نظرات مطالب
بررسی چند نکته در مورد ارث بری کلاس‌ها در #C
با کامنت کردن این بخش از کد برنامه :
//Console.WriteLine("====Parent====");
//Parent parent = new Parent();
//parent.Print();

//Console.WriteLine("====Child====");
//Child child = new Child();
//child.Print();
و اجرای کد بخش سوم به تنهایی :
Console.WriteLine("====Parent Via Child====");
Parent pc = new Child();
pc.Print();
خروجی به شکل زیر می‌باشد :(ابتدا سازنده استاتیک فرزند و سپس سازنده استاتیک والد فراخوانی میشود) 


نکته : سازنده‌های استاتیک تنها یکبار فراخوانی می‌شوند بر عکس سازنده‌های غیر استاتیک که به ازای هر بار نمونه سازی از کلاس اجرا می‌شوند.
مطالب
تزریق وابستگی‌ها فراتر از کلاس‌ها در برنامه‌های Angular
عموما تزریق وابستگی‌های کلاس‌ها، در برنامه‌های Angular صورت می‌گیرند. برای مثال در یک NgModule در قسمت providers آن نام کلاسی را معرفی می‌کنیم و سپس می‌توان این کلاس را به سازنده‌ی کامپوننت‌ها تزریق کرد و از امکانات آن استفاده کرد. اما سیستم تزریق وابستگی‌های Angular محدود به تزریق وهله‌های کلاس‌ها نیست و می‌توان قسمت providers را با یک سری شیء تعریف شده‌ی با {} نیز مقدار دهی کرد. در اینجا می‌توان یک token را به یک وابستگی انتساب داد.


انواع providers در Angular

سیستم تزریق وابستگی‌های Angular، تامین کننده‌های ذیل را نیز به همراه دارد:
 - تامین کننده‌ی مقادیر که با useValue مشخص می‌شود.
 - تامین کننده‌ی Factory‌ها که با useFactory تعریف خواهد شد.
 - تامین کننده‌ی کلاس‌ها که با useClass تعریف می‌شود.
 - تامین کننده‌ی کلاس‌هایی با نام‌های مستعار که توسط useExisting مشخص می‌شود.

یک تامین کننده مشخص می‌کند که سیستم تزریق کننده‌ی وابستگی‌ها، با درخواست توکن/کلیدی مشخص، چه وابستگی را باید وهله سازی کند.


تزریق وابستگی‌هایی از نوع ثوابت در برنامه‌های Angular

فرض کنید برنامه‌ی Angular شما در مسیر دیگری نسبت به Web API سمت سرور آن قرار دارد. به همین جهت در تمام سرویس‌های برنامه نیاز به تعریف مسیر پایه‌ی Web API مانند API_BASE_HREF را خواهید داشت. یک روش حل این مساله، تعریف این ثابت به صورت یک وابستگی و سپس تزریق آن به کلاس‌های سرویس‌ها و یا کامپوننت‌های برنامه است:
@NgModule({
  imports: [
    CommonModule,
    InjectionBeyondClassesRoutingModule
  ],
  declarations: [TestProvidersComponent],
  providers: [
    { provide: "API_BASE_HREF", useValue: "http://localhost:5000" },
    { provide: "APP_BASE_HREF", useValue: document.location.pathname },
    { provide: "IS_PROD", useValue: true },
    { provide: "APIKey", useValue: "XYZ1234ABC" },
    { provide: "Random", useValue: Math.random() },
    {
      provide: "emailApiConfig", useValue: Object.freeze({
        apiKey: "email-key",
        context: "registration"
      })
    },
    { provide: "languages", useValue: "en", multi: true },
    { provide: "languages", useValue: "fa", multi: true }
  ]
})
export class InjectionBeyondClassesModule { }
- در اینجا چندین مثال از تکمیل قسمت providers یک ماژول را با شیء‌های token دار provide مشاهده می‌کنید. هر provide یک token را مشخص می‌کند که از آن جهت دریافت مقدار وابستگی منتسب به آن استفاده خواهد شد.
- در این مثال، حالت‌های مختلفی از تامین کننده‌ی useValue را نیز مشاهده می‌کنید. انتساب یک رشته، یک مقدار boolean و یا یک مقدار که در زمان انتساب محاسبه خواهد شد مانند Math.random.
- همچنین در اینجا می‌توان در قسمت useValue مانند emailApiConfig، یک شیء را نیز تعریف کرد. علت استفاده‌ی از Object.freeze، تعریف این شیء به صورت read only است.
- در حین تعریف provideها اگر کلید توکن بکار رفته یکی باشد، آخرین مقدار، مابقی را بازنویسی می‌کند؛ مانند حالت languages که در اینجا دوبار تعریف شده‌است. اما با ذکر خاصیت multi، می‌توان به کلید languages به صورت یک آرایه دسترسی یافت و در این حالت مقادیر آن بازنویسی نمی‌شوند.

اکنون برای استفاده‌ی از این توکن‌های تعریف شده توسط سیستم تزریق وابستگی‌ها، می‌توان به صورت ذیل عمل کرد:
import { Component, OnInit, Inject } from "@angular/core";
import { inject } from "@angular/core/testing";

@Component({
  selector: "app-test-providers",
  templateUrl: "./test-providers.component.html",
  styleUrls: ["./test-providers.component.css"]
})
export class TestProvidersComponent implements OnInit {

  constructor(
    @Inject("API_BASE_HREF") public apiBaseHref: string,
    @Inject("APP_BASE_HREF") public appBaseHref: string,
    @Inject("IS_PROD") public isProd: boolean,
    @Inject("APIKey") public apiKey: string,
    @Inject("Random") public random: string,
    @Inject("emailApiConfig") public emailApiConfig: any,
    @Inject("languages") public languages: string[]
  ) { }

  ngOnInit() {
  }
}
در اینجا هر توکن توسط ویژگی Inject به سازنده‌ی کلاس تزریق شده‌است. از این جهت آن‌ها را public تعریف کرده‌ایم که بتوان در قالب این کامپوننت، به مقادیر تزریق شده، دسترسی یافت:
<h1>
  Injection Beyond Classes
</h1>
<div class="alert alert-info">
  <ul>
    <li>API_BASE_HREF: {{apiBaseHref}}</li>
    <li>APP_BASE_HREF: {{appBaseHref}}</li>
    <li>IS_PROD: {{isProd}}</li>
    <li>APIKey: {{apiKey}}</li>
    <li>Random-1: {{random}}</li>
    <li>Random-2: {{random}}</li>
    <li>emailApiConfig {{emailApiConfig | json}}</li>
    <li>languages: {{languages | json}}</li>
  </ul>
</div>
با این خروجی:


در اینجا همانطور که مشاهده می‌کنید، languages از نوع multi: true به یک آرایه تبدیل شده‌است و یا emailApiConfig نیز یک شیء است که توسط کلیدهای آن می‌توان به مقادیر متناظر آن دسترسی یافت. Random نیز تنها یکبار دریافت شده‌است و مهم نیست که چندبار صدا زده شود؛ همواره مقدار آن مساوی اولین مقداری است که در زمان انتساب دریافت می‌کند.


تزریق تنظیمات برنامه توسط تامین کننده‌ی مقادیر

یک نمونه از تزریق شیء emailApiConfig: any را در مثال فوق ملاحظه کردید. روش بهتر و نوع دار آن به صورت ذیل است. ابتدا یک فایل جدید thismodule.config.ts یا app.config.ts را ایجاد می‌کنیم:
import { InjectionToken } from "@angular/core";

export let APP_CONFIG = new InjectionToken<string>("this.module.config");

export interface IThisModuleConfig {
  apiEndpoint: string;
}

export const ThisModuleConfig: IThisModuleConfig = {
  apiEndpoint: "http://localhost:45043/api/"
};
تاکنون توکن‌های تعریف شده را توسط یک رشته‌ی ثابت مانند "API_BASE_HREF" تعریف کردیم. مشکل این روش، امکان تداخل آن‌ها در یک برنامه‌ی بزرگ است. به همین جهت روش توصیه شده، قرار دادن این کلید داخل یک InjectionToken است تا همواره بتوان به یک توکن منحصربفرد در طول عمر برنامه دست یافت که نمونه‌ی آن‌را در تعریف APP_CONFIG مشاهده می‌کنید. در برنامه اگر دو new InjectionToken، با یک سازنده‌ی یکسان تعریف شوند، با هم مساوی نخواهند بود و توکن نهایی آن منحصربفرد است:
import { InjectionToken } from '@angular/core';
export const EmailService1 = new InjectionToken<string>("EmailService");
export const EmailService2 = new InjectionToken<string>("EmailService");
console.log(EmailService1 === EmailService2); // false

سپس نوع تنظیمات را توسط اینترفیس IThisModuleConfig تعریف کرده‌ایم (که نسبت به استفاده‌ی از any یک پیشرفت محسوب می‌شود). در آخر وهله‌ای از این اینترفیس را به نحوی که مشاهده می‌کنید export کرده‌ایم.

