نظرات مطالب
EF Code First #12
سیستم مدیریت محتوای IRIS از الگوی واحد کار استفاده کرده. از کدهاش برای انجام یک پروژه واقعی ایده بگیرید. برای برنامه‌های دسکتاپ هم دوره طراحی یک فریم ورک برای کار با WPF و EF Code First توسط الگوی MVVM از الگوی واحد کار استفاده می‌کنه.
نظرات مطالب
EF Code First #12
دوره جدیدی به سایت اضافه شده تحت عنوان «طراحی یک فریم ورک برای کار با WPF و EF Code First توسط الگوی MVVM».
دسترسی به آن فقط برای نویسندگان سایت با حداقل یک مطلب ارسالی در طی یک ماه قبل است. البته همه‌ی کاربران عضو، می‌توانند مشارکت کنند و در سایت مطلب ارسال کنند. از این لحاظ محدودیتی وجود ندارد.
مطالب
C# 6 - Null-conditional operators
برنامه نویس‌‌های سی‌شارپ پیشتر با null-coalescing operator یا ?? آشنا شده بودند. برای مثال
 string data = null;
var result = data ?? "value";
در این حالت اگر data یا سمت چپ عملگر، نال باشد، مقدار value (سمت راست عملگر) بازگشت داده خواهد شد؛ که در حقیقت خلاصه شده‌ی چند سطر ذیل است:
if (data == null)
{
    data = "value";
}
var result = data;
در سی شارپ 6، جهت تکمیل عملگرهای کار با مقادیر نال و بالا بردن productivity برنامه نویس‌ها، عملگر دیگری به نام Null-conditional operator و یا .? به این مجموعه اضافه شده‌است. در این حالت ابتدا مقدار سمت چپ عملگر بررسی خواهد شد. اگر مقدار آن مساوی نال بود، در همینجا کار خاتمه یافته و نال بازگشت داده می‌شود. در غیر اینصورت کار بررسی زنجیره‌ی جاری ادامه خواهد یافت.
برای مثال بسیاری از نتایج بازگشتی از متدها، چند سطحی هستند:
class Response
{
    public string Result { set; get; }
    public int Code { set; get; }
}

 
class WebRequest
{
    public Response GetDataFromWeb(string url)
    {
        // ...
        return new Response { Result = null };
    }
}
در اینجا روش مرسوم کار با کلاس درخواست اطلاعات از وب به صورت ذیل است:
 var webData = new WebRequest().GetDataFromWeb("https://www.dntips.ir/");
if (webData != null && webData.Result != null)
{
    Console.WriteLine(webData.Result);
}
چون می‌خواهیم به خاصیت Result دسترسی پیدا کنیم، نیاز است دو مرحله وضعیت خروجی متد و همچنین خاصیت Result آن‌را جهت مشخص سازی نال نبودن آن‌ها، بررسی کنیم و اگر برای مثال خاصیت Result نیز خود متشکل از یک کلاس دیگر بود که در آن برای مثال StatusCode نیز ذکر شده بود، این بررسی به سه سطح یا بیشتر نیز ادامه پیدا می‌کرد.
در این حالت اگر اشاره‌گر را به محل && انتقال دهیم، افزونه‌ی ReSharper پیشنهاد یکی کردن این بررسی‌ها را ارائه می‌دهد:


به این ترتیب تمام چند سطح بررسی نال، به یک عبارت بررسی .? دار، خلاصه خواهد شد:
 if (webData?.Result != null)
{
    Console.WriteLine(webData.Result);
}
در اینجا ابتدا بررسی می‌شود که آیا webData نال است یا خیر؟ اگر نال بود همینجا کار خاتمه پیدا می‌کند و به بررسی Result نمی‌رسد. اگر نال نبود، ادامه‌ی زنجیره تا به انتها بررسی می‌شود.
البته باید دقت داشت که برای تمام سطوح باید از .? استفاده کرد (برای مثال response?.Results?.Status)؛ در غیر اینصورت همانند سابق در صورت استفاده‌ی از دات معمولی، به یک null reference exception می‌رسیم.


کار با متدها و Delegates

این عملگر جدید مقایسه‌ی با نال را بر روی متدها (علاوه بر خواص و فیلدها) نیز می‌توان بکار برد. برای مثال خلاصه شده‌ی فراخوانی ذیل:
 if (x != null)
{
   x.Dispose();
}
با استفاده از Null Conditional Operator به این صورت است:
 x?.Dispose();

و یا بکار گیری آن بر روی delegates (روش قدیمی):
 var copy = OnMyEvent;
if (copy != null)
{
   copy(this, new EventArgs());
}
نیز با استفاده از متد Invoke به نحو ذیل قابل انجام است و نکته جالب یک سطر کد ذیل علاوه بر ساده شدن آن:
 OnMyEvent?.Invoke(this, new EventArgs());
Thread-safe بودن آن نیز می‌باشد. زیرا در این حالت کامپایلر delegate را به یک متغیر موقتی کپی کرده و سپس فراخوانی‌ها را انجام می‌دهد. اگر انجام این کپی موقت صورت نمی‌گرفت، در حین فراخوانی آن از طریق چندین ترد مختلف، ممکن بود یکی از مشترکین delegate از آن قطع اشتراک می‌کرد و در این حالت فراخوانی تردی دیگر در همان لحظه، سبب کرش برنامه می‌شد.


استفاده از Null Conditional Operator بر روی Value types

الف) مقایسه با نال
کد ذیل را درنظر بگیرید:
 var code = webData?.Code;
در اینجا Code یک value type از نوع int است. در این حالت با بکارگیری Null Conditional Operator، خروجی این حاصل، از نوع <Nullable<int و یا ?int درنظر گرفته خواهد شد و با توجه به اینکه عبارات null>0 و همچنین null<0 هر دو false هستند، مقایسه‌ی این خروجی با 0 بدون مشکل انجام می‌شود. برای مثال مقایسه‌ی ذیل از نظر کامپایلر یک عبارت معتبر است و بدون مشکل کامپایل می‌شود:
 if (webData?.Code > 0)
{

}

ب) بازگشت مقدار پیش فرض دیگری بجای نال
اگر نیاز بود بجای null مقدار پیش فرض دیگری را بازگشت دهیم، می‌توان از null-coalescing operator سابق استفاده کرد:
 int count = response?.Results?.Count ?? 0;
در این مثال خاصیت CountT در اصل از نوع int تعریف شده‌است؛ اما بکارگیری .? سبب Nullable شدن آن خواهد شد. بنابراین امکان بکارگیری عملگر ?? یا null-coalescing operator نیز بر روی این متغیر وجود دارد.

ج) دسترسی به مقدار Value یک متغیر nullable
نمونه‌ی دیگر آن قطعه کد ذیل است:
 int? x = 10;
//var value = x?.Value; // invalid
Console.WriteLine(x?.ToString());
در اینجا برخلاف متغیر Code که از ابتدا nullable تعریف نشده‌است، متغیر x نال پذیر است. اما باید دقت داشت که با تعریف .? دیگر نیازی به استفاده از خاصیت Value این متغیر nullable نیست؛ زیرا .? سبب محاسبه و بازگشت خروجی آن می‌شود. بنابراین در این حالت، سطر دوم غیرمعتبر است (کامپایل نمی‌شود) و سطر سوم معتبر.


کار با indexer property و بررسی نال

اگر به عنوان بحث دقت کرده باشید، یک s جمع در انتهای Null-conditional operators ذکر شده‌است. به این معنا که این عملگر مقایسه‌ی با نال، صرفا یک شکل و فرم .? را ندارد. مثال ذیل در حین کار با آرایه‌ها و لیست‌ها بسیار مشاهده می‌شود:
 if (response != null && response.Results != null && response.Results.Addresses != null
  && response.Results.Addresses[0] != null && response.Results.Addresses[0].Zip == "63368")
{

}
در اینجا به علت بکارگیری indexer بر روی Addresses، دیگر نمی‌توان از عملگر .? که صرفا برای فیلدها، خواص، متدها و delegates طراحی شده‌است، استفاده کرد. به همین منظور، عملگر بررسی نال دیگری به شکل […]? برای این بررسی طراحی شده‌است:
 if(response?.Results?.Addresses?[0]?.Zip == "63368")
{

}
به این ترتیب 5 سطح بررسی نال فوق، به یک عبارت کوتاه کاهش می‌یابد.

