مطالب
با رویه‌های ذخیره شده خود، وب سرویس ایجاد کنید

قابلیت جالبی از SQL Server 2005 به بعد به این محصول اضافه شده است که امکان ایجاد یک وب سرویس بومی را بر اساس رویه‌های ذخیره شده و یا توابع تعریف شده در دیتابیس‌های موجود، فراهم می‌سازد. این قابلیت نیازی به IIS یا هر هاست دیگری برای اجرا ندارد و توسط خود اس کیوال سرور راه اندازی و مدیریت می‌شود.
توضیحات مفصل آن‌‌را در MSDN می‌توانید ملاحظه کنید و در اینجا یک مثال عملی از آن را با هم مرور خواهیم کرد:

الف) ایجاد یک جدول آزمایشی به همراه تعدادی رکورد دلخواه در آن

CREATE TABLE [tblWSTest](
[id] [int] IDENTITY(1,1) NOT NULL,
[f1] [nvarchar](50) NULL,
[f2] [nvarchar](500) NULL,
CONSTRAINT [PK_tblWSTest] PRIMARY KEY CLUSTERED
(
[id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

SET IDENTITY_INSERT [tblWSTest] ON
INSERT [tblWSTest] ([id], [f1], [f2]) VALUES (1, N'a1', N'a2')
INSERT [tblWSTest] ([id], [f1], [f2]) VALUES (2, N'b1', N'b2')
INSERT [tblWSTest] ([id], [f1], [f2]) VALUES (3, N'c1', N'c2')
INSERT [tblWSTest] ([id], [f1], [f2]) VALUES (4, N'd1', N'd2')
INSERT [tblWSTest] ([id], [f1], [f2]) VALUES (5, N'e1', N'e2')
SET IDENTITY_INSERT [dbo].[tblWSTest] OFF
ب) ایجاد یک رویه ذخیره شده در دیتابیس جاری

CREATE PROCEDURE GetAllData
AS
SELECT f1,
f2
FROM tblWSTest
ج) ایجاد یک HTTP Endpoint

CREATE ENDPOINT GetDataService
STATE = STARTED
AS HTTP(
PATH = '/GetData',
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR),
CLEAR_PORT = 8080,
SITE = '*'
)
FOR SOAP(
WEBMETHOD 'GetAllData'
(NAME = 'testdb2009.dbo.GetAllData'),
WSDL = DEFAULT,
DATABASE = 'testdb2009',
NAMESPACE = DEFAULT
)

توضیحات:
Ports در حالت clear و یا ssl می‌تواند باشد. همچنین برای اینکه با IIS موجود بر روی سیستم هم تداخل نکند CLEAR_PORT به 8080 تنظیم شده است. سایر پارامترهای آن بسیار واضح هستند. برای مثال تعیین دیتابیسی که این رویه ذخیره شده در آن قرار دارد و همچنین مسیر کامل دسترسی به آن دقیقا مشخص می‌گردند.


این وب سرویس هم اکنون آغاز به کار کرده است. برای مشاهده wsdl آن، آدرس زیر را در مرورگر وب خود وارد نمائید (PATH و CLEAR_PORT معرفی شده در endPoint اینجا بکار می‌رود):

http://localhost:8080/GetData?wsdl

د) استفاده از این وب سرویس در یک برنامه ویندوزی
یک برنامه ساده winForms را شروع کنید. سپس یک DataGridView را بر روی فرم قرار دهید (بدیهی است این مورد می‌تواند یک برنامه ASP.Net هم باشد و موارد مشابه دیگر). سپس از منوی پروژه، یک service reference را در VS2008 بر اساس آدرس wdsl فوق اضافه کنید (شکل زیر):


برای اینکه این مثال در VS2008 درست کار کند باید فایل app.config ایجاد شده را کمی ویرایش کرد. قسمت security آن را یافته و تغییرات زیر را با توجه به AUTHENTICATION مورد نیاز تغییر دهید:

<security mode="TransportCredentialOnly">
<transport clientCredentialType="Windows" proxyCredentialType="None"
realm="" />
<message clientCredentialType="UserName" algorithmSuite="Default" />
</security>
سپس کد برنامه ما به صورت زیر خواهد بود:

using System;
using System.Data;
using System.Windows.Forms;

namespace WebServiceTest
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{
ServiceReference1.GetDataServiceSoapClient data =
new ServiceReference1.GetDataServiceSoapClient();
dataGridView1.DataSource = (data.GetAllData()[0] as DataSet).Tables[0];
}
}
}




مطالب
Minimal API's در دات نت 6 - قسمت سوم - ایجاد endpoints مقدماتی
در دو قسمت قبل، ساختار ابتدایی برنامه‌ی Minimal API's بلاگ دهی را ایجاد کردیم. در این قسمت می‌خواهیم بررسی کنیم، معادل‌های کنترلرهای MVC و اکشن متدهای آن‌ها در سیستم جدید Minimal API، به چه صورتی ایجاد می‌شوند.


ایجاد اولین endpoint از نوع Get مبتنی بر Minimal API

برای افزودن اولین endpoint برنامه، به فایل Program.cs برنامه مراجعه کرده و آن‌را به صورت زیر تکمیل می‌کنیم:
// ...

app.UseHttpsRedirection();

app.MapGet("/api/authors", async (MinimalBlogDbContext ctx) =>
{
    var authors = await ctx.Authors.ToListAsync();
    return authors;
});

app.Run();
app.MapGet، معادل یک اکشن متد کنترلرهای MVC را که از نوع HttpGet هستند، ارائه می‌دهد. در همینجا می‌توان آدرس دقیق این endpoint را به عنوان پارامتر اول، مشخص کرد که پس از فراخوانی آن در مرورگر، یک Delegate که هندلر نام دارد (پارامتر دوم این متد)، اجرا می‌شود تا Response ای را ارائه دهد.
همانطور که مشاهده می‌کنید می‌توان در اینجا، این Delegate را از نوع Lambda expressions تعریف کرد و با ذکر MinimalBlogDbContext به صورت یک پارامتر آن، کار تزریق وابستگی‌های خودکار آن نیز صورت می‌گیرد. شبیه به حالتی که می‌توان یک سرویس را به عنوان پارامتر یک اکشن متد، با ذکر ویژگی [FromServices] در کنترلرهای MVC معرفی کرد؛ البته در اینجا بدون نیاز به ذکر این ویژگی (هرچند هنوز هم قابل ذکر است). مزیت آن این است که هر endpoint، تنها سرویس‌های مورد نیاز خودش را دریافت می‌کند و نه یک لیست قابل توجه از تمام سرویس‌هایی که قرار است در قسمت‌های مختلف یک کنترلر استفاده شوند.
پس از آن می‌توان با Context ای که در اختیار داریم، عملیات مدنظر را پیاده سازی کرده و یک خروجی را ارائه دهیم. در اینجا دیگر نیازی به تعریف IActionResult‌ها و امثال آن نیست و همه چیز ساده شده‌است.


ایجاد اولین endpoint از نوع Post مبتنی بر Minimal API

app.MapPost، معادل یک اکشن متد کنترلرهای MVC را که از نوع HttpPost هستند، ارائه می‌دهد:
//...

app.UseHttpsRedirection();

//...

app.MapPost("/api/authors", async (MinimalBlogDbContext ctx, AuthorDto authorDto) =>
{
    var author = new Author();
    author.FirstName = authorDto.FirstName;
    author.LastName = authorDto.LastName;
    author.Bio = authorDto.Bio;
    author.DateOfBirth = authorDto.DateOfBirth;

    ctx.Authors.Add(author);
    await ctx.SaveChangesAsync();

    return author;
});

app.Run();

internal record AuthorDto(string FirstName, string LastName, DateTime DateOfBirth, string? Bio);
در ابتدا یک Dto را که حاوی اطلاعات نویسنده‌ی جدیدی است، معادل خواص مدل Author دومین برنامه، تعریف می‌کنیم. سپس می‌توان این Dto را نیز به صورت یک پارامتر جدید به Lambda Expression متد app.MapPost معرفی کرد تا کار نگاشت اطلاعات دریافتی به آن، به صورت خودکار انجام شود (حالت پیش‌فرض آن [FromBody] است که نیازی به ذکر آن نیست).
سعی شده‌است تا این مثال در ساده‌ترین شکل ممکن خودش ارائه شود. در ادامه کار نگاشت خواص Dto را به مدل دومین برنامه، توسط AutoMapper انجام خواهیم داد.
مابقی نکات متد app.MapPost نیز مانند متد app.MapGet است؛ برای مثال در اینجا نیز تعریف مسیر endpoint، توسط اولین پارامتر این متد صورت می‌گیرد و نحوه‌ی تزریق سرویس DbContext برنامه نیز یکی است.