اکنون نحوه‌ی تعریف تزریق وابستگی از نوع IThisModuleConfig در یک NgModule به صورت ذیل است:
import { ThisModuleConfig, APP_CONFIG } from "./thismodule.config";

@NgModule({
  providers: [
    { provide: APP_CONFIG, useValue: ThisModuleConfig }
  ]
})
export class InjectionBeyondClassesModule { }
اینبار توکن تعریف شده توسط InjectionToken مشخص شده‌است و مقدار آن توسط ThisModuleConfig تامین خواهد شد.

در آخر، تزریق آن به سازنده‌ی یک کامپوننت بر اساس توکن APP_CONFIG و از نوع مشخص اینترفیس آن خواهد بود:
import { IThisModuleConfig, APP_CONFIG } from "./../thismodule.config";
@Component()
export class TestProvidersComponent implements OnInit {

  constructor(
    @Inject(APP_CONFIG) public config: IThisModuleConfig
  ) { }

  ngOnInit() {
  }

}


تزریق وابستگی‌ها توسط تامین کننده‌ی Factory ها

تا اینجا useValue را بررسی کردیم. نوع دیگر تامین کننده‌های قابل تعریف، useFactory هستند:
@NgModule({
  providers: [
    // ------ useFactory
    { provide: "BASE_URL", useFactory: getBaseUrl },
    { provide: "RandomFactory", useFactory: randomFactory }
  ]
})
export class InjectionBeyondClassesModule { }

export function getBaseUrl() {
  return document.getElementsByTagName("base")[0].href;
}

export function randomFactory() {
  return Math.random();
}
در اینجا روش استفاده‌ی از useFactory را مشاهده می‌کنید. کار کرد آن با useValue دقیقا یکی است؛ یک توکن را مشخص می‌کنیم و سپس مقداری به آن نسبت داده می‌شود. اما در اینجا می‌توان یک متد را که بیانگر نحوه‌ی تامین این مقدار است نیز مشخص کرد و نسبت به حالت useValue که تنها یک مقدار ثابت و مشخص را دریافت می‌کند، انعطاف پذیری بیشتر دارد و می‌توان منطق سفارشی خاصی را نیز در اینجا پیاده سازی کرد.

روش استفاده‌ی از آن نیز همانند توکن‌های useValue است که توسط ویژگی Inject مشخص می‌شوند:
export class TestProvidersComponent implements OnInit {

  constructor(
    @Inject("BASE_URL") public baseUrl: string,
    @Inject("RandomFactory") public randomFactory: string
  ) { }

حالت useFactory علاوه بر امکان دریافت یک منطق سفارشی توسط یک function، امکان دریافت یک سری وابستگی را نیز دارد. فرض کنید کلاس سرویس خودرو به صورت زیر تعریف شده‌است که دارای وابستگی از نوع HttpClient تزریق شده‌ی در سازنده‌ی آن است:
import { HttpClient } from "@angular/common/http";
import { Injectable } from "@angular/core";

@Injectable()
export class CarService {

  constructor(private http: HttpClient) { }

}
در این حالت useFactory آن جهت تامین پارامتر سازنده‌ی  new CarService، به همراه متدی خواهد بود که پارامتری از نوع HttpClient را دریافت می‌کند:
import { CarService } from "./car.service";
import { HttpClient } from "@angular/common/http";

@NgModule({
  providers: [
    // ------ useFactory
    { provide: "Car_Service", useFactory: carServiceFactory, deps: [HttpClient] }
  ]
})
export class InjectionBeyondClassesModule { }

export function carServiceFactory(http: HttpClient) {
  return new CarService(http);
}
در اینجا برای تامین این پارامتر سازنده، خاصیت دیگری به نام deps قابل تعریف است که می‌تواند یک یا چند سرویس و وابستگی را تزریق و تامین کند. برای مثال سرویس HttpClient در اینجا توسط deps: [HttpClient] تزریق شده‌است.


تزریق وابستگی‌ها توسط تامین کننده‌ی کلاس‌ها

تا اینجا useValue و useFactory را بررسی کردیم. نوع دیگر تامین کننده‌های قابل تعریف، useClass هستند. در حالت استفاده‌ی useClass، نام یک نوع مشخص می‌شود و سپس Angular وهله‌ای از آن‌را تامین خواهد کرد. در این حالت اگر این وابستگی دارای پارامترهای تزریق شده‌ای در سازنده‌ی آن باشد، آن‌ها نیز به صورت خودکار وهله سازی می‌شوند.
import { CarService } from "./car.service";

@NgModule({
  providers: [
    // ------ useClass
    { provide: "Car_Service_Name1", useClass: CarService },
  ]
})
export class InjectionBeyondClassesModule { }
این حالت دقیقا معادل تعریف متداول سرویس ذیل است؛ با این تفاوت که توکن آن مساوی مقدار سفارشی Car_Service_Name1 است:
import { CarService } from "./car.service";

@NgModule({
  providers: [
        CarService
  ]
})
export class InjectionBeyondClassesModule { }


تزریق وابستگی‌ها توسط تامین کننده‌ی کلاس‌هایی با نام‌های مستعار

چگونه می‌توان دو تامین کننده را برای کلاسی مشابه، با توکن‌هایی متفاوت ایجاد کرد؟ در این حالت از useExisting استفاده می‌شود:
import { CarService } from "./car.service";

@NgModule({
  providers: [
    // ------ useClass
    { provide: "Car_Service_Name1", useClass: CarService },
    // ------ useExisting
    { provide: "Car_Service_Token2", useExisting: "Car_Service_Name1" },
  ]
})
export class InjectionBeyondClassesModule { }
در اینجا CarService توسط دو توکن مختلف در معرض دید قرار گرفته‌است. باید دقت داشت که درخواست "Car_Service_Token2" دقیقا همان وهله‌ی ایجاد شده‌ی توسط توکن "Car_Service_Name1" را بازگشت می‌دهد و وهله‌ی جدیدی در این حالت ایجاد نخواهد شد.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید.
مطالب
مهارت‌های تزریق وابستگی‌ها در برنامه‌های NET Core. - قسمت هشتم - ساده سازی معرفی سرویس‌ها توسط Scrutor
قابلیت‌های قرار گرفته‌ی در اسمبلی Microsoft.Extensions.DependencyInjection که پایه‌ی تزریق وابستگی‌های برنامه‌های مبتنی بر NET Core. را ارائه می‌دهد، برای پیاده سازی اکثر پروژه‌ها کافی است. اما اگر از نگارش‌های پیشین ASP.NET MVC به ASP.NET Core مهاجرت کرده باشید، حتما با قابلیت‌های ویژه‌ی اسکن اسمبلی‌های موجود در IoC Containers ثالث، جهت ساده سازی معرفی سرویس‌های برنامه به سیستم تزریق وابستگی‌ها، آشنایی دارید. برای مثال StructureMap قابلیت اسکن اسمبلی‌های موجود در برنامه و معرفی اینترفیس‌ها و سرویس‌های موجود در آن‌را به Container خود دارد:
var container = new Container(x =>
            {
                x.Scan(scanner =>
                {
                    scanner.AssemblyContainingType<IOrderHandler>();
                    // connects `IAccounting` to `Accounting` and `ISales` to `Sales` automatically.
                    scanner.WithDefaultConventions();
                });
            });
و یا AutoFac نیز به همین صورت:
builder.RegisterAssemblyTypes(myAssembly)
    .Where(t => t.IsAssignableTo<IMyInterface>())
    .AsImplementedInterfaces();
البته می‌توان مجددا به تمام این قابلیت‌ها رسید؛ به شرطی‌که سیستم تزریق وابستگی‌های پایه‌ی NET Core. را با یکی از IoC Containers ثالث به طور کامل تعویض کنیم. اگر قصد چنین تعویض پایه‌ای را ندارید و هنوز قصد دارید از همان Microsoft.Extensions.DependencyInjection استفاده کنید، اما تعدادی متد الحاقی جدید تعریف شده‌ی بر فراز آن، کار اسکن کردن اسمبلی‌ها را مانند قبل انجام دهند، می‌توان از کتابخانه‌ی کمکی Scrutor استفاده کرد. این کتابخانه، جایگزین سیستم تزریق وابستگی‌های توکار برنامه‌های NET Core. نیست؛ بلکه صرفا مکمل آن است.


