن زیر خواهیم رسید:


که بیانگر یک Index Scan است و نکته‌ی جالب آن، استفاده‌ی از ایندکس FK_Sales_Orders_CustomerID می‌باشد (نام این شیء، ذیل آیکن عملگر، مشخص است). یعنی SQL Server در اینجا از یک non-clustered index تعریف شده‌ی بر روی CustomerID استفاده کرده‌است.
اکنون اگر OrderID را تغییر دهیم چه اتفاقی رخ می‌دهد؟
SELECT
    [CustomerID],
    [OrderID]
FROM [Sales].[Orders]
WHERE [OrderID] > 60000;
اینبار به یک clustered index seek رسیدیم که بر روی کلید اصلی جدول یا همان PK_Sales_Orders که ذیل عملگر مشخص شده، رخ داده‌است:


در این مثال با دو ورودی مختلف، دو کوئری پلن مختلف تولید شده‌است؛ که مرتبط است با میزان اطلاعاتی که قرار است بازگشت داده شود.

اگر این دو کوئری را با هم اجرا کنیم (در طی یک batch)، به پلن مقایسه‌ای زیر خواهیم رسید که در آن هزینه‌ی Index Scan بیشتر است از clustered index seek:


به همراه آمار CPU و I/O ای به صورت زیر که اولی مرتبط است با index scan و دومی با clustered index seek:
(43595 rows affected)
Table 'Orders'. Scan count 1, logical reads 191, physical reads 1, read-ahead reads 182, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
 SQL Server Execution Times:
CPU time = 31 ms,  elapsed time = 754 ms.


(13595 rows affected)
Table 'Orders'. Scan count 1, logical reads 131, physical reads 0, read-ahead reads 127, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
 SQL Server Execution Times:
CPU time = 16 ms,  elapsed time = 276 ms.
به همین جهت است که عنوان می‌شود، scanها خوب نیستند و seekها بهترند.