 
موارد استفاده‌ی ناصحیح از عملگرهای مقایسه‌ی با نال

خوب، عملگر .? کار مقایسه‌ی با نال را خصوصا در دسترسی‌های چند سطحی به خواص و متدها بسیار ساده می‌کند. اما آیا باید در همه جا از آن استفاده کرد؟ آیا باید از این پس کلا استفاده از دات را فراموش کرد و بجای آن از .? در همه جا استفاده کرد؟
مثال ذیل را درنظر بگیرید:
 public void DoSomething(Customer customer)
{
    string address = customer?.Employees
                  ?.SingleOrDefault(x => x.IsAdmin)?.Address?.ToString();
    SendPackage(address);
}
در این مثال در تمام سطوح آن از .? بجای دات استفاده شده‌است و بدون مشکل کامپایل می‌شود. اما این نوع فراخوانی سبب خواهد شد تا یک سری از مشکلات موجود کاملا مخفی شوند؛ خصوصا اعتبارسنجی‌ها. برای مثال در این فراخوانی اگر مشتری نال باشد یا اگر کارمندانی را نداشته باشد، آدرسی بازگشت داده نمی‌شود. بنابراین حداقل دو سطح بررسی و اعتبارسنجی عدم وجود مشتری یا عدم وجود کارمندان آن در اینجا مخفی شده‌اند و دیگر مشخص نیست که علت بازگشت نال چه بوده‌است.
روش بهتر انجام اینکار، بررسی وضعیت customer و انتقال مابقی زنجیره‌ی LINQ به یک متد مجزای دیگر است:
 public void DoSomething(Customer customer)
{
   Contract.Requires(customer != null); 
   string address = customer.GetAdminAddress();
   SendPackage(address);
}
مطالب
چرخه‌ی حیات یک درخواست در ASP.NET MVC

در Asp.net دو چرخه‌ی حیات مهم وجود دارند که اساس چارچوب MVC را تشکیل می‌دهند :

  1. چرخه‌ی حیات برنامه (Application)؛ از لحظه‌ای که برنامه برای اولین بار اجرا می‌شود و تا لحظه‌ی خاتمه‌ی آن را شامل می‌شود.
  2. چرخه‌ی حیات یک درخواست ( Request مسیری که یک درخواست طی می‌کند، اصطلاحا PipeLine نامیده می‌شود که همان چرخه‌ی حیات یک درخواست نیز هست و از لحظه‌ای که درخواست تحویل asp.net شده، تا زمانیکه درخواست ارسال می‌شود را شامل می‌شود.

تمرکز بنده بیشتر بر روی روند و مسیری است که یک درخواست طی می‌کند و قصد دارم با بهره گیری از کتاب Pro Asp.net Mvc 5 و دیگر منابع، چرخه‌ی حیات درخواست را در برنامه‌های Mvc بررسی کرده و در مقالات آتی ماژولها و هندلرها را بررسی کنم.

در asp.net ، برنامه global فایلهای شامل دو فایل Global.asax , Global.asax.cs است.

فایل Global.asax که هیچ گاه نیاز به ویرایش آن نداریم محتویاتی مانند زیر دارد:

<%@ Application Codebehind="Global.asax.cs" Inherits="YourAppName.MvcApplication" Language="C#" %>
و صرفا فایل code behind   مرتبط را برای asp.net مشخص می‌کند. این نوع مشخص سازی را از وب فرمها به یاد داریم.

در این مقاله منظور از فایل global فایل  Global.asax.cs است که مشتق شده از کلاس System.Web.HttpApplication است:

public class MvcApplication : System.Web.HttpApplication
    {
        protected void Application_Start()
        {
            ...//
        }
    }
به صورت پیش فرض کدهای بالا ایجاد شده و کلاس MvcApplication شامل متد Application_Start است که نقطه‌ی شروع چرخه‌ی حیات برنامه را مشخص می‌کند. اما متد دیگری به نام Application_End() نیز وج ود دارد که در زمان خاتمه‌ی برنامه فراخوانی خواهد شد و فرصتی را برای آزاد سازی منابع اشغال شده توسط برنامه فراهم می‌آورد .

Asp.net برای پاسخگویی به درخواست‌های واصله، وهله‌هایی از کلاس MvcApplication را می‌سازد ولی این دو متد صرفا در نقاط شروع و پایان برنامه فراخوانی شده و عملا در وهله‌های یاد شده صدا زده نخواهند شد و به جای آنها رویدادهایی را که در ذیل آنها را معرفی می‌کنیم، فراخوانی شده و چرخه‌ی حیات درخواست را برای ما مشخص می‌سازند .

  BeginRequest : به عنوان اولین رویداد، به محض وصول یک درخواست جدید رخ خواهد داد. 

  AuthenticateRequest ,PostAuthenticateRequest : رویداد AuthenticateRequest برای شناسایی کاربر ارسال کننده درخواست، کاربرد دارد و پس از پردازش کلیه‌ی توابع، رویداد PostAuthenticateRequest صدا زده می‌شود.

  AuthorizeRequest :به‌هنگام صدور مجوزهای یک درخواست رخ می‌دهد و مشابه رویداد بالا پس از پردازش کلیه‌ی توابع، رویداد PostAuthorizeRequest صدا زده خواهد شد.  

ResolveRequestCache : پس از صدور مجوزهای یک درخواست در رویداد authorization  زمانیکه ماژولهای کش می‌خواهند اطلاعاتی را از کش سرور مطالبه کنند، رخ می‌دهد و به مانند دو رخداد قبلی، PostResolveRequestCache نیز پس از اتمام پردازش توابع رویداد رخ می‌دهد.

  MapRequestHandler : زمانی که Asp.net می‌خواهد هندلری را برای پاسخگویی به درخواست واصله انتخاب کند رخ می‌دهد و PostMapRequestHandler نیز پس از این انتخاب، تریگر می‌شود.  

AcquireRequestState : جهت بدست آوردن داده‌هایی نظیر سشن و ... مرتبط با درخواست جاری کاربرد داشته و PostAcquireRequestState نیز پس از پردازش توابع رویداد رخ خواهد داد.

  PreRequestHandlerExecute : بالافاصله قبل و همچنین بلافاصله بعد از این که یک هندلر بخواهد درخواستی را پردازش کند، رخ می‌دهد. PostRequestHandlerExecute نیز همانند دیگر رویدادهای گذشته، پس از اتمام پردازش توابع، این رویداد رخ خواهد داد. 

ReleaseRequestState : زمانی رخ می‌دهد که داده‌های مرتبط با درخواست جاری، در ادامه‌ی روند پردازش درخواست مورد نیاز نباشند و پس از پردازش توابع رویداد، PostReleaseRequestState رخ خواهد داد .

UpdateRequestCache : به جهت اینکه ماژولهای مسئول کش، توانایی به روز رسانی داده‌های خود، برای پاسخگویی به درخواستهای بعدی را داشته باشند، این رویداد رخ می‌دهد.

  LogRequest : قبل از انجام عملیات لاگین برای درخواست جاری رخ می‌دهد و پس از پردازش توابع رویداد نیز PostLogRequest تریگر می‌شود.  

  EndRequest : پس از پایان کار پردازش درخواست جاری و مهیا شدن پاسخ مرتبط جهت ارسال به مرورگر تریگر خواهد شد. 

PreSendRequestHeaders : قبل از ارسال HTTP headers به مرورگر این رویداد رخ خواهد داد.

  PreSendRequestContent : بعد از ارسال شدن هدرها و قبل از ارسال محتوای صفحه به مرورگر رخ می‌دهد. 

Error : هر زمان و در هر مرحله از پردازش درخواست، چنانچه خطایی صورت پذیرد این رویداد رخ خواهد داد.

فریم ورک Asp.net   جهت مدیریت بهتر یک درخواست، در تمام مسیر پردازش، رویدادهای بالا را مهیا کرده است. در ادامه نحوه‌ی هندل کردن رویدادهای چرخه‌ی حیات درخواست را در فایل global توضیح می‌دهم. هر چند که استفاده از این فایل بدین منظور، صرفا برای مدیریت مسائل ابتدایی مناسب بوده و در یک پروژه‌ی بزرگ موجب به هم ریختگی فایل global با کدهای زیاد و خوانایی پایین بوده که قابلیت استفاده مجدد در دیگر پروژه‌ها را نیز ندارد.

Asp.net این مشکل را با معرفی ماژولها که در مقالات آتی توضیح خواهم داد، مرتفع کرده است.

در فایل global هر گاه متدی را با پیشوند Application_ و نام یکی از رویدادهای بالا بنویسید Asp.net آن را به عنوان هندلری برای رویداد مذکور می‌شناسد. به عنوان مثال متدی با نام Application_BeginRequest  متد رویداد BeginRequest می‌باشد.