آزمایش برنامه‌ی Minimal API's

برنامه‌ی Minimal API's تهیه شده، به همراه یک Swagger از پیش تنظیم شده نیز هست. به همین جهت برای کار با این API الزاما نیازی به استفاده‌ی از مثلا برنامه‌ی Postman یا راه حل‌های مشابه نیست. بنابراین فقط کافی است تا برنامه‌ی API را اجرا کرده و در رابط کاربری ظاهر شده در آدرس https://localhost:7085/swagger/index.html، بر روی دکمه‌ی Try it out هر کدام از endpointها کلیک کنیم. برای مثال اگر چنین کاری را در قسمت Post انجام دهیم، به تصویر زیر می‌رسیم:



در اینجا پس از ویرایش اطلاعات شیء JSON ای که برای ما تدارک دیده‌است، فقط کافی است بر روی دکمه‌ی execute ذیل آن کلیک کنیم تا اطلاعات این Dto را به app.MapPost متناظر فوق ارسال کند و برای نمونه خروجی بازگشتی از سرور را نیز در همینجا نمایش می‌دهد که در آن، Id رکورد نیز پس از ثبت در بانک اطلاعاتی، مشخص است:



شروع به Refactoring و خلوت کردن فایل Program.cs

اگر بخواهیم به همین نحو تمام endpoints و dtoها را داخل فایل Program.cs اضافه کنیم، پس از مدتی به یک فایل بسیار حجیم و غیرقابل نگهداری خواهیم رسید. بنابراین در مرحله‌ی اول، تنظیمات سرویس‌ها و میان افزارها را به خارج از آن منتقل می‌کنیم. برای این منظور پوشه‌ی جدید Extensions را به همراه دو کلاس زیر ایجاد می‌کنیم:
using Microsoft.EntityFrameworkCore;
using MinimalBlog.Dal;

namespace MinimalBlog.Api.Extensions;

public static class ServiceCollectionExtensions
{
    public static IServiceCollection AddApplicationServices(this IServiceCollection services,
        WebApplicationBuilder builder)
    {
        if (builder == null)
        {
            throw new ArgumentNullException(nameof(builder));
        }

        builder.Services.AddEndpointsApiExplorer();
        builder.Services.AddSwaggerGen();

        var connectionString = builder.Configuration.GetConnectionString("Default");
        builder.Services.AddDbContext<MinimalBlogDbContext>(opt => opt.UseSqlServer(connectionString));

        return services;
    }
}
کار این متد الحاقی، خارج کردن تنظیمات سرویس‌های برنامه از کلاس Program است.

همچنین نیاز به متد الحاقی دیگری برای خارج کردن تنظیمات میان‌افزارها داریم:
namespace MinimalBlog.Api.Extensions;

public static class WebApplicationExtensions
{
    public static WebApplication ConfigureApplication(this WebApplication app)
    {
        if (app == null)
        {
            throw new ArgumentNullException(nameof(app));
        }

        if (app.Environment.IsDevelopment())
        {
            app.UseSwagger();
            app.UseSwaggerUI();
        }

        app.UseHttpsRedirection();

        return app;
    }
}
پس از این تغییرات، اکنون ابتدای کلاس Program برنامه‌ی Api به صورت زیر تغییر می‌کند و خلاصه می‌شود:
var builder = WebApplication.CreateBuilder(args);
builder.Services.AddApplicationServices(builder);

var app = builder.Build();
app.ConfigureApplication();

در قسمت بعد، endpoints را از این کلاس آغازین برنامه خارج می‌کنیم.
مطالب
مشکل ارتباط با SQL Server در لوکال
در حین کار با SQL Server نیاز به دیباگ اسکریپتی طولانی و اورژانسی T-SQL بود که در محیط Management Studio با مشکل زیر برخورد کردم:


در این مورد نظرات و پیشنهادات زیادی از جمله ریستارت سرویس SQL Server و تعویض کلمه عبور لاگین و یا پاک کردن کلمات عبور کش شده در سیستم و حتی ریستارت کامپیوتر :) از دوستان همکار در فروم‌های موجود در اینترنت گذاشته شده بود و در گوشه ای هم اشاره به '.' شده بود که طبق عادت همیشگی برای لاگین به بانک استفاده میکردم و خواسته شده بود که برای لاگین لوکال به SQL Server از نام کامپیوتر بجای '.' استفاده شود که مفید فایده بود.
مطالب
انتخاب پویای فیلد ها در LINQ

LINQ یک DLS  بر مبنای .NET  می باشد که برای پرس و جو در منابع داده ای مانند پایگاه‌های داده ، فایل‌های XML و یا لیستی از اشیاء درون حافظه کاربرد دارد.

یکی از بزرگترین مزیت‌های آن Syntax  آسان و خوانا آن می‌باشد.

LINQ  از 2 نوع نمادگذاری پشتیبانی می‌کند:

  • Inline LINQ یا query expressions : 
var result = 
    from product in dbContext.Products
    where product.Category.Name == "Toys"
    where product.Price >= 2.50
    select product.Name;
  • Fluent Syntax : 
var result = dbContext.Products
    .Where(p => p.Category.Name == "Toys" && p.Price >= 250)
    .Select(p => p.Name);

در پرس و چو‌های بالا فیلد‌های مورد نیاز در قسمت Select در زمان Compile شناخته شده هستند . اما گاهی ممکن است فیلد‌های مورد نیاز در زمان اجرا مشخص شوند.

به عنوان مثال یک گزارش ساز پویا که کاربر مشخص می‌کند چه ستون هایی در خروجی نمایش داده شوند یا یک جستجوی پیشرفته که ستون‌های خروجی به اختیار کاربر در زمان اجرا مشخص می‌شوند. 

این مدل را در نظر داشته باشید :

    public class Student
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public string Field1 { get; set; }
        public string Field2 { get; set; }
        public string Field3 { get; set; }


        public static IEnumerable<Student> GetStudentSource()
        {
            for (int i = 0; i < 10; i++)
            {
                yield return new Student
                                 {
                                     Id = i,
                                     Name = "Name " + i,
                                     Field1 = "Field1 " + i,
                                     Field2 = "Field2 " + i,
                                     Field3 = "Field3 " + i
                                 };
            }
        }
    }

ستون‌های کلاس Student  را در رابط کاربری برنامه جهت انتخاب به کاربر نمایش می‌دهیم. سپس کاربر یک یا چند ستون را انتخاب می‌کند که قسمت Select  کوئری برنامه باید  بر اساس فیلد‌های مورد نظر کاربر مشخص شود.

یکی از روش هایی که می‌توان از آن بهره برد استفاده از کتاب خانه Dynamic LINQ معرفی شده در اینجا می باشد.

این کتابخانه جهت سهولت در نصب به کمک NuGet در این آدرس قرار دارد.

فرض بر این است که فیلد‌های انتخاب شده توسط کاربر با "," از یکدیگر جدا شده اند. 

    public class Program
    {
        private static void Main(string[] args)
        {
            System.Console.WriteLine("Specify the desired fields : ");
            string fields = System.Console.ReadLine();
            IEnumerable<Student> students = Student.GetStudentSource();
            IQueryable output = students.AsQueryable().Select(string.Format("new({0})", fields));
            foreach (object item in output)
            {
                System.Console.WriteLine(item);
            }
          
            System.Console.ReadKey();
        }
  
    }

همانطور که در عکس ذیل مشاهده می‌کنید پس از اجرای برنامه ، فیلد‌های انتخاب شده توسط کاربر از منبع داده‌ی دریافت شده و در خروجی نمایش داده شده اند.