دریافت و نصب کتابخانه‌ی کمکی Scrutor

کتابخانه‌ی کمکی Scrutor سورس باز بوده و بسته‌ی NuGet آن توسط یکی از دستورات زیر به پروژه افزوده می‌شود:
> Install-Package Scrutor
> dotnet add package Scrutor
و یا به صورت مدخلی جدید در فایل csproj:
<Project Sdk="Microsoft.NET.Sdk.Web">
  <ItemGroup>
    <PackageReference Include="Scrutor" Version="3.0.2" />
  </ItemGroup>
</Project>


ثبت و معرفی ساده‌تر سرویس‌ها بر اساس قواعد نامگذاری آن‌ها توسط Scrutor

فرض کنید تعدادی سرویس را به صورت زیر تعریف کرده‌اید:
namespace CoreIocServices
{
    public interface IFoo
    {
        void Run();
    }

    public class Foo : IFoo
    {
        public void Run()
        {
            throw new System.NotImplementedException();
        }
    }

    public interface IBar
    {
        void Add();
    }

    public class Bar : IBar
    {
        public void Add()
        {
            throw new System.NotImplementedException();
        }
    }


    public interface IBaz
    {
        void Stop();
    }

    public class Baz : IBaz
    {
        public void Stop()
        {
            throw new System.NotImplementedException();
        }
    }
}
روش متداول معرفی آن‌ها به IoC Container برنامه به صورت زیر است:
services.AddScoped<IFoo, Foo>();
services.AddScoped<IBar, Bar>();
services.AddScoped<IBaz, Baz>();
و هرچقدر تعداد سرویس‌های برنامه بیشتر شود، سطرهای فوق نیز بیشتر خواهند شد.
در اینجا در حین تعریف سرویس‌های فوق این روش نامگذاری رعایت شده‌است: هر اینترفیس، نامش یک I بیشتر از نام کلاس مشتق شده‌ی از آن دارد؛ مانند اینترفیس IFoo و کلاس Foo. کتابخانه‌ی StructureMap که در ابتدای بحث معرفی شد، کار اسکن و اتصال یک چنین سرویس‌هایی را با تعریف scanner.WithDefaultConventions انجام می‌دهد. معادل آن با Scrutor به صورت زیر است:
namespace CoreIocSample02
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.Scan(scan =>
                //scan.FromCallingAssembly()
                scan.FromAssemblyOf<IFoo>()
                    .AddClasses()
                    .AsMatchingInterface()
                    .WithScopedLifetime());
تعریف فوق به این معنا است:
- scan.FromAssemblyOf کار اسکن اسمبلی را انجام می‌دهد که نوع IFoo در آن قرار دارد. اگر از scan.FromCallingAssembly استفاده کنیم، به این معنا است که کار اسکن را دقیقا از همین اسمبلی فراخوان کدهای جاری، شروع کن. اما چون IFoo تعریف شده، در یک پروژه و اسمبلی دیگر قرار دارد، به همین جهت نیاز به ذکر صریح اسمبلی آن نیز هست.
- AddClasses یعنی تمام کلاس‌های public, non-abstract را به لیست services اضافه کن.
- AsMatchingInterface یعنی بر اساس قرارداد نامگذاری IClassName و ClassName، اتصالات سرویس‌ها را انجام بده.
بجای آن می‌توان از AsImplementedInterfaces نیز استفاده کرد. این حالت برای زمانی مناسب است که یک کلاس، چندین اینترفیس را پیاده سازی کند (مثلا کلاس TestService اینترفیس‌های ITestService و IService را پیاده سازی کرده باشد) و علاقمند باشید به ازای هر اینترفیس، یکبار سرویس آن نیز ثبت شود؛ کاری مانند تنظیمات زیر:
services.AddScoped<ITestService, TestService>();
services.AddScoped<IService, TestService>();
یا حتی می‌توان از متد ()<As<T نیز استفاده کرد. در اینجا به Scrutor گفته می‌شود که تمام کلاس‌های یافت شده را بر اساس نوع سرویس T ثبت و معرفی کن. البته اگر کلاسی نتواند نوع اینترفیس T را پیاده سازی کند، در زمان اجرا با استثناء مواجه خواهید شد.
- WithScopedLifetime نیز طول عمر این سرویس‌های اضافه شده را مشخص می‌کند. در اینجا می‌توان WithTransientLifetime و WithSingletonLifetime را نیز ذکر کرد.

بنابراین همانطور که ملاحظه می‌کنید، هنوز هم همان سیستم Microsoft.Extensions.DependencyInjection برقرار است؛ اما با وجود متد الحاقی جدید Scan، کار تعاریف سرویس‌های برنامه به شدت ساده می‌شود.


کار با وهله‌های کلاس‌های سرویس‌ها بجای اینترفیس‌های آن توسط Scrutor

می‌خواهیم مثال سوم قسمت ششم «چگونه بجای اینترفیس‌ها، یک وهله از کلاسی مشخص را از سیستم تزریق وابستگی‌ها درخواست کنیم؟» را توسط Scrutor پیاده سازی کنیم:
namespace CoreIocServices
{
    public interface IService { }
    public class Service1 : IService { }
    public class Service2 : IService { }
    public class Service : IService { }
}
در حالت متداول آن می‌توان از روش زیر نیز استفاده کرد:
services.AddTransient<Service1>();
services.AddTransient<Service2>();
services.AddTransient<Service>();
که با افزایش تعداد کلاس‌های سرویس برنامه به همین نحو نیز افزایش خواهند یافت. معادل این تنظیمات با Scrutor به صورت زیر است:
namespace CoreIocSample02
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.Scan(scan =>
              //scan.FromCallingAssembly()
              scan.FromAssemblyOf<IService>()
                  .AddClasses()
                  .AsSelf()
                  .WithTransientLifetime());
در اینجا اسمبلی حاوی IService اسکن خواهد شد و سپس تمام کلاس‌های public, non-abstract آن AsSelf (ثبت پیاده سازی خود کلاس به عنوان سرویس) با طول عمر Transient به لیست services اضافه می‌شوند و یا اگر صرفا تعدادی سرویس مشخص مد نظر بود می‌توان به صورت زیر عمل کرد:
services.Scan(scan =>
               scan.AddTypes(new[] { typeof(Service1), typeof(Service2) })
                   .AsSelf()
                   .WithTransientLifetime());
متدهایی که در Scrutor، یک پیاده سازی را به عنوان سرویس معرفی می‌کنند، شامل این موارد هستند:
AsSelf: معادل ()<services.AddTransient<TestService است. در این حالت کلاس‌هایی که اینترفیسی را پیاده سازی نمی‌کنند و یا در کل مایل هستید که از طریق تزریق وابستگی‌ها در دسترس باشند، می‌توان توسط متد AsSelf به سیستم معرفی کرد.
AsSelfWithInterfaces: معادل تنظیمات زیر است:
services.AddSingleton<TestService>();
services.AddSingleton<ITestService>(x => x.GetRequiredService<TestService>());
services.AddSingleton<IService>(x => x.GetRequiredService<TestService>());
فرض کنید کلاس TestService اینترفیس‌های ITestService و IService را پیاده سازی کرده باشد. با استفاده از AsSelfWithInterfaces، یکبار پیاده سازی خود سرویس به سیستم معرفی می‌شود، سپس به ازای هر اینترفیس، از همان وهله‌ی TestService برای وهله سازی سرویس‌های ITestService و IService نیز استفاده می‌شود.


روش‌های متفاوت اسکن اسمبلی‌ها در Scrutor

Scrutor به همراه روش‌های متعددی برای تعریف اسمبلی یا اسمبلی‌هایی است که باید اسکن شوند و نمونه‌ای از آن‌را با FromAssemblyOf بررسی کردیم:
services.Scan(scan =>
              //scan.FromCallingAssembly()
              scan.FromAssemblyOf<IService>()
سایر موارد آن به شرح زیر هستند:
الف) FromAssemblyOf<>, FromAssembliesOf : اسمبلی یا اسمبلی‌هایی که نوع یا نوع‌های تعیین شده را به همراه دارند، اسکن می‌کند.
ب) FromCallingAssembly, FromExecutingAssembly, FromEntryAssembly کار اسکن اسمبلی‌های فراخوان، اسمبلی که هم اکنون در حال اجرا است و اسمبلی آغازین برنامه را انجام می‌دهند.
ج) FromAssemblyDependencies: تمام اسمبلی‌هایی را که وابسته‌ی به اسمبلی معرفی شده‌ی به آن هستند، اسکن می‌کند.
د) FromApplicationDependencies, FromDependencyContext: تمام اسمبلی‌هایی را که توسط برنامه، ارجاعی به آن‌ها وجود دارند، اسکن می‌کند.


انتخاب دقیق‌تر کلاس‌ها و سرویس‌های مدنظر توسط Scrutor

شاید عملکرد کلی متد AddClasses مدنظر شما نباشد و نیاز به انتخاب دقیق‌تری از سرویس‌های اسکن شده را داشته باشید؛ برای این مورد نیز Scrutor روش‌های زیر را ارائه می‌دهد. برای مثال خود کلاس AddClasses دارای overloadهای زیر نیز هست:
    public interface IImplementationTypeSelector : IAssemblySelector, IFluentInterface
    {
        IServiceTypeSelector AddClasses();
        IServiceTypeSelector AddClasses(bool publicOnly);
        IServiceTypeSelector AddClasses(Action<IImplementationTypeFilter> action);
        IServiceTypeSelector AddClasses(Action<IImplementationTypeFilter> action, bool publicOnly);
    }
حالت پیش‌فرض آن انتخاب تمام کلاس‌های public, non-abstract است. اگر پارامتر publicOnly را با false مقدار دهی کنید، internal/private nested classes را نیز انتخاب می‌کند. پارامتر action ای که در اینجا درنظر گرفته شده، جهت فیلتر کردن سرویس‌های انتخابی است که تعدادی از مثال‌های آن‌را در زیر بررسی می‌کنیم:
services.Scan(scan => scan
              .FromAssemblyOf<IService>()
                .AddClasses(classes => classes.AssignableTo<IService>())
// .AddClasses(classes => classes.InNamespaces("MyApp")) 
// .AddClasses(classes => classes.Where(type => type.Name.EndsWith("Repository")) 
                    .AsImplementedInterfaces()
                    .WithTransientLifetime());
در اینجا در حالت اول، کلاس‌هایی که صرفا اینترفیس IService را پیاده سازی کرده باشند، انتخاب می‌شوند. حالت دوم آن، انتخاب‌ها را به یک فضای نام محدود می‌کند و حالت سوم اگر نام کلاسی به Repository ختم شود، آن‌را به عنوان سرویس انتخاب خواهد کرد.