ابتدا یک پروژه‌ی MVC جدید را به نام SimpleApp ایجاد کرده و فایل global آن را مطابق ذیل تغییر می‌دهیم:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
namespace SimpleApp
{
    public class MvcApplication : System.Web.HttpApplication
    {
        protected void Application_Start()
        { 
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
        }
        protected void Application_BeginRequest() 
        {
            RecordEvent("BeginRequest");
        }
        protected void Application_AuthenticateRequest() 
        {
            RecordEvent("AuthenticateRequest");
        }
        protected void Application_PostAuthenticateRequest()
        { 
            RecordEvent("PostAuthenticateRequest");
        }
        private void RecordEvent(string name)
        {
            List<string> eventList = Application["events"] as List<string>;
            if (eventList == null) 
            { 
                Application["events"] = eventList = new List<string>(); 
            } 
            eventList.Add(name);
        }
    }
}

در اینجا متدی به نام RecordEvent را در کدهای ذکر شده مشاهده می‌کنید که نام یک رویداد را دریافت و جهت در دسترس قرار دادن در کل برنامه به خاصیت Application از کلاس HttpApplication نسبت داده و متد مذکور را از سه متد دیگر فراخوانی کرده‌ایم. این متدها در زمان رخ دادن رویدادهای BeginRequest, AuthenticateRequest, PostAuthenticateRequest صدا زده خواهند شد.

حال جهت نمایش اطلاعات رویداد نیاز است تغییراتی مشابه ذیل در کنترلر Home ایجاد نماییم.

using System.Web.Mvc;
namespace SimpleApp.Controllers
{
    public class HomeController : Controller
    {
        public ActionResult Index()
        {
            return View(HttpContext.Application["events"]);
        }

    }
}

ویوی مرتبط با اکشن متد index را مطابق کدهای ذیل بازنویسی می‌کنیم:

@model List<string>
@{
    ViewBag.Title = "Events List";
 
}
<h5>Events</h5>
<table>
    @foreach (string eventName in Model)
    {    
        <tr>
            <td>@eventName</td>
        </tr>      
    }

</table>
خروجی آن مطابق ذیل خواهد بود :

در این مقاله سعی کردیم ابتدا چرخه‌ی حیات یک Request را فرا گرفته و سپس از طریق فایل global و توسط متدهایی با پیشوند Application_ +نام رویداد (اصطلاحا متدهای ویژه نامیده می‌شوند) چرخه حیات یک درخواست را مدیریت کنیم.
مطالب
ایجاد یک DbContext مشترک بین entityهای پروژه‌های متفاوت
فر ض کنید پروژه بزرگی دارید که هر قسمت را به یک برنامه نویس می‌سپارید تا آن قسمت را در پروژه مجزایی طراحی و برنامه نویسی کند. هر برنامه نویس Entity‌های خاص خود را در لایه‌های مربوط به پروژه خود تعریف می‌کند و از آنها استفاده می‌کند. حال یکی از برنامه نویس‌ها می‌خواهد از Entity های پروژه دیگر استفاده کند. در این صورت اگر از دو Context شیء‌ایی را بسازد و آنها را با یکدیگر Join  بزند، خطایی مربوط به تعلق داشتن دو  Entity به دو Context متفاوت را می‌گیرد.

در پروژه‌های کوچک، کل تیم بر روی ماژول‌های مختلف یک پروژه کار می‌کنند و یک DbContext مشترک دارند. اما راه حل این مشکل در پروژه‌های بزرگ چیست؟ 
یکی از راه‌های پیشنهادی، استفاده از یک کلاس DbContextBase است که همه پروژه‌ها بایستی Context خود را از این کلاس به ارث ببرند که در این صورت باز هم مشکل ساخت چند DbContext وجود خواهد داشت که فقط می‌توان از Entity‌های موجود در DbContextBase و DbContext پروژه جاری استفاده کرد. اما در شرکت‌های بزرگ که پروژه‌هایی مانندERP دارند، روش دیگری استفاده می‌شود که در ادامه خواهیم دید.
روش مورد استفاده به این صورت است که در زمان اجرا یک DbContext برای همه Entity‌های پروژه‌های مختلف ساخته می‌شود. اجازه بدهید همراه با مثال، این پروژه را پیش برویم. فرض کنید دو تیم برنامه نویسی داریم که هر کدام بر روی پروژه‌های مجزای SampleProject1 و SampleProject2 کار میکنند که Entity‌های هر کدام در لایه‌های Common قرار گرفته‌اند.

در SampleProject1 مدل Product را داریم:

public partial class Product : Entity
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public Nullable<byte> ProductTypeId { get; set; }
    }
و در SampleProject2، مدل ProductType را داریم که هر دو Entity از کلاس Entity ارث بری می‌کند: 
 public partial class ProductType : Entity
    {
        public byte Id { get; set; }
        public string Name { get; set; }
    }
همه پروژه‌ها را در پروژه‌ی SampleProject1.Console، به عنوان رفرنس اضافه می‌کنیم؛ بجز SampleProject2.Console و Output path همه پروژه‌ها را به یک پوشه مشترک هدایت می‌کنیم. در ادامه برای بدست آوردن Entity‌ها از کد زیر استفاده می‌کنیم:
            List<Assembly> allAssemblies = new List<Assembly>();
            string path = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location);

            foreach (string dll in Directory.GetFiles(path, "*.Common.dll"))
                allAssemblies.Add(Assembly.LoadFile(dll));

            var type = typeof(Entity);
      
            List<Type> types = allAssemblies
             .SelectMany(s => s.GetTypes())
             .Where(p => type.IsAssignableFrom(p)).ToList();

            List<string> entities = new List<string>();
            foreach (var item in types)
            {
                entities.Add(item.Name);
            }

            types.Add(typeof(Entity));
و سپس برای Generate کردن کلاس DbContext از کلاس زیر استفاده می‌کنیم:
public class ContextGenerator
    {
        public void Generate(List<string> entities, params Type[] types)
        {
            StringBuilder code = new StringBuilder();

            code.AppendLine(@"
           using System.Data.Entity;
           using System.Data.Entity.Core.EntityClient;
           using SampleProject1.Common.Models;
           using SampleProject1.Common.Models.Mapping;
           using SampleProject2.Common.Models;
           using SampleProject2.Common.Models.Mapping;

           namespace DbContextGenerator
           {
                public partial class TestContext : DbContext
                {
                    static TestContext()
                    {
                        Database.SetInitializer<TestContext>(null);
                    }

                    public TestContext()
                        : base(""Data Source=.;Initial Catalog=Test;Integrated Security=True;MultipleActiveResultSets=True"")
                    {
                        }
                ");

            var pluralizeHelper = new PluralizeHelper();

            foreach (var entity in entities)
            {
                code.AppendLine($@"public DbSet<{entity}> {pluralizeHelper.Pluralize(entity)} {{ get; set; }}");
            }

            code.AppendLine(@"protected override void OnModelCreating(DbModelBuilder modelBuilder)");
            code.AppendLine(@"{");

            foreach (var entity in entities)
            {
                code.AppendLine($@"modelBuilder.Configurations.Add(new {entity}Map());");
            }
            code.AppendLine(@"}");
            code.AppendLine(@"}");
            code.AppendLine(@"}");
           
            CSharpCodeProvider provider = new CSharpCodeProvider();
            CompilerParameters parameters = new CompilerParameters();

            parameters.ReferencedAssemblies.Add("System.Drawing.dll");
            parameters.ReferencedAssemblies.Add("System.Data.dll");
            parameters.ReferencedAssemblies.Add("System.Data.Entity.dll");
            parameters.ReferencedAssemblies.Add("System.ComponentModel.dll");

            foreach (var type in types)
            {
                parameters.ReferencedAssemblies.Add(type.Assembly.Location);
            }

            parameters.ReferencedAssemblies.Add(typeof(DbSet).Assembly.Location);
            parameters.ReferencedAssemblies.Add(typeof(DbContext).Assembly.Location);
            parameters.ReferencedAssemblies.Add(typeof(IQueryable).Assembly.Location);
            parameters.ReferencedAssemblies.Add(typeof(IQueryable<>).Assembly.Location);
            parameters.ReferencedAssemblies.Add(typeof(System.ComponentModel.IListSource).Assembly.Location);

            parameters.GenerateExecutable = false;
            parameters.GenerateInMemory = false;
            parameters.OutputAssembly = "ProjectContext.dll";