این روش مزایا و معایب خودش را دارد ، به عنوان مثال خروجی یک لیست از شیء Student  نیست یا این Select  فقط برای روی یک شیء IQueryable  قابل انجام است.

روش دیگری که می‌توان از آن بهره جست استفاده از یک متد کمکی جهت تولید پویای عبارت Lambda  ورودی Select  می باشد :  

    public  class SelectBuilder <T>
    {
        public static Func<T, T> CreateNewStatement(string fields)
        {
            // input parameter "o"
            var xParameter = Expression.Parameter(typeof(T), "o");


            // new statement "new T()"
            var xNew = Expression.New(typeof(T));

            // create initializers
            var bindings = fields.Split(',').Select(o => o.Trim())
                .Select(o =>
                {

                    // property "Field1"
                    var property = typeof(T).GetProperty(o);

                    // original value "o.Field1"
                    var xOriginal = Expression.Property(xParameter, property);

                    // set value "Field1 = o.Field1"
                    return Expression.Bind(property, xOriginal);
                }
            ).ToList();

            // initialization "new T { Field1 = o.Field1, Field2 = o.Field2 }"
            var xInit = Expression.MemberInit(xNew, bindings);

            // expression "o => new T { Field1 = o.Field1, Field2 = o.Field2 }"
            var lambda = Expression.Lambda<Func<T, T>>(xInit, xParameter);

            // compile to Func<T, T>
            return lambda.Compile();
        }
    }
برای استفاده از متد CreateNewStatement باید اینگونه عمل کرد :  
       IEnumerable<Student> result = students.Select(SelectBuilder<Student>.CreateNewStatement("Field1, Field2")).ToList();

            foreach (Student student in result)
            {
                System.Console.WriteLine(student.Field1);
            }
خروجی یک لیست از Student  می باشد.
 نحوه‌ی کارکرد CreateNewStatement :

ابتدا فیلد‌های انتخابی کاربر که با "," جدا شده اند به ورودی پاس داده می‌شود سپس یک statement  خالی ایجاد می‌شود

o=>new Student()
فیلد‌های ورودی از یکدیگر تفکیک می‌شوند و به کمک Reflection پراپرتی معادل فیلد رشته ای در کلاس Student پیدا می‌شود :  
var property = typeof(T).GetProperty(o);
سپس عبارت Select و تولید شیء جدید بر اساس فیلد‌های ورودی تولید می‌شود و برای استفاده Compile  به Func می‌شود. در نهایت Func  تولید شده به Select پاس داده می‌شود و لیستی از Student  بر مبنای فیلد‌های انتخابی تولید می‌شود. 

دریافت مثال : DynamicSelect.zip 
مطالب
Implementing second level caching in EF code first
هدف اصلی از انواع و اقسام مباحث caching اطلاعات، فراهم آوردن روش‌هایی جهت میسر ساختن دسترسی سریعتر به داده‌هایی است که به صورت متناوب در برنامه مورد استفاده قرار می‌گیرند، بجای مراجعه مستقیم به بانک اطلاعاتی و خواندن اطلاعات از دیسک سخت.

عموما در ORMها دو سطح کش می‌تواند وجود داشته باشد:
الف) سطح اول کش
که نمونه بارز آن در EF Code first استفاده از متد context.Entity.Find است. در بار اول فراخوانی این متد، مراجعه‌ای به بانک اطلاعاتی صورت گرفته تا بر اساس primary key ذکر شده در آرگومان آن، رکورد متناظری بازگشت داده شود. در بار دوم فراخوانی متد Find، دیگر مراجعه‌ای به بانک اطلاعاتی صورت نخواهد گرفت و اطلاعات از سطح اول کش (یا همان Context جاری) خوانده می‌شود.
بنابراین سطح اول کش در طول عمر یک تراکنش معنا پیدا می‌کند و به صورت خودکار توسط EF مدیریت می‌شود.

ب) سطح دوم کش
سطح دوم کش در ORMها طول عمر بیشتری داشته و سراسری است. هدف از آن کش کردن اطلاعات عمومی و پر مصرفی است که در دید تمام کاربران قرار دارد و همچنین تمام کاربران می‌توانند به آن دسترسی داشته باشند. بنابراین محدود به یک Context نیست.
عموما پیاده سازی سطح دوم کش خارج از ORM مورد استفاده قرار می‌گیرد و توسط اشخاص و شرکت‌های ثالث تهیه می‌شود.
در حال حاضر پیاده سازی توکاری از سطح دوم کش در EF Code first وجود ندارد و قصد داریم در مطلب جاری به یک پیاده سازی نسبتا خوب از آن برسیم.


تلاش‌های صورت گرفته

تا کنون دو پیاده سازی نسبتا خوب از سطح دوم کش در EF صورت گرفته:

Entity Framework Code First Caching
Caching the results of LINQ queries

مورد اول برای ایده گرفتن خوب است. بحث اصلی پیاده سازی سطح دوم کش، یافتن کلیدی است که معادل کوئری LINQ در حال فراخوانی است. سطح دوم کش را به صورت یک Dictionary تصور کنید. هر آیتم آن تشکیل شده است از یک کلید و یک مقدار. از کلید برای یافتن مقدار متناظر استفاده می‌شود.
اکنون مشکل چیست؟ در یک برنامه ممکن است صدها کوئری لینک وجود داشته باشد. چطور باید به ازای هر کوئری LINQ یک کلید منحصربفرد تولید کرد؟
در مطلب «Entity Framework Code First Caching» از متد ToString استفاده شده است. اگر این متد، بر روی یک عبارت LINQ در EF Code first فراخوانی شود، معادل SQL آن نمایش داده می‌شود. بنابراین یک قدم به تولید کلید منحصربفرد متناظر با یک کوئری نزدیک شده‌ایم. اما ... مشکل اینجا است که متد ToString پارامترها را لحاظ نمی‌کند. بنابراین این روش اصلا قابل استفاده نیست. چون کاربر به ازای تمام پارامترهای ارسالی، همواره یک نتیجه را دریافت خواهد کرد.
در مقاله «Caching the results of LINQ queries» این مشکل برطرف شده است. با parse کامل expression tree یک عبارت LINQ کلید منحصربفرد معادل آن یافت می‌شود. سپس بر این اساس می‌توان نتیجه کوئری را به نحو صحیحی کش کرد. در این روش پارامترها هم لحاظ می‌شوند و مشکل مقاله قبلی را ندارد.
اما این مقاله دوم یک مشکل مهم را به همراه دارد: روشی را برای حذف آیتم‌ها از کش ارائه نمی‌دهد. فرض کنید مقالات سایت را در سطح دوم کش قرار داده‌اید. اکنون یک مقاله جدید در سایت ثبت شده است. اصطلاحا برای invalidating کش در این روش، راهکاری پیشنهاد نشده است.


پیاده سازی بهتری از سطح دوم کش در EF Code fist

می‌توان از همان روش یافتن کلید منحصربفرد معادل با یک کوئری LINQ، که در مقاله دوم فوق، یاد شد، کار را شروع کرد و سپس آن‌را به مرحله‌ای رساند که مباحث حذف کش نیز به صورت خودکار مدیریت شود. پیاده سازی آن را برای برنامه‌های وب در ذیل ملاحظه می‌کنید:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Data.Objects;
using System.Diagnostics;
using System.Linq;
using System.Web;
using System.Web.Caching;

namespace EfSecondLevelCaching.Core
{
    public static class EfHttpRuntimeCacheProvider
    {
        #region Methods (6)

        // Public Methods (2) 

        public static IList<TEntity> ToCacheableList<TEntity>(
                            this IQueryable<TEntity> query,
                            int durationMinutes = 15,
                            CacheItemPriority priority = CacheItemPriority.Normal)
        {
            return query.Cacheable(x => x.ToList(), durationMinutes, priority);
        }