مدیریت جایگزینی سرویس‌ها توسط Scrutor

یکی از مزیت‌های طراحی یک برنامه با درنظر گرفتن الگوی تزریق وابستگی‌ها، امکان جایگزین کردن سرویس‌های پیش‌فرض آن با سرویس‌های دیگری است. فرض کنید کتابخانه‌ای ارائه شده و از الگوریتم هش کردن X استفاده کرده‌است؛ اما شما علاقمندید تا از الگوریتم Y بجای آن استفاده کنید. اگر این کتابخانه وهله‌ی الگوریتم هش کردن را از طریق تزریق وابستگی‌ها تامین کرده باشد، فقط کافی است در ابتدای معرفی تنظیمات تزریق وابستگی‌های آن، سرویس الگوریتم هش کردن موجود را با نمونه‌ی خاص خودتان جایگزین کنید.
اکنون فرض کنید پیش از استفاده‌ی از Scrutor، تعدادی سرویس را به روش متداولی ثبت و معرفی کرده‌اید:
services.AddTransient<ITransientService, TransientService>();
services.AddScoped<IScopedService, ScopedService>();
حال که قرار است متد Scan آن، سرویس‌های یک اسمبلی را به لیست موجود اضافه کند، به سرویس‌های زیر می‌رسد:
public class TransientService : IFooService {}
public class AnotherService : IScopedService {}
 رفتار آن با سرویس‌های معادلی که از پیش ثبت شده‌اند چگونه باید باشد؟ برای مدیریت این مساله، متد UsingRegistrationStrategy پیش بینی شده‌است:
services.Scan(scan =>
                scan.FromAssemblyOf<IFoo>()
                    .AddClasses()
                    .UsingRegistrationStrategy(RegistrationStrategy.Skip)
                    .AsMatchingInterface()
                    .WithScopedLifetime());
و پارامتر دریافتی آن یک چنین امضایی را دارد:
namespace Scrutor
{
    public abstract class RegistrationStrategy
    {
        public static readonly RegistrationStrategy Skip;
        public static readonly RegistrationStrategy Append;
        protected RegistrationStrategy();
        public static RegistrationStrategy Replace();
        public static RegistrationStrategy Replace(ReplacementBehavior behavior);
        public abstract void Apply(IServiceCollection services, ServiceDescriptor descriptor);
    }
}
- حالت Append آن که حالت پیش‌فرض نیز هست، تمام سرویس‌های یافت شده را به لیست IServiceCollection اضافه می‌کند؛ صرفنظر از اینکه پیشتر ثبت شده‌است یا خیر.
- حالت Skip آن، سرویسی را تکراری ثبت نمی‌کند. یعنی اگر سرویسی پیشتر در مجموعه‌ی IServiceCollection موجود بود، مجددا آن‌را ثبت نمی‌کند.

سپس نوبت به متدهای Replace می‌رسد که یک چنین پارامتری را قبول می‌کنند:
namespace Scrutor
{
    [Flags]
    public enum ReplacementBehavior
    {
        Default = 0,
        ServiceType = 1,
        ImplementationType = 2,
        All = 3
    }
}
- در حالت استفاده‌ی از Replace(​ReplacementBehavior.​ServiceType)، اگر سرویسی پیشتر در لیست IServiceCollection ثبت شده باشد، آن‌را حذف کرده و سپس نمونه‌ی جدید را ثبت می‌کند (ثبت سرویس بر اساس اینترفیس و پیاده سازی آن).
- در حالت استفاده‌ی از Replace(​ReplacementBehavior.​ImplementationType)، اگر پیاده سازی کلاسی پیشتر در لیست IServiceCollection ثبت شده باشد، آن‌را حذف کرده و سپس نمونه‌ی جدید را ثبت می‌کند (ثبت سرویس صرفا بر اساس نام کلاس آن).
- حالت Replace(​ReplacementBehavior.All) هر دو حالت قبل را با هم شامل می‌شود.


امکان ترکیب چندین استراتژی جستجو با هم توسط Scrutor

در یک برنامه‌ی واقعی غیرممکن است که بخواهید تمام کلاس‌ها را با یک طول عمر، اسکن و ثبت کنید. برای این منظور می‌توان از قابلیت فیلتر کردن کلاس‌ها که در مورد آن بحث شد و همچنین امکان ترکیب زنجیر وار حالت‌های مختلف اسکن، استفاده کرد:
services.Scan(scan => scan 
  .FromAssemblyOf<CombinedService>() 
    .AddClasses(classes => classes.AssignableTo<ICombinedService>()) // Filter classes 
      .AsSelfWithInterfaces() 
      .WithSingletonLifetime() 
 
    .AddClasses(x=> x.AssignableTo(typeof(IOpenGeneric<>))) // Can close generic types 
      .AsMatchingInterface() 
 
    .AddClasses(x=> x.InNamespaceOf<MyClass>()) 
      .UsingRegistrationStrategy(RegistrationStrategy.Replace()) // Defaults to ReplacementBehavior.ServiceType 
      .AsMatchingInterface() 
      .WithScopedLifetime() 
 
  .FromAssemblyOf<DatabaseContext>()   // Can load from multiple assemblies within one Scan() 
    .AddClasses()  
      .AsImplementedInterfaces() 
);
مطالب
استفاده از FluentValidation در ASP.NET MVC
برای هماهنگی این کتابخانه با ASP.NET MVC نیاز به نصب FluentValidation.Mvc3 یا FluentValidation.Mvc4 از طریق Nuget یا دانلود کتابخانه از سایت CodePlex می‌باشد. بعد از نصب کتابخانه، نیاز به تنظیم FluentValidationModelValidatorProvider داخل متد Application_Start (فایل Global.asax) داریم: 

protected void Application_Start() {
    AreaRegistration.RegisterAllAreas();

    RegisterGlobalFilters(GlobalFilters.Filters);
    RegisterRoutes(RouteTable.Routes);

    FluentValidationModelValidatorProvider.Configure();
}
تصور کنید دو کلاس Person و PersonValidator را به صورت زیر داریم:
[Validator(typeof(PersonValidator))]
    public class Person {
    public int Id { get; set; }
    public string Name { get; set; }
    public string Email { get; set; }
    public int Age { get; set; }
}
 
public class PersonValidator : AbstractValidator<Person> {
    public PersonValidator() {
        RuleFor(x => x.Id).NotNull();
        RuleFor(x => x.Name).Length(0, 10);
        RuleFor(x => x.Email).EmailAddress();
        RuleFor(x => x.Age).InclusiveBetween(18, 60);
    }
}
همان طور که ملاحظه می‌کنید، در بالای تعریف کلاس Person با استفاده از ValidatorAttribute مشخص کرده ایم که از PersonValidator جهت اعتبارسنجی استفاده کند.
در آخر می‌توانیم Controller و View ی برنامه مان را درست کنیم:
public class PeopleController : Controller {
    public ActionResult Create() {
        return View();
    }
 
    [HttpPost]
    public ActionResult Create(Person person) {
 
        if(! ModelState.IsValid) { // re-render the view when validation failed.
            return View("Create", person);
        }
 
        TempData["notice"] = "Person successfully created";
        return RedirectToAction("Index");
    }
}
@Html.ValidationSummary()
 
@using (Html.BeginForm()) {
Id: @Html.TextBoxFor(x => x.Id) @Html.ValidationMessageFor(x => x.Id)
<br />
Name: @Html.TextBoxFor(x => x.Name) @Html.ValidationMessageFor(x => x.Name) 
<br />
Email: @Html.TextBoxFor(x => x.Email) @Html.ValidationMessageFor(x => x.Email)
<br />
Age: @Html.TextBoxFor(x => x.Age) @Html.ValidationMessageFor(x => x.Age)
 
<input type="submit" value="submit" />
}
اکنون DefaultModelBinder موجود در MVC برای اعتبارسنجی شیء Person از FluentValidationModelValidatorProvider استفاده خواهد کرد.
توجه داشته باشید که FluentValidation با اعتبارسنجی سمت کاربر ASP.NET MVC به خوبی کار خواهد کرد منتها نه برای تمامی اعتبارسنجی ها. به عنوان مثال تمام قوانینی که از شرط‌های When/Unless استفاده کرده اند، Validator‌های سفارشی، و قوانینی که در آن‌ها از Must استفاده شده باشد، اعتبارسنجی سمت کاربر نخواهند داشت. در زیر لیست Validator هایی که با اعتبارسنجی سمت کاربر به خوبی کار خواهند کرد آمده است:
  • NotNull/NotEmpty
  • Matches 
  • InclusiveBetween 
  • CreditCard 
  • Email 
  • EqualTo 
  • Length 
صفت CustomizeValidator
با استفاده از CustomizeValidatorAttribute می‌توان نحوه اجرای Validator را تنظیم کرد. به عنوان مثال اگر میخواهید که Validator تنها برای یک RuleSet مخصوص انجام شود می‌توانید مانند زیر عمل کنید: 
public ActionResult Save([CustomizeValidator(RuleSet="MyRuleset")] Customer cust) {
  // ...
}