            CompilerResults results = provider.CompileAssemblyFromSource(parameters, code.ToString());

            if (results.Errors.HasErrors)
            {
                StringBuilder sb = new StringBuilder();

                foreach (CompilerError error in results.Errors)
                {
                    sb.AppendLine(String.Format("Error ({0}): {1}", error.ErrorNumber, error.ErrorText));
                }

                throw new InvalidOperationException(sb.ToString());
            }
        }

    }
و نحوه فراخوانی آن:
 new ContextGenerator().Generate(entities, types.ToArray()); // generate dbContext
همانطور که مشاهده می‌کنید، برای تولید کد، از کلاس CSharpCodeProvider استفاده میکنیم که نتیجه اجرای کد بالا، ساخت DLLی به نام ProjectContext.dll است. با مشاهده DLL ساخته شده توسط نرم افزار ILSpy، کد جنریت شده به صورت زیر خواهد بود: 

حال برای استفاده از Context تولید شده، به صورت زیر شیءایی را ساخته:

 static DbContext _dbContext=null;
        public static DbContext GetDbContextInstance()
        {
            if (_dbContext == null)
            {
                string path = Path.GetDirectoryName(Assembly.GetEntryAssembly().Location);
                var dllversionAssm = Assembly.LoadFile(path + "\\ProjectContext.dll");
                Type type = dllversionAssm.GetType("DbContextGenerator.TestContext");
                _dbContext = (DbContext)Activator.CreateInstance(type);
            }
            return _dbContext;
        }

و سپس برای ساخت DbSet از هر Entity به کد زیر نیاز خواهیم داشت:

public static System.Data.Entity.DbSet<T> Get<T>() where T : class
        {
            var set = GetDbContextInstance().Set<T>();
            return set;
        }

هم اکنون می‌توان رکوردهای Entity‌ها را واکشی کرده و یا آن‌ها را با یکدیگر Join بزنیم:

            var products = Get<Product>().ToList();

            var productTypes = Get<ProductType>().ToList();


            var query = from p in Get<Product>()
                        join pt in Get<ProductType>() on p.ProductTypeId equals pt.Id
                        select new
                        {
                            Id = p.Id,
                            Name = p.Name,
                            ProductType = pt.Name

                        };

            var JoinResult = query.ToList();

و نتیجه واکشی ها 


کد کامل این پروژه  

مطالب
آموزش Linq - بخش ششم : عملگرهای پرس و جو قسمت سوم
عملگر‌های تبدیل Conversion Operator

عملگر‌های پرس و جوی تبدیل، توالی‌هایی را که از جنس <IEnumerable<T هستند، به انواع دیگر مجموعه تبدیل می‌کنند.
از عملگر‌های پرس و جوی زیر می‌توان برای تبدیل توالی‌ها استفاده کرد :
  • OfType
  • Cast
  • ToArray
  • ToList
  • ToDictionary
  • ToLookup

عملگر OfType


این عملگر عناصری از توالی را که نوع آنها را مشخص می‌کنیم باز می‌گرداند.
امضاء عملگر پرس و جوی OfType  به صورت زیر است :
 public static IEnumerable<TResult> OfType<TResult>(this IEnumerable source)
همانطور که مشاهده می‌کنید توالی ورودی از یک نوع IEnumerable غیر جنریک می‌باشد. بدین معنی که عناصر توالی ورودی می‌توانند از نوع داده‌های مختلف باشند (توالی از اشیاء، از جنس Object).
در مثال زیر یک توالی IEnumerable (آرایه‌ای از اشیاء)، از عناصر با نوع داده‌های مختلفی را ایجاد کرده‌ایم. عملگر OfType در اینجا کلیه عناصر از جنس (string) را باز می‌گرداند. توالی خروجی یک نوع IEnumerable جنریک است(در این مثال <IEnumerable<List).
مثال :
IEnumerable input = new object[] { "Apple", 33, "Sugar", 44, 'a', new DateTime()};
IEnumerable<string> query = input.OfType<string>();
foreach (var item in query)
{
   Console.WriteLine(item);
}
خروجی مثال بالا :
Apple
Sugar
عملگر OfType را می‌توان به‌همراه  Strongly Type‌‌ها نیز استفاده کرد.
مثال :کد زیر یک ساختار سلسله مراتبی شیء گرا را نمایش می‌دهد:
 class Ingredient
  {
     public string Name { get; set; }
  }
  class DryIngredient : Ingredient
  {
     public int Grams { get; set; }
  }

  class WetIngredient : Ingredient
  {
     public int Millilitres { get; set; }
  }
کد زیر چگونگی استفاده از OfType را برای بدست آوردن یک زیر نوع (Subtype) مشخص، نشان می‌دهد (در این مثال، نوع WetIngredient):
IEnumerable<Ingredient> input = new Ingredient[]
{
   new DryIngredient { Name = "Flour" },
   new WetIngredient { Name = "Milk" },
   new WetIngredient { Name = "Water" }
};

IEnumerable<WetIngredient> query = input.OfType<WetIngredient>();
foreach (WetIngredient item in query)
{
   Console.WriteLine(item.Name);
}
خروجی مثال بالا :
Milk
Water

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر Cast


عملگر Cast همانند عملگر OfType رفتار می‌کند. این عملگر یک توالی ورودی را دریافت و بر اساس نوع مشخص شده، توالی خروجی را تولید می‌کند. همه‌ی عناصر توالی ورودی به نوع مشخص شده Cast می‌شوند. اما بر عکس عملگر OfType که عناصری را که با نوع داده‌ی ما سازگاری نداشت، نادیده می‌گرفت، این عملگر در صورت عدم موفقیت در عملیات تغییر نقش (Cast)، یک استثناء را پرتاب می‌کند.
مثال : 
IEnumerable input = new object[]
{
   "Apple", 33, "Sugar", 44, 'a', new DateTime()
};

IEnumerable<string> query = input.Cast<string>();
foreach (string item in query)
{
   Console.WriteLine(item);
}
با اجرای برنامه‌ی فوق، خطای زیر را مشاهده خواهید کرد:
 Unhandled Exception: System.InvalidCastException: Unable to cast object of type 'System.Int32' to type 'System.String'.

پیاده سازی توسط عبارت‌های جستجو


کلمه‌ی کلیدی جایگزینی برای عملگر Cast، در عبارت‌های جستجو وجود ندارد.این عملگر با استفاده از متغیر Range که در مطالب قبلی این سری معرفی شد، قابل پیاده سازی می‌باشد.
IEnumerable input = new object[]{ "Apple", "Sugar", "Flour" };
IEnumerable<string> query =
from string i in input
select i;

foreach (var item in query)
{
   Console.WriteLine(item);
}
نکته:  در مثال فوق تعریف صریح (Explicit) نوع داده، قبل از متغیر Range انجام شده است (معادل همان نوع داده در عملیات Cast).


عملگر ToArray


عملگر ToArray یک توالی ورودی را دریافت و یک توالی خروجی را به صورت آرایه تولید می‌کند. این عملگر باعث اجرای سریع پرس و جو می‌شود و رفتار پیش فرض LINQ را که اجرای با تاخیر می‌باشد، تحریف/بازنویسی (Override) می‌کند.
مثال: در این مثال یک توالی از نوع <IEnumerable<string به یک آرایه رشته‌ای تبدیل شده است (تبدیل لیست به آرایه).
 IEnumerable<string> input = new List<string> { "Apple", "Sugar", "Flour" };
string[] array = input.ToArray();

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ToList

عملگر ToList همچون ToArray، اجرای با تاخیر را نادیده می‌گیرد. عملگر ToList همانطور که از نامش پیداست، توالی خروجی را به‌صورت لیست مهیا می‌کند.
مثال:
 IEnumerable<string> input = new[] { "Apple", "Sugar", "Flour" };
List<string> list = input.ToList();

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ToDictionary

این عملگر توالی ورودی را به یک  دیکشنری جنریک تبدیل می‌کند (<Dictinary<TKey,TValue) .
ساده‌ترین امضاء عملگر ToDictionary، یک عبارت Lambda می‌باشد. این عبارت Lambda  نشان دهنده‌ی یک تابع است که عنصر کلید(Key) را در دیکشنری، مشخص می‌کند.
مثال:
class Recipe
{
   public int Id { get; set; }
   public string Name { get; set; }
   public int Rating { get; set; }
}

IEnumerable<Recipe> recipes = new[]
{
   new Recipe { Id = 1, Name = "Apple Pie", Rating = 5 },
   new Recipe { Id = 2, Name = "Cherry Pie", Rating = 2 },
   new Recipe { Id = 3, Name = "Beef Pie", Rating = 3 }
};