        /// <summary>
        /// Returns the result of the query; if possible from the cache, otherwise
        /// the query is materialized and the result cached before being returned.
        /// The cache entry has a one minute sliding expiration with normal priority.
        /// </summary>
        public static TResult Cacheable<TEntity, TResult>(
                            this IQueryable<TEntity> query,
                            Func<IQueryable<TEntity>, TResult> materializer,
                            int durationMinutes = 15,
                            CacheItemPriority priority = CacheItemPriority.Normal)
        {
            // Gets a cache key for a query.
            var queryCacheKey = query.GetCacheKey();

            // The name of the cache key used to clear the cache. All cached items depend on this key.
            var rootCacheKey = typeof(TEntity).FullName;

            // Try to get the query result from the cache.
            printAllCachedKeys();
            var result = HttpRuntime.Cache.Get(queryCacheKey);
            if (result != null)
            {
                debugWriteLine("Fetching object '{0}__{1}' from the cache.", rootCacheKey, queryCacheKey);
                return (TResult)result;
            }

            // Materialize the query.
            result = materializer(query);

            // Adding new data.
            debugWriteLine("Adding new data: queryKey={0}, dependencyKey={1}", queryCacheKey, rootCacheKey);
            storeRootCacheKey(rootCacheKey);
            HttpRuntime.Cache.Insert(
                    key: queryCacheKey,
                    value: result,
                    dependencies: new CacheDependency(null, new[] { rootCacheKey }),
                    absoluteExpiration: DateTime.Now.AddMinutes(durationMinutes),
                    slidingExpiration: Cache.NoSlidingExpiration,
                    priority: priority,
                    onRemoveCallback: null);

            return (TResult)result;
        }

        /// <summary>
        /// Call this method in `public override int SaveChanges()` of your DbContext class 
        /// to Invalidate Second Level Cache automatically.
        /// </summary>        
        public static void InvalidateSecondLevelCache(this DbContext ctx)
        {
            var changedEntityNames = ctx.ChangeTracker
                                      .Entries()
                                      .Where(x => x.State == EntityState.Added ||
                                                  x.State == EntityState.Modified ||
                                                  x.State == EntityState.Deleted)
                                      .Select(x => ObjectContext.GetObjectType(x.Entity.GetType()).FullName)
                                      .Distinct()
                                      .ToList();

            if (!changedEntityNames.Any()) return;

            printAllCachedKeys();
            foreach (var item in changedEntityNames)
            {
                item.removeEntityCache();
            }
            printAllCachedKeys();
        }
        // Private Methods (4) 

        private static void debugWriteLine(string format, params object[] args)
        {
            if (!Debugger.IsAttached) return;
            Debug.WriteLine(format, args);
        }

        private static void printAllCachedKeys()
        {
            if (!Debugger.IsAttached) return;
            debugWriteLine("Available cached keys list:");
            int count = 0;
            var enumerator = HttpRuntime.Cache.GetEnumerator();
            while (enumerator.MoveNext())
            {
                if (enumerator.Key.ToString().StartsWith("__")) continue; // such as __System.Web.WebPages.Deployment
                debugWriteLine("queryKey: {0}", enumerator.Key.ToString());
                count++;
            }
            debugWriteLine("count: {0}", count);
        }

        private static void removeEntityCache(this string rootCacheKey)
        {
            if (string.IsNullOrWhiteSpace(rootCacheKey)) return;
            debugWriteLine("Removing items with dependencyKey={0}", rootCacheKey);
            // Removes all cached items depend on this key.
            HttpRuntime.Cache.Remove(rootCacheKey);
        }

        private static void storeRootCacheKey(string rootCacheKey)
        {
            // The cacheKeys of a cacheDependency that are not already in cache ARE NOT inserted into the cache 
            // on the Insert of the item in which the dependency is used.
            if (HttpRuntime.Cache.Get(rootCacheKey) != null)
                return;

            HttpRuntime.Cache.Add(
                rootCacheKey,
                rootCacheKey,
                null,
                Cache.NoAbsoluteExpiration,
                Cache.NoSlidingExpiration,
                CacheItemPriority.Default,
                null);
        }

        #endregion Methods
    }
}

توضیحات کدهای فوق

در اینجا یک متدالحاقی به نام Cacheable توسعه داده شده است که می‌تواند در انتهای کوئری‌های LINQ شما قرار گیرد. مثلا:

var data = context.Products.AsQueryable().Cacheable(x => x.FirstOrDefault());

کاری که در این متد انجام می‌شود به این شرح است:
الف) ابتدا کلید منحصربفرد معادل کوئری LINQ فراخوانی شده محاسبه می‌شود.
ب) بر اساس نام کامل نوع Entity در حال استفاده، کلید دیگری به نام rootCacheKey تولید می‌گردد.
شاید بپرسید اهمیت این کلید چیست؟
فرض کنید در حال حاضر 1000 آیتم در کش وجود دارند. چه روشی را برای حذف آیتم‌های مرتبط با کش Entity1 پیشنهاد می‌دهید؟ احتمالا خواهید گفت تمام کش را بررسی کرده و آیتم‌ها را یکی یکی حذف می‌کنیم.
این روش بسیار کند است (و جواب هم نمی‌دهد؛ چون کلیدی که در اینجا تولید شده، هش MD5 معادل کوئری است و نمی‌توان آن‌را به موجودیتی خاص ربط داد) و ... نکته جالبی در متد HttpRuntime.Cache.Insert برای مدیریت آن پیش بینی شده است: استفاده از CacheDependency.
توسط CacheDependency می‌توان گروهی از آیتم‌های هم‌خانواده را تشکیل داد. سپس برای حذف کل این گروه کافی است کلید اصلی CacheDependency را حذف کرد. به این ترتیب به صورت خودکار کل کش مرتبط خالی می‌شود.
ج) مراحل بعدی آن هم یک سری اعمال متداول هستند. ابتدا توسط HttpRuntime.Cache.Get بررسی می‌شود که آیا بر اساس کلید متناظر با کوئری جاری، اطلاعاتی در کش وجود دارد یا خیر. اگر بله، نتیجه از کش خوانده می‌شود. اگر خیر، کوئری اصطلاحا materialized می‌شود تا بر روی بانک اطلاعاتی اجرا شده و نتیجه بازگشت داده شود. سپس این نتیجه را در کش قرار می‌دهیم.

مورد بعدی که باید به آن دقت داشت، خالی کردن کش، پس از به روز رسانی اطلاعات توسط کاربران است. این کار در متد InvalidateSecondLevelCache صورت می‌گیرد. به کمک ChangeTracker می‌توان نام نوع‌های موجودیت‌های تغییر کرده را یافت. چون کلید اصلی CacheDependency را بر مبنای همین نام نوع‌های موجودیت‌ها تعیین کرده‌ایم، به سادگی می‌توان کش مرتبط با موجودیت یافت شده را خالی کرد.
استفاده از متد InvalidateSecondLevelCache یاد شده به نحو زیر است:

using System.Data.Entity;
using EfSecondLevelCaching.Core;
using EfSecondLevelCaching.Test.Models;

namespace EfSecondLevelCaching.Test.DataLayer
{
    public class ProductContext : DbContext
    {
        public DbSet<Product> Products { get; set; }

        public override int SaveChanges()
        {
            this.InvalidateSecondLevelCache();
            return base.SaveChanges();
        }        
    }
}

در اینجا با تحریف متد SaveChanges، می‌توان درست در زمان اعمال تغییرات به بانک اطلاعاتی، قسمتی از کش را غیرمعتبر کرد.