مواردی که تا اینجا گفته شد برای استفاده در یک برنامه‌ی ساده MVC کافی به نظر می‌رسد، اما از اینجا به بعد مربوط به مواقعی است که نخواهیم از Attribute‌ها استفاده کنیم و کار را به IoC بسپاریم. 
استفاده از Validator Factory با استفاده از یک IoC Container
Validator Factory چیست؟ Validator Factory یک کلاس می‌باشد که وظیفه ساخت نمونه از Validator‌‌ها را بر عهده دارد. اینترفیس IValidatorFactory به صورت زیر می‌باشد:  
public interface IValidatorFactory {
   IValidator<T> GetValidator<T>();
   IValidator GetValidator(Type type);
}
ساخت Validator Factory سفارشی:
برای ساخت یک Validator Factory شما می‌توانید به طور مستقیم IValidatorFactory را پیاده سازی نمایید یا از کلاس ValidatorFactoryBase به عنوان کلاس پایه استفاده کنید (که مقداری از کارها را برای شما انجام داده است). در این مثال نحوه ایجاد یک Validator Factory که از StructureMap استفاده می‌کند را بررسی خواهیم کرد. ابتدا نیاز به ثبت Validator‌ها در StructureMap داریم: 
ObjectFactory.Configure(cfg => cfg.AddRegistry(new MyRegistry()));
 
public class MyRegistry : Registry {
    public MyRegistry() {
        For<IValidator<Person>>()
    .Singleton()
    .Use<PersonValidator>();
    }
}
در اینجا StructureMap را طوری تنظیم کرده ایم که از یک Registry سفارشی استفاده کند. در داخل این Registry به StructureMap میگوییم که زمانی که خواسته شد تا یک نمونه از IValidator<Person> ایجاد کند، PersonValidator را بر گرداند. متد CreateInstance نوع مناسب را نمونه سازی می‌کند (CustomerValidator) و آن را بازمی گرداند ( یا Null بر می‌گرداند اگر نوع مناسبی وجود نداشته باشد) 
استفاده از AssemblyScanner 
FluentValidation دارای یک AssemblyScanner می‌باشد که کار ثبت Validator‌ها داخل یک اسمبلی را راحت‌تر می‌سازد. با استفاده از AssemblyScanner کلاس MyRegistery ما شبیه قطعه کد زیر خواهد شد: 
public class MyRegistry : Registry {
   public MyRegistry() {
 
     AssemblyScanner.FindValidatorsInAssemblyContaining<MyValidator>()
       .ForEach(result => {
            For(result.InterfaceType)
               .Singleton()
               .Use(result.ValidatorType);
       });
   }
}
حالا زمان استفاده از factory ساخته شده در متد Application_Start برنامه می‌باشد:
protected void Application_Start() {
    RegisterRoutes(RouteTable.Routes);
 
    //Configure structuremap
    ObjectFactory.Configure(cfg => cfg.AddRegistry(new MyRegistry()));
    ControllerBuilder.Current.SetControllerFactory(new StructureMapControllerFactory());
 
    //Configure FV to use StructureMap
    var factory = new StructureMapValidatorFactory();
 
    //Tell MVC to use FV for validation
    ModelValidatorProviders.Providers.Add(new FluentValidationModelValidatorProvider(factory));        
    DataAnnotationsModelValidatorProvider.AddImplicitRequiredAttributeForValueTypes = false;
}
اکنون FluentValidation از StructureMap برای نمونه سازی Validatorها استفاده خواهد کرد و کار اعتبارسنجی مدل‌ها به FluentValidaion سپرده شده است.
مطالب
پیاده سازی UnitOfWork به وسیله MEF
در این پست قصد دارم یک UnitOfWork به روش MEF پیاده سازی کنم. ORM مورد نظر EntityFramework CodeFirst است. در صورتی که با UnitOfWork , MEF آشنایی ندارید از لینک‌های زیر استفاده کنید:
 برای شروع ابتدا مدل برنامه رو به صورت زیر تعریف کنید.
 public class Category
    {
        public int Id { get; set; }

        public string Title { get; set; }
    }
سپس فایل Map  رو برای مدل بالا به صورت زیر تعریف کنید.
 public class CategoryMap : EntityTypeConfiguration<Entity.Category>
    {
        public CategoryMap()
        {
            ToTable( "Category" );

            HasKey( _field => _field.Id );

            Property( _field => _field.Title )
            .IsRequired();            
        }
    }
برای پیاده سازی الگوی واحد کار ابتدا باید یک اینترفیس به صورت زیر تعریف کنید.
using System.Data.Entity;
using System.Data.Entity.Infrastructure;

namespace DataAccess
{
    public interface IUnitOfWork
    {
        DbSet<TEntity> Set<TEntity>() where TEntity : class;
        DbEntityEntry<TEntity> Entry<TEntity>() where TEntity : class;
        void SaveChanges();     
        void Dispose();
    }
}
DbContext مورد نظر باید اینترفیس مورد نظر را پیاده سازی کند و برای اینکه بتونیم اونو در CompositionContainer اضافه کنیم باید از Export Attribute استفاده کنیم.
چون کلاس DatabaseContext از اینترفیس IUnitOfWork ارث برده است برای همین از InheritedExport استفاده می‌کنیم.
[InheritedExport( typeof( IUnitOfWork ) )]
    public class DatabaseContext : DbContext, IUnitOfWork
    {
        private DbTransaction transaction = null;

        public DatabaseContext()           
        {
            this.Configuration.AutoDetectChangesEnabled = false;
            this.Configuration.LazyLoadingEnabled = true;
        }

        protected override void OnModelCreating( DbModelBuilder modelBuilder )
        {
            modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

            modelBuilder.AddFormAssembly( Assembly.GetAssembly( typeof( Entity.Map.CategoryMap ) ) );
        }

        public DbEntityEntry<TEntity> Entry<TEntity>() where TEntity : class
        {
            return this.Entry<TEntity>();
        }      
    }
نکته قابل ذکر در قسمت OnModelCreating این است که یک Extension Methodبه نام AddFromAssembly (همانند NHibernate) اضافه شده است که از Assembly  مورد نظر تمام کلاس‌های Map رو پیدا می‌کنه و اونو به ModelBuilder اضافه می‌کنه. کد متد به صورت زیر است:
 public static class ModelBuilderExtension
    {
        public static void AddFormAssembly( this DbModelBuilder modelBuilder, Assembly assembly )
        {
            Array.ForEach<Type>( assembly.GetTypes().Where( type => type.BaseType != null && type.BaseType.IsGenericType && type.BaseType.GetGenericTypeDefinition() == typeof( EntityTypeConfiguration<> ) ).ToArray(), delegate( Type type )
            {
                dynamic instance = Activator.CreateInstance( type );
                modelBuilder.Configurations.Add( instance );
            } );
        }
    }

برای پیاده سازی قسمت BusinessLogic ابتدا کلاس BusiessBase را در آن قرار دهید:
public class BusinessBase<TEntity> where TEntity : class
    {        
        public BusinessBase( IUnitOfWork unitOfWork )
        {
            this.UnitOfWork = unitOfWork;
        }

        [Import]
        public IUnitOfWork UnitOfWork
        {
            get;
            private set;
        }

        public virtual IEnumerable<TEntity> GetAll()
        {
            return UnitOfWork.Set<TEntity>().AsNoTracking();
        }

        public virtual void Add( TEntity entity )
        {
            try
            {             
                UnitOfWork.Set<TEntity>().Add( entity );
                UnitOfWork.SaveChanges();
            }
            catch
            {              
                throw;
            }
            finally
            {
                UnitOfWork.Dispose();
            }
        }
    }

تمام متد‌های پایه مورد نظر را باید در این کلاس قرار داد که برای مثال من متد Add , GetAll را براتون پیاده سازی کردم. UnitOfWork توسط ImportAttribute مقدار دهی می‌شود و نیاز به وهله سازی از آن نیست 
کلاس Category رو هم باید به صورت زیر اضافه کنید.
 public class Category : BusinessBase<Entity.Category>
    {      
        [ImportingConstructor]
        public Category( [Import( typeof( IUnitOfWork ) )] IUnitOfWork unitOfWork )
            : base( unitOfWork )
        {
        }
    }
.در انتها باید UI مورد نظر طراحی شود که من در اینجا از Console Application استفاده کردم. یک کلاس به نام Plugin ایجاد کنید  و کد‌های زیر را در آن قرار دهید.
public class Plugin
    {        
        public void Run()
        {
            AggregateCatalog catalog = new AggregateCatalog();

            Container = new CompositionContainer( catalog );

            CompositionBatch batch = new CompositionBatch();

            catalog.Catalogs.Add( new AssemblyCatalog( Assembly.GetExecutingAssembly() ) );

            batch.AddPart( this );