Dictionary<int, Recipe> dict = recipes.ToDictionary(x => x.Id);
foreach (KeyValuePair<int, Recipe> item in dict)
{
   Console.WriteLine($"Key={item.Key}, Recipe={item.Value}");
}
در کد بالا ، کلید دیکشنری نهایی، از نوع  int می‌باشد که بر اساس Id کلاس Recipe تنظیم شده است. مقادیر (value) دیکشنری هم همان اشیاء از جنس کلاس Recipe می‌باشند.
خروجی مثال بالا:
Key=1, Recipe=Apple Pie
Key=2, Recipe=Cherry Pie
Key=3, Recipe=Beef Pie

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ToLookup


این عملگر رفتاری شبیه به عملگر ToDictionary را دارد، اما به جای تولید خروجی از نوع دیکشنری، نمونه‌ای از جنس ILookUp را ایجاد می‌کند.
در کد زیر خروجی ایجاد شده توسط lookup دستورالعمل‌ها (Recipes) را بر حسب  امتیاز آنها گروه بندی کرده است. در این مثال کلید، بر حسب Byte می‌باشد.
مثال :
class Recipe
{
   public int Id { get; set; }
   public string Name { get; set; }
   public byte Rating { get; set; }
}

IEnumerable<Recipe> recipes = new[]
{
   new Recipe { Id = 1, Name = "Apple Pie", Rating = 5 },
   new Recipe { Id = 1, Name = "Banana Pie", Rating = 5 },
   new Recipe { Id = 2, Name = "Cherry Pie", Rating = 2 },
   new Recipe { Id = 3, Name = "Beef Pie", Rating = 3 }
};

ILookup<byte, Recipe> look = recipes.ToLookup(x => x.Rating);
foreach (IGrouping<byte, Recipe> ratingGroup in look)
{
   byte rating = ratingGroup.Key;
   Console.WriteLine($"Rating {rating}");
   foreach (var recipe in ratingGroup)
   {
      Console.WriteLine($" - {recipe.Name}");
   }
}
خروجی مثال بالا:
 Rating 5
 - Apple Pie
 - Banana Pie
Rating 2
 - Cherry Pie
Rating 3
 - Beef Pie

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر‌های عناصر  Element Operators

این عملگر‌ها، یک توالی ورودی را دریافت و تنها یک عنصر از توالی ورودی و یا یک عنصر را به عنوان عنصر پیش فرض باز می‌گردانند. این نوع عملگر‌ها توالی خروجی را تولید نمی‌کنند.


عملگر First

این عملگر اولین عنصر توالی را باز می‌گرداند.
مثال :
Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.First();
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Sugar
امضای دیگر این متد، امکان تعریف یک شرط را مهیا می‌کند. خروجی این حالت اولین عنصری است که شرط را تامین می‌کند. در کد زیر اولین عنصری که کالری آن برابر 150 باشد به خروجی ارسال می‌شود.
Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.First(x=>x.Calories==150);
Console.WriteLine(element.Name);
خروجی مثال بالا:
 Milk
در زمان استفاده از عملگر First، اگر توالی ورودی هیچ عنصری نداشته باشد، یک استثناء رخ خواهد داد:
 Unhandled Exception: System.InvalidOperationException: Sequence contains no elements
کد زیر نمونه‌ای از این حالت است:
Ingredient[] ingredients = { };
Ingredient element = ingredients.First();
در زمان استفاده‌ی از امضاء دیگر عملگر First، اگر هیچ عنصری شرط معرفی شده‌ی در پارامتر را تامین نکند، باز هم یک استثناء رخ خواهد داد:
 Unhandled Exception: System.InvalidOperationException: Sequence contains no matching element
کد زیر حالت فوق را نشان می‌دهد:
 Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};
Ingredient element = ingredients.First(x=>x.Calories==1500);

پیاده سازی توسط عبارت‌های جستجو

معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر FirstOrDefault

عملگر FirstOrDefalt همانند عملگر First عمل می‌کند، اما با این تفاوت که به جای پرتاب یک استثناء در شرایط معرفی شده در عملگر First، یک مقدار پیش فرض را بر اساس نوع  عناصر توالی باز می‌گرداند. در صورتیکه توالی از نوع عددی باشد، مقدار 0 و اگر عناصر توالی از انواع ارجاعی باشند، مقدار Null و برای مقادیر منطقی، ارزش False به‌عنوان مقادیر پیش فرض باز گردانده می‌شوند.
مثال :
 Ingredient[] ingredients = { };
Ingredient element = ingredients.FirstOrDefault();
Console.WriteLine(element == null);
خروجی مثال بالا :
 True
پیاده سازی حالتی که هیچ یک از عناصر با شرط عملگر کطالبقت ندارند.
Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.FirstOrDefault(x=>x.Calories==1500);
Console.WriteLine(element==null);
خروجی مثال بالا :
 True

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


 عملگر Last

این عملگر آخرین عنصر توالی را باز می‌گرداند. همچون عملگر First، این عملگر نیز یک امضاء برای دریافت یک عبارت شرط یا پیش بینی دارد. این پیش بینی، آخرین عنصری را که شرط را تامین کند، باز می‌گرداند. باز هم مثل عملگر First، در صورتی که توالی هیچ عنصری نداشته باشد و یا عدم تامین شرط توسط عناصر توالی، استثنایی رخ خواهد داد.
مثال :
Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};
Ingredient element = ingredients.Last(x=>x.Calories==500);
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Flour

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر LastOrDefault

این عملگر همچون عملگر FirstOrDefault عمل می‌کند. از بروز استثناء جلوگیری کرده و مقدار پیش فرض را به خروجی ارسال می‌کند.

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر Single

عملگر Single ، تنها عنصر توالی ورودی را باز می‌گرداند.در صورتی که توالی ما بیش از یک عنصر داشته باشد و یا توالی هیچ عنصری نداشته باشد، یک استثناء رخ خواهد داد.
Unhandled Exception: System.InvalidOperationException: Sequence contains more than one matching element
Unhandled Exception: System.InvalidOperationException: Sequence contains no matching element
مثال :
Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 }
};

Ingredient element = ingredients.Single();
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Sugar
عملگر Single، یک امضاء دیگر نیز دارد که یک عبارت پیش بینی را می‌پذیرد. در صورتی که بیش از یک عنصر، با پیش بینی مطابقت داشته باشد و یا هیچ عنصری شرط پیش بینی را تامین نکند، استثنائی رخ خواهد داد.
Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Butter", Calories = 150},
   new Ingredient {Name = "Milk", Calories = 500}
};
Ingredient element = ingredients.Single(x => x.Calories == 150);
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Butter

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر SingleOrDefault

عملگر SingleOrDefault همچون عملگر Single عمل می‌کند؛ اما با این تفاوت که اگر توالی هیچ عنصری نداشته باشد، مقدار پیش فرض نوع توالی، باز گردانده می‌شود و در صورتیکه هیچ عنصری شرط مشخص شده را تامین نکند، باز هم مقدار پیش فرض توالی، به جای رخ دادن استثناء باز گردانده می‌شود.
مثال : در این مثال هیچ عنصری با پیش بینی مشخص شده مطالبقت ندارد:
 Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 50}
};
Ingredient element = ingredients.SingleOrDefault(x => x.Calories == 9999);
Console.WriteLine(element==null);
خروجی مثال بالا :
True
توجه داشته باشید که استثنائی رخ نداده است و مقدار پیش فرض انواع ارجاعی که Null می‌باشد باز گردانده شده است.

پیاده سازی توسط عبارت‌های جستجو

معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ElementAt


عملگر ElementAt   عنصری را در یک جایگاه مشخص شده‌ی در توالی، باز می‌گرداند.
مثال: در کد زیر سومین عنصر توالی ورودی انتخاب می‌شود:
 Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 50}
};

Ingredient element = ingredients.ElementAt(2);
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Milk
باید دقت کرد که مقدار ارسالی به عملگر  ElementAt، اندیسی با نقطه‌ی آغاز صفر می‌باشد. بدین معنی که برای بدست آوردن اولین عنصر باید مقدار 0 را به عملگر ElementAt ارسال کرد. در صورتی که مقدار ارسالی با بازه اندیس‌های عناصر توالی مطابقت نداشته باشد (بزرگتر از شماره اندیس آخرین عنصر توالی باشد) یک استثناء رخ خواهد داد.
 System.ArgumentOutOfRangeException: Index was out of range. Must be non-negative and less than the size of the collection.