نحوه استفاده از سطح دوم کش توسعه داده شده

مثالی از کاربرد متدهای الحاقی توسعه داده شده را در ذیل مشاهده می‌کنید:

using System.Data.Entity;
using System.Linq;
using EfSecondLevelCaching.Core;
using EfSecondLevelCaching.Test.DataLayer;
using EfSecondLevelCaching.Test.Models;
using System;

namespace EfSecondLevelCaching
{
    public static class TestUsages
    {
        public static void RunQueries()
        {
            using (ProductContext context = new ProductContext())
            {
                var isActive = true;
                var name = "Product1";

                // reading from db
                var list1 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == name)
                                   .ToCacheableList();

                // reading from cache
                var list2 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == name)
                                   .ToCacheableList();

                // reading from cache
                var list3 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == name)
                                   .ToCacheableList();

                // reading from db
                var list4 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == "Product2")
                                   .ToCacheableList();
            }

            // removes products cache
            using (ProductContext context = new ProductContext())
            {
                var p = new Product()
                {
                    IsActive = false,
                    ProductName = "P4",
                    ProductNumber = "004"
                };
                context.Products.Add(p);
                context.SaveChanges();
            }

            using (ProductContext context = new ProductContext())
            {
                var data = context.Products.AsQueryable().Cacheable(x => x.FirstOrDefault());
                var data2 = context.Products.AsQueryable().Cacheable(x => x.FirstOrDefault());
                context.SaveChanges();
            }
        }
    }
}

در این حالت اگر برنامه را اجرا کنیم به یک چنین خروجی در پنجره Debug ویژوال استودیو خواهیم رسید:

Adding new data: queryKey=72AF5DA1BA9B91E24DCCF83E88AD1C5F, dependencyKey=EfSecondLevelCaching.Test.Models.Product

Available cached keys list:
queryKey: EfSecondLevelCaching.Test.Models.Product
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
count: 2

Fetching object 'EfSecondLevelCaching.Test.Models.Product__72AF5DA1BA9B91E24DCCF83E88AD1C5F' from the cache.

Available cached keys list:
queryKey: EfSecondLevelCaching.Test.Models.Product
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
count: 2

Fetching object 'EfSecondLevelCaching.Test.Models.Product__72AF5DA1BA9B91E24DCCF83E88AD1C5F' from the cache.

Available cached keys list:
queryKey: EfSecondLevelCaching.Test.Models.Product
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
count: 2

Adding new data: queryKey=11A2C33F9AD7821A0A31003BFF1DF886, dependencyKey=EfSecondLevelCaching.Test.Models.Product

Available cached keys list:
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
queryKey: 11A2C33F9AD7821A0A31003BFF1DF886
queryKey: EfSecondLevelCaching.Test.Models.Product
count: 3

Removing items with dependencyKey=EfSecondLevelCaching.Test.Models.Product
Available cached keys list:
count: 0
Available cached keys list:
count: 0

Adding new data: queryKey=02E6FE403B461E45C5508684156C1D10, dependencyKey=EfSecondLevelCaching.Test.Models.Product

Available cached keys list:
queryKey: 02E6FE403B461E45C5508684156C1D10
queryKey: EfSecondLevelCaching.Test.Models.Product
count: 2


Fetching object 'EfSecondLevelCaching.Test.Models.Product__02E6FE403B461E45C5508684156C1D10' from the cache.

توضیحات:
در زمان تولید list1 چون اطلاعاتی در کش سطح دوم وجود ندارد، پیغام Adding new data قابل مشاهده است. اطلاعات از بانک اطلاعاتی دریافت شده و سپس در کش قرار داده می‌شود.
حین فراخوانی list2 که دقیقا همان کوئری list1 را یکبار دیگر فراخوانی می‌کند، به عبارت Fetching object خواهیم رسید که بر دریافت اطلاعات از کش سطح دوم بجای مراجعه به بانک اطلاعاتی دلالت دارد.
در list4 چون پارامترهای کوئری تغییر کرده‌اند، بنابراین دیگر کلید منحصربفرد معادل آن با list1 و lis2 یکی نیست و اینبار پیغام Adding new data مشاهده می‌شود؛ چون برای دریافت اطلاعات آن نیاز است که به بانک اطلاعاتی مراجعه شود.
در ادامه یک context دیگر باز شده و در آن رکوردی به بانک اطلاعاتی اضافه می‌شود. به همین دلیل اینبار پیام Removing items with dependencyKey قابل مشاهده است. به عبارتی متد InvalidateSecondLevelCache وارد عمل شده است و بر اساس تغییری که صورت گرفته، کش را غیرمعتبر کرده است.
سپس در context بعدی تعریف شده، دوبار متد FirstOrDefault فراخوانی شده است. اولین مورد Adding new data است و دومین فراخوانی به Fetching object ختم شده است (دریافت اطلاعات از کش).

کدهای کامل این پروژه را از اینجا می‌توانید دریافت کنید:
  EfSecondLevelCaching.zip
مطالب
لینک‌های هفته اول دی

وبلاگ‌ها و سایت‌های ایرانی

امنیت



ASP. Net


طراحی وب

PHP


اس‌کیوال سرور


سی شارپ


عمومی دات نت


مسایل اجتماعی و انسانی برنامه نویسی


کتاب‌های رایگان جدید


متفرقه
  • آهن بجای کروم! (یک برنامه نویس آلمانی قسمت‌هایی از مرورگر کروم را که در جهت جمع آوری اطلاعات برای گوگل بکار می‌رفته، حذف کرده و مرورگر دیگری به نام آهن را ارائه داده است!)

نظرات مطالب
آموزش LINQ بخش سوم
روش ComapreTo رو هم تست کرده ام منتها این روش هم درست جواب نمی‌دهد. مثلا دیتای وارد شده در جدول زیر رو در نظر بگیرید:

حال اگر برنامه رو اجرا کنیم خروجی به صورت زیر خواهد بود:

همان طور که ملاحظه می‌فرمایید فقط کدهای 10 و 100 را در خروجی می‌بینیم و اعداد 15، 25، 55 که بین 10 و 100 هستند در خروجی نمایش داده نشده اند.
مطالب
C# 7 - Generalized Async Return Types
از زمان ارائه‌ی C# 5 و معرفی الگوهای async/await، تنها نوع‌های خروجی پشتیبانی شده، <Task، Task<T و void (در موارد خاص) بودند. مشکل همراه با این روش، اجبار به وهله سازی رسمی یک Task است؛ حتی اگر نوع خروجی کاملا مشخص باشد.
برای نمونه در متد ذیل، میزان حجم مصرفی در یک پوشه بازگشت داده می‌شود:
public async Task<long> GetDirectorySize(string path, string searchPattern)
{
    if (!Directory.EnumerateFileSystemEntries(path, searchPattern).Any())
        return 0;
    else
        return await Task.Run<long>(() => Directory.GetFiles(path, searchPattern,
        SearchOption.AllDirectories).Sum(t => (new FileInfo(t).Length)));
}
اگر پوشه‌ای خالی باشد، حجم آن صفر است و در این حالت نیازی به ایجاد یک ترد مخصوص آن نیست. اما با توجه به اینکه خروجی متد، <Task<long است، هنوز هم باید این Task وهله سازی شود. برای نمونه اگر به کدهای IL آن دقت کنیم، return 0 آن به صورت ذیل ترجمه می‌شود:
 AsyncTaskMethodBuilder<long>.Create()

باید دقت داشت که Task، یک نوع ارجاعی است و استفاده‌ی از آن به معنای تخصیص حافظه‌است. اما زمانیکه قسمتی از کد کاملا همزمان اجرا می‌شود و یا مقداری کش شده را بازگشت می‌دهد، این تخصیص حافظه‌ی اضافی، خصوصا اگر در حلقه‌ها بکار گرفته شود، هزینه‌بر خواهد بود.


امکان تعریف خروجی‌های سفارشی متدهای async در C# 7.0

در C# 7 می‌توان خروجی‌های سفارشی را جهت متدهای async تعریف کرد و پیشنیاز اصلی آن پیاده سازی متد GetAwater است. برای مثال <System.Threading.Tasks.ValueTask<T یک چنین نوع سفارشی را ارائه می‌دهد. در این حالت، متد ابتدای بحث را می‌توان به صورت ذیل بازنویسی کرد:
public async ValueTask<long> GetDirectorySize(string path, string searchPattern)
{
    if (!Directory.EnumerateFileSystemEntries(path, searchPattern).Any())
        return 0;
    else
        return await Task.Run<long>(() => Directory.GetFiles(path, searchPattern,
        SearchOption.AllDirectories).Sum(t => (new FileInfo(t).Length)));
}
اگر دقت کنید بجز تغییر نوع خروجی متد، تغییر دیگری نیاز نبوده‌است.
همانطور که از نام  ValueTask نیز مشخص است، یک struct است؛ برخلاف Task و تخصیص حافظه‌ی آن بر روی stack بجای heap صورت می‌گیرد. به این ترتیب با کاهش فشار بر روی GC، در حلقه‌هایی که خروجی value type دارند، با اندازه گیری‌های انجام شده، کارآیی تا 50 درصد هم می‌تواند بهبود یابد.