            Container.Compose( batch );
        }

        public CompositionContainer Container 
        {
            get; 
            private set;
        }
    }
در کلاس Plugin  توسط AssemblyCatalog تمام Export Attribute‌های موجود جستجو می‌شود و بعد به عنوان کاتالوگ مورد نظر به Container اضافه می‌شود. انواع Catalog در MEF به شرح زیر است:
  • AssemblyCatalog : در اسمبلی مورد نظر به دنبال تمام Export Attribute‌ها می‌گردد و آن‌ها را به عنوان ExportedValue در Container اضافه می‌کند.
  • TypeCatalog: فقط یک نوع مشخص را به عنوان ExportAttribute در نظر می‌گیرد.
  • DirectoryCatalog :  در یک مسیر مشخص تمام Assembly مورد نظر را از نظر Export Attribute جستجو می‌کند و آن‌ها را به عنوان ExportedValue در Container اضافه می‌کند. 
  • ApplicationCatalog :  در اسمبلی  و فایل‌های (EXE) مورد نظر به دنبال تمام Export Attribute‌ها می‌گردد و آن‌ها را به عنوان ExportedValue در Container اضافه می‌کند. 
  • AggregateCatalog : تمام موارد فوق را Support می‌کند.
کلاس Program  رو به صورت زیر بازنویسی کنید.
  class Program
    {
        static void Main( string[] args )
        {
            Plugin plugin = new Plugin();
            plugin.Run();

            Category category = new Category(plugin.Container.GetExportedValue<IUnitOfWork>());
            category.GetAll().ToList().ForEach( _record => Console.Write( _record.Title ) );
        }
    }
پروژه اجرا کرده و نتیجه رو مشاهده کنید.
مطالب
استفاده از shim و stub برای mock کردن در آزمون واحد
مقدمه:
از آنجایی که در این سایت در مورد shim و stub صحبتی نشده دوست داشتم مطلبی در این باره بزارم. در آزمون واحد ما نیاز داریم که یک سری اشیا را moq کنیم تا بتوانیم آزمون واحد را به درستی انجام دهیم. ما در آزمون واحد نباید وابستگی به لایه‌های پایین یا بالا داشته باشیم پس باید مقلدی از object هایی که در سطوح مختلف قرار دارند بسازیم.
شاید برای کسانی که با آزمون واحد کار کردند، به ویژه با فریم ورک تست Microsoft، یک سری مشکلاتی با mock کردن اشیا با استفاده از Mock داشته اند که حالا می‌خواهیم با معرفی فریم ورک‌های جدید، این مشکل را حل کنیم.
برای اینکه شما آزمون واحد درستی داشته باشید باید کارهای زیر را انجام دهید:
1- هر objectی که نیاز به mock کردن دارد باید حتما یا non-static باشد، یا اینترفیس داشته باشد.
2- شما احتیاج به یک فریم ورک تزریق وابستگی‌ها دارید که به عنوان بخشی از معماری نرم افزار یا الگوهای مناسب شی‌ءگرایی مطرح است، تا عمل تزریق وابستگی‌ها را انجام دهید.
3- ساختارها باید برای تزریق وابستگی در اینترفیس‌های object‌های وابسته تغییر یابند.

Shims و Stubs:
نوع stub همانند فریم ورک mock می‌باشد که برای مقلد ساختن اینترفیس‌ها و کلاس‌های non-sealed virtual یا ویژگی ها، رویدادها و متدهای abstract استفاده می‌شود. نوع shim می‌تواند کارهایی که stub نمی‌تواند بکند انجام دهد یعنی برای مقلد ساختن کلاس‌های static یا متدهای non-overridable استفاده می‌شود. با مثال‌های زیر می‌توانید با کارایی بیشتر shim و stub آشنا شوید.
یک پروژه mvc ایجاد کنید و نام آن را FakingExample بگذارید. در این پروژه کلاسی با نام CartToShim به صورت زیر ایجاد کنید:
namespace FakingExample
{
    public class CartToShim
    {
        public int CartId { get; private set; }
        public int UserId { get; private set; }
        private List<CartItem> _cartItems = new List<CartItem>();
        public ReadOnlyCollection<CartItem> CartItems { get; private set; }
        public DateTime CreateDateTime { get; private set; }
 
        public CartToShim(int cartId, int userId)
        {
            CartId = cartId;
            UserId = userId;
            CreateDateTime = DateTime.Now;
            CartItems = new ReadOnlyCollection<CartItem>(_cartItems);
        }
 
        public void AddCartItem(int productId)
        {
            var cartItemId = DataAccessLayer.SaveCartItem(CartId, productId);
            _cartItems.Add(new CartItem(cartItemId, productId));
        }
    }
}
و همچنین کلاسی با نام CartItem به صورت زیر ایجاد کنید:
public class CartItem
    {
        public int CartItemId { get; private set; }
        public int ProductId { get; private set; }
 
        public CartItem(int cartItemId, int productId)
        {
            CartItemId = cartItemId;
            ProductId = productId;
        }
    }
حالا یک پروژه unit test را با نام FakingExample.Tests اضافه کرده و نام کلاس آن را CartToShimTest بگذارید. یک reference از پروژه FakingExample تان به پروژه‌ی تستی که ساخته اید اضافه کنید. برای اینکه بتوانید کلاس‌های پروژه FakingExample را shim و یا stub کنید باید بر روی Reference پروژه تان راست کلیک کنید و گزینه Add Fakes Assembly را انتخاب کنید. وقتی این گزینه را می‌زنید، پوشه ای با نام Fakes در پروژه تست ایجاد شده و FakingExample.fakes در داخل آن قرار دارد همچنین در reference‌های پروژه تست، FakingExample.Fakes نیز ایجاد می‌شود.
اگر بر روی فایل fakes که در reference ایجاد شده دوبار کلیک کنید می‌توانید کلاس‌های CartItem و CartToShim را مشاهده کنید که هم نوع stub شان است و هم نوع shim آنها که در تصویر زیر می‌توانید مشاهده کنید.

ShimDataAccessLayer را که مشاهده می‌کنید یک متد SaveCartItem دارد که به دیتابیس متصل شده و آیتم‌های کارت را ذخیره می‌کند.

حالا می‌توانیم تست خود را بنویسیم. در زیر یک نمونه از تست را مشاهده می‌کنید:

[TestMethod]
        public void AddCartItem_GivenCartAndProduct_ThenProductShouldBeAddedToCart()
        {
            //Create a context to scope and cleanup shims
            using (ShimsContext.Create())
            {
                int cartItemId = 42, cartId = 1, userId = 33, productId = 777;
 
                //Shim SaveCartItem rerouting it to a delegate which 
                //always returns cartItemId
                Fakes.ShimDataAccessLayer.SaveCartItemInt32Int32 = (c, p) => cartItemId;
 
                var cart = new CartToShim(cartId, userId);
                cart.AddCartItem(productId);
 
                Assert.AreEqual(cartId, cart.CartItems.Count);
                var cartItem = cart.CartItems[0];
                Assert.AreEqual(cartItemId, cartItem.CartItemId);
                Assert.AreEqual(productId, cartItem.ProductId);
            }
        }
همانطور که در بالا مشاهده می‌کنید کدهای تست ما در اسکوپی قرار گرفته اند که محدوده shim را تعیین می‌کند و پس از پایان یافتن تست، تغییرات shim به حالت قبل بر می‌گردد. متد SaveCartItemInt32Int32 را که مشاهده می‌کنید یک متد static است و نمی‌توانیم با mock ویا stub آن را مقلد کنیم. تغییر اسم متد SaveCartItem به SaveCartItemInt32Int32 به این معنی است که متد ما دو ورودی از نوع Int32 دارد و به همین خاطر fake این متد به این صورت ایجاد شده است. مثلا اگر شما متد Save ای داشتید که یک ورودی Int و یک ورودی String داشت fake آن به صورت SaveInt32String ایجاد می‌شد.

به این نکته توجه داشته باشید که حتما برای assert کردن باید assert‌ها را در داخل اسکوپ ShimsContext قرار گرفته باشد در غیر این صورت assert شما درست کار نمی‌کند.

این یک مثال از shim بود؛ حالا می‌خواهم مثالی از یک stub را برای شما بزنم. یک اینترفیس با نام ICartSaver به صورت زیر ایجاد کنید:

public interface ICartSaver
    {
        int SaveCartItem(int cartId, int productId);
    }
برای shim کردن ما نیازی به اینترفیس نداشتیم اما برای استفاده از stub و یا Mock ما حتما به یک اینترفیس نیاز داریم تا بتوانیم object موردنظر را مقلد کنیم. حال باید یک کلاسی با نام CartSaver برای پیاده سازی اینترفیس خود بسازیم:
public class CartSaver : ICartSaver
    {
        public int SaveCartItem(int cartId, int productId)
        {
            using (var conn = new SqlConnection("RandomSqlConnectionString"))
            {
                var cmd = new SqlCommand("InsCartItem", conn);
                cmd.CommandType = CommandType.StoredProcedure;
                cmd.Parameters.AddWithValue("@CartId", cartId);
                cmd.Parameters.AddWithValue("@ProductId", productId);
 
                conn.Open();
                return (int)cmd.ExecuteScalar();
            }
        }
    }
حال تستی که با shim انجام دادیم را با استفاده از Stub انجام می‌دهیم:
[TestMethod]
        public void AddCartItem_GivenCartAndProduct_ThenProductShouldBeAddedToCart()
        {
            int cartItemId = 42, cartId = 1, userId = 33, productId = 777;
 