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ElementAtOrDefualt

عملگر ElementAtOrDefualt نیز همچون عملگر ElementAt کار می‌کند؛ اما در صورت وارد کردن اندیسی بزرگتر از اندیس مجاز توالی، دیگر یک استثناء رخ نخواهد داد و یک مقدار پیش فرض، بر اساس نوع عناصر توالی باز گردانده می‌شود.
مثال :
Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 50}
};
Ingredient element = ingredients.ElementAtOrDefault(5);
Console.WriteLine(element==null);
خروجی مثال بالا:
 True

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر DefaultIfEmpty
عملگر DefaultIfEmpty یک توالی را دریافت کرده و به دو شکل عمل می‌کند:
1- اگر توالی شامل حداقل یک عنصر باشد، این توالی بدون هیچ تغییری به خروجی ارسال می‌شود.
2- اگر توالی هیچ عنصری نداشته باشد، توالی خروجی خالی نخواهد بود. در این حالت توالی خروجی تنها یک عضو دارد و آن هم مقدار پیش فرضی بر اساس نوع توالی می‌باشد.
مثال :
Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 50}
};

IEnumerable<Ingredient> query = ingredients.DefaultIfEmpty();
foreach (Ingredient item in query)
{
  Console.WriteLine(item.Name);
}
خروجی مثال بالا :
Sugar
Egg
Milk
همانطور که می‌بینید توالی خروجی دقیقا شبیه توالی ورودی می‌باشد.
کد زیر حالت دوم معرفی شده‌ی در تعریف DefaultIfEmpty را نشان می‌دهد.
Ingredient[] ingredients = { };
IEnumerable<Ingredient> query = ingredients.DefaultIfEmpty();
foreach (Ingredient item in query)
{
   Console.WriteLine(item == null);
}
خروجی کد بالا :
 True

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.
مطالب
اصول طراحی شی‌ء گرا: OO Design Principles - قسمت دوم

اصل چهارم: Starve for loosely coupled designs

"به دنبال طراحی با اتصال سست بین اجزا باش"

اتصال بین اجزای برنامه نویسی باعث سخت‌تر شدن مدیریت تغییرات می‌شود؛ چرا که با تغییر یک بخش، بخش‌های متصل نیز دچار مشکل خواهند شد. اتصال‌ها از لحاظ نوع قدرت متفاوتند و اساسا سیستمی بدون اتصال وجود ندارد. لذا باید به دنبال یک طراحی با کمترین میزان قدرت اتصال یا همان سست اتصال باشیم.

تا به اینجا، اصل‌های دوم و سوم ما را در کاهش وابستگی و اتصال قوی کمک کرده‌اند. استفاده از واسط‌ها، باعث کاهش وابستگی به نوع پیاده سازی می‌شود. استفاده از ترکیب نیز به نوعی باعث از بین رفتن وابستگی قوی بین کلاس‌های فرزند و کلاس والد می‌شود و با روشی دیگر (استفاده از شیء در برگرفته شده برای پیاده سازی وظیفه‌ی تغییر کننده) وظایف را در کلاس‌ها پیاده سازی میکند. در زیر نمونه‌ی اتصال قوی و نتیجه‌ی آن را می‌بینیم: 

public class StrongCoupledConcreteA
    {
        public string GenerateString(string s) { return s + " from" + this.GetType().ToString(); }
    }

    public class StrongCoupledConcreteB
    {
        public void GenerateString(ref string s) { s += " from" + this.GetType().ToString(); }
    }

    public class Printer
    {
        bool condition;
        public Printer(bool cond)
        {
            condition = cond;
        }

        public void SetCondition(bool value) { condition = value; }

        public void Print()
        {
            string result;
            string input = " this message is";
            if (condition)
            {
                var stringGenerator = new StrongCoupledConcreteA();
                result = stringGenerator.GenerateString(input);
            }
            else
            {
                var stringGenerator = new StrongCoupledConcreteB();
                result = input;
                stringGenerator.GenerateString(ref result);
            }
            Console.WriteLine(result);
        }

    }
    public class Context
    {
        Printer printer;
        public void DoWork()
        {
            printer = new Printer(true);
            printer.Print();

            printer.SetCondition(false);
            printer.Print();
        }

    }

حال کد بازنویسی شده را با آن مقایسه کنید:

public interface IStringGenerator
        {
            string GenerateString(string s);
        }
        public class LooslyCoupledConcreteA : IStringGenerator
        {
            public string GenerateString(string s)
            {
                return s + " from " + this.GetType().ToString();
            }
        }
        public class LooslyCoupledConcreteB : IStringGenerator
        {
            public string GenerateString(string s)
            {
                return s + " from " + this.GetType().ToString();
            }
        }

           public class Printer
           {
               bool condition;
               public Printer(bool cond)
               {
                   condition = cond;
               }

               public void SetCondition(bool value) { condition = value; }

               public void Print()
               {
                   string result;
                   string input = " this message is";
                   IStringGenerator generator;
                   if (condition)
                   {
                       generator = new LooslyCoupledConcreteA();
                   }
                   else
                   {
                       generator = new LooslyCoupledConcreteB();
                   }
                   
                   result = generator.GenerateString(input);
                   Console.WriteLine(result);

               }

           }

با کمی دقت مشاهده میکنیم که در کلاس‌های strongly coupled با اینکه هدف هر دو کلاس تولید یک رشته است، ولی عدم وجود پروتکل باعث شده است نحوه‌ی گرفتن ورودی و برگرداندن خروجی متفاوت شود و در نتیجه نیازمند به اضافه کردن پیچیدگی در کلاس فراخوانی کننده‌ی آن‌ها می‌شویم. این در حالی است که در روش loosely coupled با ایجاد یک پروتکل (واسط IStringGenerator ) این پیچیدگی از بین رفته است. در اینجا نوع اتصال (وابستگی) از جنس اتصال (وابستگی) قوی به تعریف (prototype) و شاید به نوعی نحوه‌ی پیاده سازی متد می‌باشد.


SOLID Principles *

پنج اصل بعدی به اصول SOLID معروف هستند.

S: Single Responsibility

O: Open/Closed

L: Liskov’s Substitution

I: Interface Segregation

D: Dependency Injection


اصل پنجم: Single responsibility

"به دنبال ماژول‌های تک مسئولیتی باش"

در این قسمت مقصود از مسئولیت، «دلیلی است که کلاس باید تغییر کند» بدین معنا که اگر کلاسی با چند دلیل متفاوت مجبور به تغییر شود، آن کلاس چند مسئولیتی است. کلاس‌های چند مسئولیتی عموما کد حجیمی دارند؛ نام آنها تعریف دقیقی را از مسئولیتشان ارائه نمی‌دهد و با عنوانی بسیار کلی نامگذاری میشوند و اشکال زدایی آنها بسیار طاقت فرساست. از طرفی، چند مسئولیتی بودن یک کلاس، باعث از بین رفتن مزایای توارث می‌شود. مثلا فرض کنید دو مسئولیت A,B در واسطی بیان می‌شوند که به یکدیگر مرتبط نبوده و مستقلند. برای  مسئولیت A دو پیاده سازی و برای مسئولیت B،   سه پیاده سازی در نظر گرفته شده است و جمعا برای پشتیبانی از تمامی حالات باید شش کلاس پیاده ساز، در نظر گرفته شود که  توارث را سخت و بی معنی میکند زیرا قابلیت استفاده مجدد را از توارث سلب کرده است. با این وجود عملا رعایت همچین نکته‌ای در دنیای واقعی کار سختی است.

مثال زیر این مشکل را بیان می‌دارد: 

// single responsibility principle - bad example

    interface IEmail
    {
        void SetSender(string sender);
        void SetReceiver(string receiver);
        void SetContent(string content);
    }

    class Email : IEmail
    {
        public void SetSender(string sender)
        {
            throw new NotImplementedException();
        }
        public void SetReceiver(string receiver)
        {
            throw new NotImplementedException();
        }

        public void SetContent(string content)
        {
            throw new NotImplementedException();
        }
    }

در این مثال کلاس Email دارای دو مسئولیت (دلیل برای تغییر) است: الف- نحوه مقداردهی فرستنده و گیرنده براساس پروتکل‌های مختلف مانند IMAP, POP3 ، بدین معنا که با تغییر پروتکل نیاز به تغییر پیاده سازی خواهیم شد. ب- تعریف محتوای پیام، بدین معنا که برای پشتیبانی از محتوای html, xml   نیاز به تغییر کلاس Email داریم.