برای کامپایل قطعه کد فوق و تامین نوع جدید ValueTask، نیاز به نصب بسته‌ی نیوگت ذیل نیز می‌باشد:
 PM> install-package System.Threading.Tasks.Extensions
مطالب
مروری بر کاربردهای Action و Func - قسمت چهارم
طراحی API برنامه توسط Actionها

روش مرسوم طراحی Fluent interfaces، جهت ارائه روش ساخت اشیاء مسطح به کاربران بسیار مناسب هستند. اما اگر سعی در تهیه API عمومی برای کار با اشیاء چند سطحی مانند معرفی فایل‌های XML توسط کلاس‌های سی شارپ کنیم، اینبار Fluent interfaces آنچنان قابل استفاده نخواهند بود و نمی‌توان این نوع اشیاء را به شکل روانی با کنار هم قرار دادن زنجیر وار متدها تولید کرد. برای حل این مشکل روش طراحی خاصی در نگارش‌های اخیر NHibernate معرفی شده است به نام loquacious interface که این روزها در بسیاری از APIهای جدید شاهد استفاده از آن هستیم و در ادامه با پشت صحنه و طرز تفکری که در حین ساخت این نوع API وجود دارد آشنا خواهیم شد.

در ابتدا کلاس‌های مدل زیر را در نظر بگیرید که قرار است توسط آن‌ها ساختار یک جدول از کاربر دریافت شود:
using System;
using System.Collections.Generic;

namespace Test
{
    public class Table
    {
        public Header Header { set; get; }
        public IList<Cell> Cells { set; get; }
        public float Width { set; get; }
    }

    public class Header
    {
        public string Title { set; get; }
        public DateTime Date { set; get; }
        public IList<Cell> Cells { set; get; }
    }

    public class Cell
    {
        public string Caption { set; get; }
        public float Width { set; get; }
    }
}
در روش طراحی loquacious interface به ازای هر کلاس مدل، یک کلاس سازنده ایجاد خواهد شد. اگر در کلاس جاری، خاصیتی از نوع کلاس یا لیست باشد، برای آن نیز کلاس سازنده خاصی درنظر گرفته می‌شود و این روند ادامه پیدا می‌کند تا به خواصی از انواع ابتدایی مانند int و string برسیم:
using System;
using System.Collections.Generic;

namespace Test
{
    public class TableApi
    {
        public Table CreateTable(Action<TableCreator> action)
        {
            var creator = new TableCreator();
            action(creator);
            return creator.TheTable;
        }
    }

    public class TableCreator
    {
        readonly Table _theTable = new Table();
        internal Table TheTable
        {
            get { return _theTable; }
        }

        public void Width(float value)
        {
            _theTable.Width = value;
        }

        public void AddHeader(Action<HeaderCreator> action)
        {
            _theTable.Header = ...
        }

        public void AddCells(Action<CellsCreator> action)
        {
            _theTable.Cells = ...
        }        
    }
}
نقطه آغازین API ایی که در اختیار استفاده کنندگان قرار می‌گیرد با متد CreateTable ایی شروع می‌شود که ساخت شیء جدول را به ظاهر توسط یک Action به استفاده کننده واگذار کرده است، اما توسط کلاس TableCreator او را مقید و راهنمایی می‌کند که چگونه باید اینکار را انجام دهد.
همچنین در بدنه متد CreateTable، نکته نحوه دریافت خروجی از Action ایی که به ظاهر خروجی خاصی را بر نمی‌گرداند نیز قابل مشاهده است.
همانطور که عنوان شد کلاس‌های xyzCreator تا رسیدن به خواص معمولی و ابتدایی پیش می‌روند. برای مثال در سطح اول چون خاصیت عرض از نوع float است، صرفا با یک متد معمولی دریافت می‌شود. دو خاصیت دیگر نیاز به Creator دارند تا در سطحی دیگر برای آن‌ها سازنده‌های ساده‌تری را طراحی کنیم.
همچنین باید دقت داشت که در این طراحی تمام متدها از نوع void هستند. اگر قرار است خاصیتی را بین خود رد و بدل کنند، این خاصیت به صورت internal تعریف می‌شود تا در خارج از کتابخانه قابل دسترسی نباشد و در intellisense ظاهر نشود.
مرحله بعد، ایجاد دو کلاس HeaderCreator و CellsCreator است تا کلاس TableCreator تکمیل گردد:
using System;
using System.Collections.Generic;

namespace Test
{
    public class CellsCreator
    {
        readonly IList<Cell> _cells = new List<Cell>();
        internal IList<Cell> Cells
        {
            get { return _cells; }
        }

        public void AddCell(string caption, float width)
        {
            _cells.Add(new Cell { Caption = caption, Width = width });
        }
    }

    public class HeaderCreator
    {
        readonly Header _header = new Header();
        internal Header Header
        {
            get { return _header; }
        }

        public void Title(string title)
        {
            _header.Title = title;
        }

        public void Date(DateTime value)
        {
            _header.Date = value;
        }

        public void AddCells(Action<CellsCreator> action)
        {
            var creator = new CellsCreator();
            action(creator);
            _header.Cells = creator.Cells;
        }
    }
}
نحوه ایجاد کلاس‌های Builder و یا Creator این روش بسیار ساده و مشخص است:
مقدار هر خاصیت معمولی توسط یک متد ساده void دریافت خواهد شد.
هر خاصیتی که اندکی پیچیدگی داشته باشد، نیاز به یک Creator جدید خواهد داشت.
کار هر Creator بازگشت دادن مقدار یک شیء است یا نهایتا ساخت یک لیست از یک شیء. این مقدار از طریق یک خاصیت internal بازگشت داده می‌شود.

البته عموما بجای معرفی مستقیم کلاس‌های Creator از یک اینترفیس معادل آن‌ها استفاده می‌شود. سپس کلاس Creator را internal تعریف می‌کنند تا خارج از کتابخانه قابل دسترسی نباشد و استفاده کننده نهایی فقط با توجه به متدهای void تعریف شده در interface کار تعریف اشیاء را انجام خواهد داد.

در نهایت، مثال تکمیل شده ما به شکل زیر خواهد بود:
using System;
using System.Collections.Generic;

namespace Test
{
    public class TableCreator
    {
        readonly Table _theTable = new Table();
        internal Table TheTable
        {
            get { return _theTable; }
        }

        public void Width(float value)
        {
            _theTable.Width = value;
        }

        public void AddHeader(Action<HeaderCreator> action)
        {
            var creator = new HeaderCreator();
            action(creator);
            _theTable.Header = creator.Header;
        }

        public void AddCells(Action<CellsCreator> action)
        {
            var creator = new CellsCreator();
            action(creator);
            _theTable.Cells = creator.Cells;
        }
    }

    public class CellsCreator
    {
        readonly IList<Cell> _cells = new List<Cell>();
        internal IList<Cell> Cells
        {
            get { return _cells; }
        }

        public void AddCell(string caption, float width)
        {
            _cells.Add(new Cell { Caption = caption, Width = width });
        }
    }

    public class HeaderCreator
    {
        readonly Header _header = new Header();
        internal Header Header
        {
            get { return _header; }
        }

        public void Title(string title)
        {
            _header.Title = title;
        }

        public void Date(DateTime value)
        {
            _header.Date = value;
        }

        public void AddCells(Action<CellsCreator> action)
        {
            var creator = new CellsCreator();
            action(creator);
            _header.Cells = creator.Cells;
        }
    }
}
نحوه استفاده از این طراحی نیز جالب توجه است:
var data = new TableApi().CreateTable(table =>
            {
                table.Width(1);
                table.AddHeader(header=>
                {
                    header.Title("new rpt");
                    header.Date(DateTime.Now);
                    header.AddCells(cells=>
                    {
                        cells.AddCell("cell 1", 1);
                        cells.AddCell("cell 2", 2);
                    });
                });
                table.AddCells(tableCells=>
                {
                    tableCells.AddCell("c 1", 1);
                    tableCells.AddCell("c 2", 2);
                });
            });