            //Stub ICartSaver and customize the behavior via a 
            //delegate, ro return cartItemId
            var cartSaver = new Fakes.StubICartSaver();
            cartSaver.SaveCartItemInt32Int32 = (c, p) => cartItemId;
 
            var cart = new CartToStub(cartId, userId, cartSaver);
            cart.AddCartItem(productId);
 
            Assert.AreEqual(cartId, cart.CartItems.Count);
            var cartItem = cart.CartItems[0];
            Assert.AreEqual(cartItemId, cartItem.CartItemId);
            Assert.AreEqual(productId, cartItem.ProductId);
        }
امیدوارم که این مطلب برای شما مفید بوده باشد.
مطالب
پیاده سازی ServiceLocator با استفاده از Microsoft Unity
در این پست قصد دارم روش استفاه از ServiceLoctor رو به وسیله یک مثال ساده بهتون نمایش بدم. Microsoft Unity روش توصیه شده Microsoft برای پیاده سازی Dependecy Injecttion و ServiceLocator Pattern است. یک ServiceLocator در واقع وظیفه تهیه Instance‌های مختلف از کلاس‌ها رو برای پیاده سازی Dependency Injection بر عهده داره.
برای شروع یک پروژه از نوع Console Application ایجاد کنید و یک ارجاع به Assembly‌های زیر رو در برنامه قرار بدید.
  • Microsoft.Practices.ServiceLocation 
  • Microsoft.Practices.Unity 
  • Microsoft.Practices.EnterpriseLibrary.Common 

اگر Assembly‌های بالا رو در اختیار ندارید می‌تونید اون‌ها رو از اینجا دانلود کنید. Microsoft Enterprise Library   یک کتابخانه تهیه شده توسط شرکت Microsoft است که شامل موارد زیر است و بعد از نصب می‌تونید در قسمت‌های مختلف برنامه از اون‌ها استفاده کنید.

  • Enterprise Library Caching Application Block : یک CacheManager قدرتمند در اختیار ما قرار می‌ده که می‌تونید از اون برای کش کردن داده‌ها استفاده کنید.

  • Enterprise Library Exception Handling Application Block : یک کتابخانه مناسب  و راحت برای پیاده سازی یک Exception Handler در برنامه‌ها است.

  • Enterprise Library Loggin Application Block  : برای تهیه یک Log Manager در برنامه استفاده می‌شود.

  • Enterprise Library Validation Application Block  : برای اجرای Validation برای Entity‌ها با استفاده از Attribute می‌تونید از این قسمت استفاده کنید.

  • Enterprise Library  DataAccess Application Block :  یک کتابخانه قدرتمند برای ایجاد یک DataAccess Layer است با Performance بسیار بالا.
  • Enterprise Library Shared Library: برای استفاده از تمام موارد بالا در پروژه باید این Dll رو هم به پروژه Reference بدید. چون برای همشون مشترک است.

برای اجرای مثال ابتدا کلاس زیر رو به عنوان مدل وارد کنید.

public class Book
    {
        public string Title { get; set; }

        public string ISBN { get; set; }
    }

حالا باید Repository مربوطه رو تهیه کنید. ایتدا یک Interface به صورت زیر ایجاد کنید.
 public interface IBookRepository
    {
        List<Book> GetBooks();
    }
سپس کلاسی ایجاد کنید که این Interface رو پیاده سازی کنه.
public class BookRepository : IBookRepository
    {
        public List<Book> GetBooks()
        {
            List<Book> listOfBooks = new List<Book>();

            listOfBooks.AddRange( new Book[] 
            {
                new Book(){Title="Book1" , ISBN="123"},
                new Book(){Title="Book2" , ISBN="456"},
                new Book(){Title="Book3" , ISBN="789"},
                new Book(){Title="Book4" , ISBN="321"},
                new Book(){Title="Book5" , ISBN="654"},
            } );

            return listOfBooks;
        }
    }
کلاس BookRepository یک لیست از Book رو ایجاد میکنه و اونو برگشت می‌ده.
در مرحله بعد باید Service مربوطه برای استفاده از این Repository ایجاد کنید. ولی باید Repository رو به Constructor این کلاس Service پاس بدید. اما برای انجام این کار باید از ServiceLocator استفاده کنیم.
public class BookService
    {
        public BookService()
            : this( ServiceLocator.Current.GetInstance<IBookRepository>() )
        {
        }

        public BookService( IBookRepository bookRepository )
        {
            this.BookRepository = bookRepository;
        }

        public IBookRepository BookRepository
        {
            get;
            private set;
        }

        public void PrintAllBooks()
        {
            Console.WriteLine( "List Of All Books" );

            BookRepository.GetBooks().ForEach( ( Book item ) =>
            {
                Console.WriteLine( item.Title );
            } );
        }
    }
همان طور که می‌بینید این کلاس دو تا Constructor داره که در حالت اول باید یک IBookRepository رو به کلاس پاس داد و در حالت دوم ServiceLocator این کلاس رو برای استفاده دز اختیار سرویس قرار میده.
متد Print هم تمام کتاب‌های مربوطه رو برامون چاپ می‌کنه.
در مرحله آخر باید ServiceLocator رو تنظیم کنید. برای این کار کد‌های زیر رو در کلاس Program قرار بدید.
 class Program
    {
        static void Main( string[] args )
        {
            IUnityContainer unityContainer = new UnityContainer();

            unityContainer.RegisterType<IBookRepository, BookRepository>();

            ServiceLocator.SetLocatorProvider( () => new UnityServiceLocator( unityContainer ) );

            BookService service = new BookService();

            service.PrintAllBooks();

            Console.ReadLine();
        }
    }
در این کلاس ابتدا یک UnityContainer ایجاد کردم و اینترفیس IBookRepository رو به کلاس BookRepository؛ Register کردم تا هر جا که به IBookRepository نیاز داشتم یک Instance از کلاس BookRepository ایجاد بشه. در خط بعدی ServiceLocator برنامه رو ست کردم و برای این کار از کلاس UnityServiceLocator استفاده کردم .
بعد از اجرای برنامه خروجی زیر قابل مشاهده است.



مطالب
MongoDb در سی شارپ (بخش دهم)

ابتدا بسته زیر را از طریق  nuget نصب نمایید:

dotnet add package MongoDB.Driver


سپس مدل‌های زیر را ایجاد نمایید:

public class BaseModel
{
    public BaseModel()
    {
        CreationDate=DateTime.Now;
    }
    public string Id { get; set; }
    public DateTime CreationDate { get; set; }
    public bool IsRemoved { get; set; }
    public DateTime? ModificationDate { get; set; }

}


 این مدل شامل یک کلاس پایه برای id,CreationDate,ModificationDate,IsRemoved میباشد که بسیار شبیه مدل‌هایی است که عموما در EntityFramework تعریف می‌کنیم.

برای اینکه فیلد Id به صورت objectId ایجاد شود ولی به صورت رشته‌ای استفاده شود ابتدا ویژگی BsonId را در بالای آن تعریف کرده تا به عنوان شناسه یکتا سند شناخته شود و سپس با استفاده از ویژگی BsonRepresentation  اعلام میکنیم که کار تبدیل به رشته و بلعکس آن به صورت خودکار در پشت صحنه صورت بگیرد:

public class BaseModel
    {
        [BsonId]
        [BsonRepresentation((BsonType.ObjectId))]
        public string Id { get; set; }
    }

 البته این حالت برای زمانی مناسب است که ما در استفاده از ویژگی‌ها محدودیتی نداشته باشیم؛ ولی در بسیاری از نرم افزارها که از معماری‌های چند لایه مانند لایه پیازی استفاده میشود استفاده از این خصوصیت‌ها یعنی اعمال کارکرد کتابخانه بالاتر بر روی لایه‌های زیرین که هسته نرم افزار شناخته میشوند که صحیح نبوده و باید توسط لایه‌های بالاتر این تغییرات اعمال شوند که میتواند از طریق کلاس این کار را انجام دهید. به ازای هر مدل که نیاز به تغییرات دارد، یک حالت جدید تعریف شده و در ابتدای برنامه در فایل Program.cs یا قبل از دات نت 6 در Startup.cs صدا زده می‌شوند.