با تغییر طراحی خواهیم داشت: 

// single responsibility principle - good example
    public interface IMessage
    {
        void SetSender(string sender);
        void SetReceiver(string receiver);
        void SetContent(IContent content);
    }

    public interface IContent
    {
        string GetAsString(); // used for serialization
    }

    public class Email : IMessage
    {        
        public void SetSender(string sender)
        {
            throw new NotImplementedException();
        }

        public void SetReceiver(string receiver)
        {
            throw new NotImplementedException();
        }

        public void SetContent(IContent content)
        {
            throw new NotImplementedException();
        }
    }

در اینجا واسط IContent مسئولیت پشتیبانی از xml, html را خواهد داشت و نیازی به تغییر کلاس Email برای پشتیبانی از این فرمت‌های محتوای پیام را نخواهیم داشت.


اصل ششم: Open for extension, close for modification :  Open/Closed Principle

"پذیرای توسعه و بازدارنده از تغییر هر آنچه که هست، باش"

ا ین اصل می‌گوید طراحی باید به گونه‌ای باشد که با اضافه شدن یک ویژگی، کد‌های قبلی تغییری نکنند و فقط کدهای جدید برای پیاده سازی ویژگی جدید نوشته شوند.  برای درک بهتر به مثال زیر توجه کنید:

public class AreaCalculator
        {
            public double Area(object[] shapes)
            {
                double area = 0;

                foreach (var shape in shapes)
                {

                    if (shape is Square)
                    {
                        Square square = (Square)shape;
                        area += Math.Sqrt(square.Height);
                    }

                    if (shape is Triangle)
                    {
                        Triangle triangle = (Triangle)shape;
                        double TotalHalf = (triangle.FirstSide + triangle.SecondSide + triangle.ThirdSide) / 2;
                        area += Math.Sqrt(TotalHalf * (TotalHalf - triangle.FirstSide) *
                        (TotalHalf - triangle.SecondSide) * (TotalHalf - triangle.ThirdSide));
                    }

                    if (shape is Circle)
                    {
                        Circle circle = (Circle)shape;
                        area += circle.Radius * circle.Radius * Math.PI;
                    }

                }
                return area;
            }
        }
        public class Square
        {
            public double Height { get; set; }
        }
        public class Circle
        {
            public double Radius { get; set; }
        }
        public class Triangle
        {
            public double FirstSide { get; set; }
            public double SecondSide { get; set; }
            public double ThirdSide { get; set; }
        }

در اینجا کلاس AreaCalculator برای محاسبه مساحت تمام اشیاء ورودی، مساحت تک تک اشیاء را محاسبه میکند و نتیجه را برمی‌گرداند. در این مثال با اضافه شدن شکل هندسی جدید، باید کد این کلاس تغییر کند که با اصل Open/Closed مغایر است. برای بهبود این کد طراحی زیر پیشنهاد شده است:

public class AreaCalculator
{
    public double Area(Shape[] shapes)
    {
        double area = 0;

        foreach (var shape in shapes)
        {
            area += shape.Area();
        }

        return area;
    }
}
public abstract class Shape
{
    public abstract double Area();
}
public class Square : Shape
{
    public double Height { get { return _height; } }
    private double _height;

    public Square(double Height)
    {
        _height = Height;
    }

    public override double Area()
    {
        return Math.Sqrt(_height);
    }
}
public class Circle : Shape
{
    public double Radius { get { return _radius; } }

    private double _radius;

    public Circle(double Radius)
    {
        _radius = Radius;
    }

    public override double Area()
    {
        return _radius * _radius * Math.PI;
    }
}
public class Triangle : Shape
{
    public double FirstSide { get { return _firstSide; } }
    public double SecondSide { get { return _secondSide; } }
    public double ThirdSide { get { return _thirdSide; } }

    private double _firstSide;
    private double _secondSide;
    private double _thirdSide;

    public Triangle(double FirstSide, double SecondSide, double ThirdSide)
    {
        _firstSide = FirstSide;
        _secondSide = SecondSide;
        _thirdSide = ThirdSide;
    }

    public override double Area()
    {
        double TotalHalf = (_firstSide + _secondSide + _thirdSide) / 2;
        return Math.Sqrt(TotalHalf * (TotalHalf - _firstSide) * (TotalHalf - _secondSide) * (TotalHalf - _thirdSide));
    }
}

در این طراحی، پیچیدگی محاسبه مساحت هر شکل به کلاس آن شکل منتقل شده است و با اضافه شدن شکل جدید نیازی به تغییر کلاس AreaCalculator نداریم.

در مقاله‌ی بعدی به سه اصل دیگر اصول SOLID خواهم پرداخت.

مطالب دوره‌ها
ساخت یک Mini ORM با AutoMapper
Mini ORM‌ها برخلاف ORMهای کاملی مانند Entity framework یا NHibernate، کوئری‌های LINQ را تبدیل به SQL نمی‌کنند. در اینجا کار با SQL نویسی مستقیم شروع می‌شود و مهم‌ترین کار این کتابخانه‌ها، نگاشت نتیجه‌ی دریافتی از بانک اطلاعاتی به اشیاء دات نتی هستند. خوب ... AutoMapper هم دقیقا همین کار را انجام می‌دهد! بنابراین در ادامه قصد داریم یک Mini ORM را به کمک AutoMapper طراحی کنیم.


کلاس پایه AdoMapper

public abstract class AdoMapper<T> where T : class
{
    private readonly SqlConnection _connection;
 
    protected AdoMapper(string connectionString)
    {
        _connection = new SqlConnection(connectionString);
    }
 
    protected virtual IEnumerable<T> ExecuteCommand(SqlCommand command)
    {
        command.Connection = _connection;
        command.CommandType = CommandType.StoredProcedure;
        _connection.Open();
 
        try
        {
            var reader = command.ExecuteReader();
            try
            {
                return Mapper.Map<IDataReader, IEnumerable<T>>(reader);
            }
            finally
            {
                reader.Close();
            }
        }
        finally
        {
            _connection.Close();
        }
    }
 
    protected virtual T GetRecord(SqlCommand command)
    {
        command.Connection = _connection;
        _connection.Open();
        try
        {
            var reader = command.ExecuteReader();
            try
            {
                reader.Read();
                return Mapper.Map<IDataReader, T>(reader);
            }
            finally
            {
                reader.Close();
            }
        }
        finally
        {
            _connection.Close();
        }
    }
 
    protected virtual IEnumerable<T> GetRecords(SqlCommand command)
    {
        command.Connection = _connection;
        _connection.Open();
        try
        {
            var reader = command.ExecuteReader();
            try
            {
                return Mapper.Map<IDataReader, IEnumerable<T>>(reader);
            }
            finally
            {
                reader.Close();
            }
        }
        finally
        {
            _connection.Close();
        }
    }
}
در اینجا کلاس پایه Mini ORM طراحی شده را ملاحظه می‌کنید. برای نمونه قسمت GetRecords آن مانند مباحث استاندارد ADO.NET است. فقط کار خواندن و همچنین نگاشت رکوردهای دریافت شده از بانک اطلاعاتی به شیء‌ایی از نوع T توسط AutoMapper انجام خواهد شد.


نحوه‌ی استفاده از کلاس پایه AdoMapper

در کدهای ذیل نحوه‌ی ارث بری از کلاس پایه AdoMapper و سپس استفاده از متدهای آن‌را ملاحظه می‌کنید:
public class UsersService : AdoMapper<User>, IUsersService
{
    public UsersService(string connectionString)
        : base(connectionString)
    {
    }
 
    public IEnumerable<User> GetAll()
    {
        using (var command = new SqlCommand("SELECT * FROM Users"))
        {
            return GetRecords(command);
        }
    }
 
    public User GetById(int id)
    {
        using (var command = new SqlCommand("SELECT * FROM Users WHERE Id = @id"))
        {
            command.Parameters.Add(new SqlParameter("id", id));
            return GetRecord(command);
        }
    }
}
در این مثال نحوه‌ی تعریف کوئری‌های پارامتری نیز در متد GetById به نحو متداولی مشخص شده‌است. کار نگاشت حاصل این کوئری‌ها به اشیاء دات نتی را AutoMapper انجام خواهد داد. نحوه‌ی کار نیز، نگاشت فیلد f1 به خاصیت f1 است (هم نام‌ها به هم نگاشت می‌شوند).