این نوع طراحی مزیت‌های زیادی را به همراه دارد:
الف) ساده سازی طراحی اشیاء چند سطحی و تو در تو
ب) امکان درنظر گرفتن مقادیر پیش فرض برای خواص
ج) ساده‌تر سازی تعاریف لیست‌ها
د) استفاده کنندگان در حین استفاده نهایی و تعریف اشیاء به سادگی می‌توانند کدنویسی کنند (مثلا سلول‌ها را با یک حلقه اضافه کنند).
ه) امکان بهتر استفاده از امکانات Intellisense. برای مثال فرض کنید یکی از خاصیت‌هایی که قرار است برای آن Creator درست کنید یک interface را می‌پذیرد. همچنین در برنامه خود چندین پیاده سازی کمکی از آن نیز وجود دارد. یک روش این است که مستندات قابل توجهی را تهیه کنید تا این امکانات توکار را گوشزد کند؛ روش دیگر استفاده از طراحی فوق است. در اینجا در کلاس Creator ایجاد شده چون امکان معرفی متد وجود دارد، می‌توان امکانات توکار را توسط این متدها نیز معرفی کرد و به این ترتیب Intellisense تبدیل به راهنمای اصلی کتابخانه شما خواهد شد.
مطالب دوره‌ها
مدل سازی داده‌ها در RavenDB
در مطلب جاری، به صورت اختصاصی، مبحث مدل سازی اطلاعات و رسیدن به مدل ذهنی مرسوم در طراحی‌های NoSQL سندگرا را در مقایسه با دنیای Relational، بررسی خواهیم کرد.


تفاوت‌های دوره ما با زمانیکه بانک‌های اطلاعاتی رابطه‌ای پدیدار شدند

- دنیای بانک‌های اطلاعاتی رابطه‌ای برای Write بهینه سازی شده‌اند؛ از این جهت که تاریخچه پیدایش آن‌ها به دهه 70 میلادی بر می‌گردد، زمانیکه برای تهیه سخت دیسک‌ها باید هزینه‌های گزافی پرداخت می‌شد. به همین جهت الگوریتم‌ها و روش‌های بسیاری در آن دوره ابداع شدند تا ذخیره سازی اطلاعات، حجم کمتری را به خود اختصاص دهند. اینجا است که مباحثی مانند Normalization بوجود آمدند تا تضمین شود که داده‌ها تنها یکبار ذخیره شده و دوبار در جاهای مختلفی ذخیره نگردند. جهت اطلاع در سال 1980 میلادی، یک سخت دیسک 10 مگابایتی حدود 4000 دلار قیمت داشته است.
- تفاوت مهم دیگر دوره ما با دهه‌های 70 و 80 میلادی، پدیدار شدن UI و روابط کاربری بسیار پیچیده، در مقایسه با برنامه‌های خط فرمان یا حداکثر فرم‌های بسیار ساده ورود اطلاعات در آن زمان است. برای مثال در دهه 70 میلادی تصور UI ایی مانند صفحه ابتدایی سایت Stack overflow احتمالا به ذهن هم خطور نمی‌کرده است.


تهیه چنین UI ایی نه تنها از لحاظ طراحی، بلکه از لحاظ تامین داده‌ها از جداول مختلف نیز بسیار پیچیده است. برای مثال برای رندر صفحه اول سایت استک اورفلو ابتدا باید تعدادی سؤال از جدول سؤالات واکشی شوند. در اینجا در ذیل هر سؤال نام شخص مرتبط را هم مشاهده می‌کنید. بنابراین اطلاعات نام او، از جدول کاربران نیز باید دریافت گردد. یا در اینجا تعداد رای‌های هر سؤال را نیز مشاهده می‌کنید که به طور قطع اطلاعات آن در جدول دیگری نگه داری می‌شود. در گوشه‌ای از صفحه، برچسب‌های مورد علاقه و در ذیل هر سؤال، برچسب‌های اختصاصی هر مطلب نمایش داده شده‌اند. تگ‌ها نیز در جدولی جداگانه قرار دارند. تمام این قسمت‌های مختلف، نیاز به واکشی و رندر حجم بالایی از اطلاعات را دارند.
- تعداد کاربران برنامه‌ها در دهه‌های 70 و 80 میلادی نیز با دوره ما متفاوت بوده‌اند. اغلب برنامه‌های آن دوران تک کاربره طراحی می‌شدند؛ با بانک‌های اطلاعاتی که صرفا جهت کار بر روی یک سیستم طراحی شده بودند. اما برای نمونه سایت استک اور فلویی که مثال زده شده، توسط هزاران و یا شاید میلیون‌ها نفر مورد استفاده قرار می‌گیرد؛ با توزیع و تقسیم اطلاعات آن بر روی سرورها مختلف.


معرفی مفهوم Unit of change

همین پیچیدگی‌ها سبب شدند تا جهت ساده‌سازی حل اینگونه مسایل، حرکتی به سمت دنیای NoSQL شروع شود. ایده اصلی مدل سازی داده‌ها در اینجا کم کردن تعداد اعمالی است که باید جهت رسیدن به یک نتیجه واحد انجام داد. اگر قرار است یک سؤال به همراه تگ‌ها، اطلاعات کاربر، رای‌ها و غیره واکشی شوند، چرا باید تعداد اعمال قابل توجهی جهت مراجعه به جداول مختلف مرتبط صورت گیرد؟ چرا تمام این اطلاعات را یکجا نداشته باشیم تا بتوان همگی را در طی یک واکشی به دست آورد و به این ترتیب دیگر نیازی نباشد انواع و اقسام JOIN‌ها را به چند ده جدول موجود نوشت؟
اینجا است که مفهومی به نام Unit of change مطرح می‌شود. در هر واحد تغییر، کلیه اطلاعات مورد نیاز برای رندر یک شیء قرار می‌گیرند. برای مثال اگر قرار است با شیء محصول کار کنیم، تمام اطلاعات مورد نیاز آن‌‌را اعم از گروه‌ها، نوع‌ها، رنگ‌ها و غیره را در طی یک سند بانک اطلاعاتی NoSQL سندگرا، ذخیره می‌کنیم.


محدود‌ه‌های تراکنشی یا Transactional boundaries

محدوده‌های تراکنشی در Domain driven design به Aggregate root نیز معروف است. هر محدود تراکنشی حاوی یک Unit of change قرار گرفته داخل یک سند است. ابتدا بررسی می‌کنیم که در یک Read به چه نوع اطلاعاتی نیاز داریم و سپس کل اطلاعات مورد نیاز را بدون نوشتن JOIN ایی از جداول دیگر، داخل یک سند قرار می‌دهیم.
هر محدوده تراکنشی می‌تواند به محدوده تراکنشی دیگری نیز ارجاع داده باشد. برای مثال در RavenDB شماره‌های اسناد، یک سری رشته هستند؛ برخلاف بانک‌های اطلاعاتی رابطه‌ای که بیشتر از اعداد برای مشخص سازی Id استفاده می‌کنند. در این حالت برای ارجاع به یک کاربر فقط کافی است برای مثال مقدار خاصیت کاربر یک سند به "users/1" تنظیم شود. "users/1" نیز یک Id تعریف شده در RavenDB است.
مزیت این روش، سرعت واکشی بسیار بالای دریافت اطلاعات آن است؛ دیگر در اینجا نیازی به JOINهای سنگین به جداول دیگر برای تامین اطلاعات مورد نیاز نیست و همچنین در ساختار‌های پیچیده‌تری مانند ساختارهای تو در تو، دیگر نیازی به تهیه کوئری‌های بازگشتی و استفاده از روش‌های پیچیده مرتبط با آن‌ها نیز وجود ندارد و کلیه اطلاعات مورد نظر، به شکل یک شیء JSON داخل یک سند حاضر و آماده برای واکشی در طی یک Read هستند.
به این ترتیب می‌توان به سیستم‌های مقیاس پذیری رسید. سیستم‌هایی که با بالا رفتن حجم اطلاعات در حین واکشی‌های داده‌های مورد نیاز، کند نبوده و بسیار سریع پاسخ می‌دهند.


Denormalization داده‌ها

اینجا است که احتمالا ذهن رابطه‌ای تربیت شده‌ی شما شروع به واکنش می‌کند! برای مثال اگر نام یک محصول تغییر کرد، چطور؟ اگر آدرس یک مشتری نیاز به ویرایش داشت، چطور؟ چگونه یکپارچگی اطلاعاتی که اکنون به ازای هر سند پراکنده شده‌است، مدیریت می‌شود؟
زمانیکه به این نوع سؤالات رسیده‌ایم، یعنی Denormalization رخ داده است. در اینجا سندهایی را داریم که کلیه اطلاعات مورد نیاز خود را یکجا دارند. به این مساله از منظر نگاه به داده‌ها در طی زمان نیز می‌توان پرداخت. به این معنا که صحیح است که آدرس مشتری خاصی امروز تغییر کرده است، اما زمانیکه سندی برای او در سال قبل صادر شده است، واقعا آدرس آن مشتری که سفارشی برایش ارسال شده، دقیقا همان چیزی بوده است که در سند مرتبط، ثبت شده و موجود می‌باشد. بنابراین سند قبلی با اطلاعات قبلی مشتری در سیستم موجود خواهد بود و اگر سند جدیدی صادر شد، این سند بدیهی است که از اطلاعات امروز مشتری استفاده می‌کند.


ملاحظات اندازه‌های داده‌ها

زمانیکه سند‌ها بسیار بزرگ می‌شوند چه رخ خواهد داد؟ از لحاظ اندازه داده‌ها سه نوع سند را می‌توان متصور بود:
الف) سندهای محدود، مانند اغلب اطلاعاتی که تعداد فیلدهای مشخصی دارند با تعداد اشیاء مشخصی.
ب) سندهای نامحدود اما با محدودیت طبیعی. برای مثال اطلاعات فرزندان یک شخص را درنظر بگیرید. هرچند این اطلاعات نامحدود هستند، اما به صورت طبیعی می‌توان فرض کرد که سقف بالایی آن عموما به 20 نمی‌رسد!
ج) سندهای نامحدود، مانند سندهایی که آرایه‌ای از اطلاعات را ذخیره می‌کنند. برای مثال در یک سایت فروشگاه، اطلاعات فروش یک گروه از اجناس خاص را درنظر بگیرید که عموما نامحدود است. اینجا است که باید به اندازه اسناد نیز دقت داشت. برای مدیریت این مساله حداقل از دو روش استفاده می‌شود:
- محدود کردن تعداد اشیاء. برای مثال در هر سند حداکثر 100 اطلاعات فروش یک محصول بیشتر ثبت نشود. زمانیکه به این حد رسیدیم، یک سند جدید ایجاد شده و Id سند قبلی مثلا "products/1" در سند دوم ذکر خواهد شد.
- محدود کردن تعداد اطلاعات ذخیره شده بر اساس زمان
RavenDB برای مدیریت این مساله، مفهوم Includes را معرفی کرده است. در اینجا با استفاده از متد الحاقی Include، کار زنجیر کردن سندهای مرتبط صورت خواهد گرفت.



یک مثال عملی: مدل سازی داده‌های یک بلاگ در RavenDB

پس از این بحث مقدماتی که جهت معرفی ذهنیت مدل سازی داده‌ها در دنیای غیر رابطه‌ای NoSQL ضروری بود، در ادامه قصد داریم مدل‌های داده‌های یک بلاگ را سازگار با ساختار بانک اطلاعاتی NoSQL سندگرای RavenDB طراحی کنیم.
در یک بلاگ، تعدادی مطلب، نظر، برچسب (گروه‌های مطالب) و امثال آن وجود دارند. اگر بخواهیم این اطلاعات را به صورت رابطه‌ای مدل کنیم، به ازای هر کدام از این موجودیت‌ها یک جدول نیاز خواهد بود و برای رندر صفحه اصلی بلاگ، چندین و چند کوئری برای نمایش اطلاعات مطالب، نویسنده(ها)، برچسب‌ها و غیره باید به بانک اطلاعاتی ارسال گردد، که تعدادی از آن‌ها مستقیما بر روی یک جدول اجرا می‌شوند و تعدادی دیگر نیاز به JOIN دارند.
مشکلاتی که روش رابطه‌ای دارد:
- تعداد اعمالی که باید برای نمایش صفحه اول سایت صورت گیرد، بسیار زیاد است و این مساله با تعداد بالای کاربران از دید مقیاس پذیری سیستم مشکل ساز است.
- داده‌های مرتبط در جداول مختلفی پراکنده‌اند.
- این سیستم برای Write بهینه سازی شده است و نه برای Read. (همان بحث گران بودن سخت دیسک‌ها در دهه‌های قبل که در ابتدای بحث به آن اشاره شد)

مدل سازی سازگار با دنیای NoSQL یک بلاگ

در اینجا چند کلاس مقدماتی را مشاهده می‌کنید که تعریف آن‌ها به همین نحو صحیح است و نیاز به جزئیات و یا روابط بیشتری ندارند.
namespace RavenDBSample01.BlogModels
{
    public class BlogConfig
    {
        public string Id { set; get; }
        public string Title { set; get; }
        public string Description { set; get; }
        // ... more items here
    }

    public class User
    {
        public string Id { set; get; }
        public string FullName { set; get; }
        public string Email { set; get; }
        // ... more items here
    }
}
اما کلاس مطالب بلاگ را به چه صورتی طراحی کنیم؟ هر مطلب، دارای تعدادی نظر خواهد بود. اینجا است که بحث unit of change مطرح می‌شود و درج اطلاعاتی که در طی یک read نیاز است از بانک اطلاعاتی جهت رندر UI واکشی شوند. به این ترتیب به این نتیجه می‌رسیم که بهتر است کلیه کامنت‌های یک مطلب را داخل همان شیء مطلب مرتبط قرار دهیم. از این جهت که یک نظر، خارج از یک مطلب بلاگ دارای مفهوم نیست.
اما این طراحی نیز یک مشکل دارد. درست است که ساختار یک صفحه مطلب، از مطالب وبلاگ به همین نحوی است که توضیح داده شد؛ اما در صفحه اول سایت، هیچگاه کامنت‌های مطالب درج نمی‌شوند. بنابراین نیازی نیست تا تمام کامنت‌ها را داخل یک مطلب ذخیره کرد. به این ترتیب برای نمایش صفحه اول سایت، حجم کمتری از اطلاعات واکشی خواهند شد.
    public class Post
    {
        public string Id { set; get; }
        public string Title { set; get; }
        public string Body { set; get; }

        public ICollection<string> Tags { set; get; }

        public string AuthorId { set; get; }

        public string PostCommentsId { set; get; }
        public int CommentsCount { set; get; }
    }

    public class Comment
    {
        public string Id { set; get; }
        public string Body { set; get; }
        public string AuthorName { set; get; }
        public DateTime CreatedAt { set; get; }
    }

    public class PostComments
    {
        public List<Comment> Comments { set; get; }
        public string LastCommentId { set; get; }
    }
در اینجا ساختار Post و Commentهای بلاگ را مشاهده می‌کنید. جایی که ذخیره سازی اصلی کامنت‌ها صورت می‌گیرد در شیء PostComments است. یعنی PostCommentsId شیء Post به یک وهله از شیء PostComments که حاوی کلیه کامنت‌های آن مطلب است، اشاره می‌کند.
به این ترتیب برای نمایش صفحه اول سایت، فقط یک کوئری صادر می‌شود. برای نمایش یک مطلب و کلیه کامنت‌های متناظر با آن دو کوئری صادر خواهند شد.

بنابراین همانطور که مشاهده می‌کنید، در دنیای NoSQL، طراحی مدل‌های داده‌ای بر اساس «سناریوهای Read» صورت می‌گیرد و نه صرفا طراحی یک مدل رابطه‌ای بهینه سازی شده برای حالت Write.

سورس کامل ASP.NET MVC این بلاگ‌را که «راکن بلاگ» نام دارد، از GitHub نویسندگان اصلی RavenDB می‌توانید دریافت کنید.