تعریف پروفایل مخصوص AutoMapper

ORMهای تمام عیار، کار نگاشت فیلدهای بانک اطلاعاتی را به خواص اشیاء دات نتی، به صورت خودکار انجام می‌دهند. در اینجا همانند روش‌های متداول کار با AutoMapper نیاز است این نگاشت را به صورت دستی یکبار تعریف کرد:
public class UsersProfile : Profile
{
    protected override void Configure()
    {
        this.CreateMap<IDataRecord, User>();
    }
 
    public override string ProfileName
    {
        get { return this.GetType().Name; }
    }
}
و سپس در ابتدای برنامه آن‌را به AutoMapper معرفی نمود:
Mapper.Initialize(cfg => // In Application_Start()
{
    cfg.AddProfile<UsersProfile>();
});


سفارشی سازی نگاشت‌های AutoMapper

فرض کنید کلاس Advertisement زیر، معادل است با جدول Advertisements بانک اطلاعاتی؛ با این تفاوت که در کلاس تعریف شده، خاصیت TitleWithOtherName تطابقی با هیچکدام از فیلدهای بانک اطلاعاتی ندارد. بنابراین اطلاعاتی نیز به آن نگاشت نخواهد شد.
public class Advertisement
{
    public int Id { set; get; }
    public string Title { get; set; }
    public string Description { get; set; }
    public int UserId { get; set; }
 
    public string TitleWithOtherName { get; set; }
}
برای رفع این مشکل می‌توان حین تعریف پروفایل مخصوص Advertisement، آن‌را سفارشی سازی نیز نمود:
public class AdvertisementsProfile : Profile
{
    protected override void Configure()
    {
        this.CreateMap<IDataRecord, Advertisement>()
            .ForMember(dest => dest.TitleWithOtherName,
                       options => options.MapFrom(src =>
                            src.GetString(src.GetOrdinal("Title"))));
    }
 
    public override string ProfileName
    {
        get { return this.GetType().Name; }
    }
}
در اینجا پس از تعریف نگاشت مخصوص کار با IDataRecordها، عنوان شده‌است که هر زمانیکه به خاصیت TitleWithOtherName رسیدی، مقدارش را از فیلد Title دریافت و جایگزین کن.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید.
مطالب
مدیریت تغییرات در سیستم های مبتنی بر WCF
تشریح مسئله : در صورتی که بعد از انتشار برنامه؛ در نسخه بعدی مدل سمت سرور تغییر کرده باشد و امکان بروز رسانی مدل‌های سمت کلاینت وجود نداشته باشد برای حل این مسئله بهترین روش کدام است.
نکته : برای فهم بهتر مطالب آشنایی اولیه با مفاهیم WCF الزامی است.
ابتدا مدل زیر را در نظر بگیرید:
   [DataContract]
    public class Book 
    {
        [DataMember]
        public int Code { get; set; }

        [DataMember]
        public string Name { get; set; }             
    }
حالا یک سرویس برای دریافت و ارسال اطلاعات این مدل به کلاینت می‌نویسیم.
  [ServiceContract]
    public interface ISampleService
    {
        [OperationContract]
        IEnumerable<Book> GetAll();

        [OperationContract]
        void Save( Book book );
    }
و سرویسی که Contract بالا رو پیاده سازی کند.
public class SampleService : ISampleService
    {
        public List<Book> ListOfBook 
        {
            get; 
            private set; 
        }

        public SampleService()
        {
            ListOfBook = new List<Book>();
        }
        public IEnumerable<Book> GetAll()
        {
            ListOfBook.AddRange( new Book[] 
            {
                new Book(){Code=1 , Name="Book1"},
                new Book(){Code=2 , Name="Book2"},
            } );
            return ListOfBook;
        }

        public void Save( Book book )
        {
            ListOfBook.Add( book );
        }
    }
 متد GetAll برای ارسال اطلاعات به کلاینت و متد Save نیز برای دریافت اطلاعات از کلاینت.
حالا یک پروژه Console Application بسازید و از روش AddServiceReference سرویس مورد نظر را به Client اضافه کنید. برنامه را تست کنید. بدون هیچ مشکلی کار می‌کند.
حالا اگر در نسخه بعدی سیستم مجبور شویم به مدل Book یک خاصیت دیگر به نام Author را نیز اضافه کنیم و امکان Update کردن سرویس در سمت کلاینت وجود نداشته باشد چه اتفاقی خواهد افتاد.
به صورت زیر:
 [DataContract]
    public class Book 
    {
        [DataMember]
        public int Code { get; set; }
        [DataMember]
        public string Name { get; set; }

        [DataMember]
        public string Author { get; set; }
    }
به طور پیش فرض اگر در DataContract‌های سمت سرور و کلاینت اختلاف وجود داشته باشد این موارد نادیده گرفته می‌شوند. یعنی همیشه مقدار خاصیت Author برابر null خواهد بود.
نکته : برای Value Type‌ها مقادیر پیش فرض و برای Reference Type‌ها مقدار Null.
اگر برای DataMemberAttribute خاصیت IsRequired را برابر true کنیم از این پس برای هر درخواستی که مقدار Author  آن مقدار نداشته باشد یک Protocol Exception  پرتاب می‌شود. به صورت زیر:
[DataMember( IsRequired = true )]
public string Author { get; set; }
اما این همیشه راه حل مناسبی نیست.
روش دیگر این است که Desrialize کردن مدل را تغییر دهیم. بدین معنی که هر گاه مقدار Author برابر Null بود یک مقدار پیش فرض برای آن در نظر بگیریم. این کار با نوشتن یک متد و قراردادن OnDeserializingAttribute به راحتی امکان پذیر است. کلاس Book به صورت زیر تغییر می‌کند.
  [DataContract]
    public class Book
    {
        [DataMember]
        public int Code { get; set; }
        [DataMember]
        public string Name { get; set; }

        [DataMember( IsRequired = true )]
        public string Author { get; set; }

        [OnDeserializing]
        private void OnDeserializing( StreamingContext context )
        {
            if ( string.IsNullOrEmpty( Author ) )
            {
                Author = "Masoud Pakdel";
            }
        }
    }
حال اگر از سمت کلاینت کلاس Book دریافت شود که مقدار خاصیت Author آن برابر Null باشد توسط متد OnDeserializing مقدار پیش فرض به آن اعمال می‌شود.مثل تصویر زیر:

روش بعدی استفاده از اینترفیس IExtensibleDataObject  است. بعد از اینکه کلاس Book این اینترفیس را پیاده سازی کرد مشکل Versioning Round Trip حل می‌شود. به این صورت که سرویس یا کلاینتی که نسخه قدیمی را می‌شناسد اگر نسخه جدید را دریافت کند خصوصیاتی را که نمی‌شناسد مثل Author در خاصیت ExtensionData ذخیره می‌شود و هنگامی که کلاس Book برای سرویس یا کلاینتی که نسخه جدید را می‌شناسد DataContractSerializer اطلاعات مورد نظر را از خصوصیت ExtensionData بیرون می‌کشد و کلاس Book جدید را باز سازی می‌کند. بررسی کلاس ExtensionData توسط خود DataContractSreializer انجام می‌شود و نیاز به هیچ گونه ای کد نویسی ندارد.

[DataContract]
    public class Book : IExtensibleDataObject
    {
        [DataMember]
        public int Code { get; set; }
        [DataMember]
        public string Name { get; set; }

        [DataMember]
        public string Author { get; set; }
    
        public virtual ExtensionDataObject ExtensionData
        {
            get { return _extensionData; }
            set
            {
                _extensionData = value;
            }
        }
        private ExtensionDataObject _extensionData;
    }
اگر کد متد GetAll سمت سرور را به صورت زیر تغییر دهیم که خاصیت Author هم مقدار داشته باشد با استفاده از خاصیت ExtensionData کلاینت هم از این مقدار مطلع خواهد شد.
public IEnumerable<Book> GetAll()
        {
            ListOfBook.AddRange( new Book[] 
            {
                new Book(){Code=1 , Name="Book1", Author="Masoud Pakdel"},
                new Book(){Code=2 , Name="Book2" },
            } );
            return ListOfBook;
        }
کلاینت هم به صورت زیر :

همان طور که می‌بینید این نسخه از کلاینت هیچ گونه اطلاعی از وجود یک خاصیت به نام Author ندارد ولی از طریق ExtensionData متوجه می‌شود یک خاصیت به نام Author به مدل سمت سرور اضافه شده است.

اما در صورتی که قصد داشته باشیم که یک سرویس خاص از همان نسخه قدیمی کلاس Book استفاده کند و نیاز به نسخه جدید آن نداشته باشد می‌توانیم این کار را از طریق مقدار دهی True به خاصیت IgnoreExtensionDataObject  در ServiceBehaviorAttribute انجام داد. بدین شکل

 [ServiceBehavior( IgnoreExtensionDataObject = true )]
  public class SampleService : ISampleService
از این پس سرویس بالا از همان مدل Book بدون خاصیت Author استفاده می‌کند.

منابع :