BsonClassMap.RegisterClassMap<BaseModel>(map =>
{
    map.SetIdMember(map.GetMemberMap(x=>x.Id));
    map.GetMemberMap(x => x.Id)
        .SetSerializer(new StringSerializer(BsonType.ObjectId));
});


یک نکته بسیار مهم: کلاس و متد BsonClassMap . RegisterClassMap قادر به اعمال تغییرات بر روی خصوصیت‌های کلاس والد نیستند و آن خصوصیات حتما باید در آن کلاسی که آن را کانفیگ میکنید، تعریف شده باشند؛ یعنی چنین چیزی  که در کد زیر میبینید در زمان اجرا با یک خطا مواجه خواهد شد:

public class Employee : BaseModel
{
    public string FirstName { get; set; }
    public string LastName { get; set; }
}
//=================
BsonClassMap.RegisterClassMap<Employee >(map =>
{
    map.SetIdMember(map.GetMemberMap(x=>x.Id));
    map.GetMemberMap(x => x.Id)
        .SetSerializer(new StringSerializer(BsonType.ObjectId));
});


روش استفاده از مونگو در asp.net core  به صورت زیر بسیار متداول میباشد که در قسمت‌های پیشین هم در این مورد نوشته بودیم:

MongoDbContext

  public interface IMongoDbContext
    {
        IMongoCollection<TEntity> GetCollection<TEntity>();
    }

  public class MongoDbContext : IMongoDbContext
    {

        private readonly IMongoClient _client;
        private readonly IMongoDatabase _database;

        public MongoDbContext(string databaseName,string connectionString)
        {
            var settings = MongoClientSettings.FromUrl(new MongoUrl(connectionString));
            _client = new MongoClient(settings);
            _database = _client.GetDatabase(databaseName);
        }

        public IMongoCollection<TEntity> GetCollection<TEntity>()
        {
            return _database.GetCollection<TEntity>(typeof(TEntity).Name.ToLower() + "s");
        }
    }

سپس از طریق کد زیر IMongoDbContext را به سیستم تزریق وابستگی‌ها معرفی میکنیم. الگوی استفاده شده‌ی در اینجا بر خلاف نسخه‌های sql که عموما به صورت AddScoped تعریف میشدند، در اینجا به صورت AddSingleton تعریف کردیم و نحوه پیاده سازی آن را نیز در طرف سمت راست به صورت صریح اعلام کردیم:

public static class MongoDbContextService
{
    public static void AddMongoDbContext(this IServiceCollection services,string databaseName,string connectionString)
    {
        services.AddSingleton<IMongoDbContext>(serviceProvider => new MongoDbContext(databaseName, connectionString));
    }
}

//===============
Program.cs

builder.Services.AddMongoDbContext("bookstore", "mongodb://localhost:27017");


پیاده سازی SoftDelete در مونگو

در مونگو چیزی تحت عنوان Global Query Filter نداریم که تمام کوئری هایی که به سمت دیتابیس ارسال میشوند، توسط کانتکس اطلاح شوند؛ بدین جهت برای پیاده سازی این خصوصیت میتوان اینترفیسی با نام <IRepository<T را به شکل زیر طراحی نماییم:

public interface IRepository<T> where T : BaseModel
{

    IMongoCollection<T> GetCollection();
    IMongoQueryable<T> GetFilteredCollection();
}

public class Repository<T> : IRepository<T> where T:BaseModel
{
    private IMongoDbContext _mongoDbContext;

    public Repository(IMongoDbContext mongoDbContext)
    {
        _mongoDbContext = mongoDbContext;
    }

    public IMongoCollection<T> GetCollection()
    {
        return _mongoDbContext.GetCollection<T>();
    }
    
    public IMongoQueryable<T> GetFilteredCollection()
    {
        var query= _mongoDbContext.GetCollection<T>().AsQueryable();
        
        //================= Global Query Filters ====================
        
        //Filter 1
        query=query.Where(x => x.RemovedAt.HasValue == false);
        
        //==============================================================
        
        return query;
    }
}

این کلاس یا اینترفیس شامل دو متد هستند که کلاس جنریک آنها باید از BaseModel ارث بری کرده باشد و اولین متد، تنها یک کالکشن بدون هیچگونه فیلتری است که میتواند نقش متد IgnoreQueryFilters  را بازی کند و دیگری GetFilteredCollection است که در این متد ابتدا کالکشنی دریافت شده و سپس آن را به حالت کوئری تغییر داده و فیلترهای مورد نظر، مانند حذف منطقی را پیاده سازی میکنیم:

public interface IRepository<T> where T : BaseModel
{

    IMongoCollection<T> GetCollection();
    IMongoQueryable<T> GetFilteredCollection();
}

public class Repository<T> : IRepository<T> where T:BaseModel
{
    private IMongoDbContext _mongoDbContext;

    public Repository(IMongoDbContext mongoDbContext)
    {
        _mongoDbContext = mongoDbContext;
    }

    public IMongoCollection<T> GetCollection()
    {
        return _mongoDbContext.GetCollection<T>();
    }
    
    public IMongoQueryable<T> GetFilteredCollection()
    {
        var query= _mongoDbContext.GetCollection<T>().AsQueryable();
        
        //================= Global Query Filters ====================
        
        //Filter 1
        query=query.Where(x => x.RemovedAt.HasValue == false);
        
        //==============================================================
        
        return query;
    }
}


اصلاح تاریخ ویرایش در مدل

در EF به لطف dbset و همچنین ChangeTracking امکان شناسایی حالت‌ها وجود دارد و میتوانید در متدی مانند saveChanges مقدار تاریخ ویرایش را تنظیم نمود. برای مدل‌های منگو چنین چیزی وجود ندارد و به همین دلیل چند روش زیر پیشنهاد میگردد:

یک. استفاده از اینترفیس INotifyPropertyChanged یا جهت حذف کدهای تکراری نیز از الگوی AOP بهره بگیرید.

دو. استفاده از یک <Repository<T همانند بالا که شامل متدهای داخلی Update و Delete هستند که در آنجا میتوانید این مقادیر را به صورت مستقیم تغییر دهید.

مطالب
React 16x - قسمت 7 - ترکیب کامپوننت‌ها - بخش 1 - ارسال داده‌ها، مدیریت رخ‌دادها
تا اینجا، تنها با یک تک کامپوننت کار کردیم؛ اما یک برنامه‌ی واقعی ترکیبی است از چندین کامپوننت که در نهایت درخت کامپوننت‌ها را در React تشکیل می‌دهند. به همین جهت در طی چند قسمت، نکات ترکیب کامپوننت‌ها را بررسی می‌کنیم.


ترکیب کامپوننت‌ها

در ادامه، همان برنامه‌ی تا قسمت 5 را که کار نمایش یک counter را انجام می‌دهد، تکمیل می‌کنیم. در این برنامه اگر به فایل index.js دقت کنید، کار رندر تک کامپوننت Counter را انجام می‌دهیم:
ReactDOM.render(<Counter />, document.getElementById("root"));
اما یک برنامه‌ی واقعی React، متشکل از درختی از کامپوننت‌ها است. به این ترتیب با ترکیب و در کنار هم قرار دادن کامپوننت‌های مختلف، می‌توان به UI ای کارآمد و پیچیده رسید.
برای نمایش این مفهوم، کامپوننت جدید src\components\counters.jsx را ایجاد می‌کنیم. قصد داریم در این کامپوننت، لیستی از کامپوننت‌های Counter را رندر کنیم. سپس در index.js، بجای رندر کامپوننت Counter، کامپوننت جدید Counters را رندر می‌کنیم. به این ترتیب درخت کامپوننت‌های برنامه، در سطح بالایی خودش از کامپوننت Counters شروع می‌شود و سپس فرزندان آن‌را کامپوننت‌های Counter تشکیل می‌دهند. به همین جهت فایل index.js را به صورت زیر ویرایش می‌کنیم تا به کامپوننت Counters اشاره کند:
import Counters from "./components/counters";

ReactDOM.render(<Counters />, document.getElementById("root"));
سپس به فایل جدید src\components\counters.jsx مراجعه کرده و با استفاده از قطعه کدهای کمکی imrc و cc که در قسمت‌های قبل با آن‌ها آشنا شدیم، ساختار بدنه‌ی کامپوننت جدید Counters را ایجاد می‌کنیم. اکنون در متد render آن، یک div را ایجاد کرده و داخل آن، چندین کامپوننت Counter را رندر می‌کنیم:
import React, { Component } from "react";

import Counter from "./counter";

class Counters extends Component {
  state = {};

  render() {
    return (
      <div>
        <Counter />
        <Counter />
        <Counter />
        <Counter />
      </div>
    );
  }
}

export default Counters;
در این حالت اگر به مرورگر مراجعه کنیم، مشاهده خواهیم کرد که هر کامپوننت، state خاص خودش را دارد و از سایر کامپوننت‌ها ایزوله است:


در مرحله‌ی بعد، بجای رندر و درج دستی این کامپوننت‌ها، آرایه‌ای از اشیاء counter را ایجاد کرده و سپس آن‌ها را توسط متد Array.map رندر می‌کنیم:
import React, { Component } from "react";
import Counter from "./counter";

class Counters extends Component {
  state = {
    counters: [
      { id: 1, value: 0 },
      { id: 2, value: 0 },
      { id: 3, value: 0 },
      { id: 4, value: 0 }
    ]
  };

  render() {
    return (
      <div>
        {this.state.counters.map(counter => (
          <Counter key={counter.id} />
        ))}
      </div>
    );
  }
}

export default Counters;
در اینجا یک خاصیت جدید را به شیء منتسب به خاصیت state به نام counters اضافه کرده‌ایم. این خاصیت حاوی آرایه‌ای از اشیاء counter است که هر کدام دارای یک id (که در قسمت key ذکر خواهد شد) و مقداری اولیه است. سپس آرایه‌ی this.state.counters را توسط متد map، رندر کرده‌ایم. تا اینجا پس از ذخیره‌ی فایل و بارگذاری مجدد برنامه، همان خروجی قبلی را مشاهده خواهیم کرد.


ارسال داده‌ها به کامپوننت‌ها

مشکل! مقدار value هر شیء شمارشگر تعریف شده، به کامپوننت‌های مرتبط رندر شده اعمال نشده‌است. برای مثال اگر value اولین شیء را به 4 تغییر دهیم، هنوز هم این کامپوننت با همان مقدار صفر شروع به کار می‌کند. برای رفع این مشکل، به همان روشی که ویژگی key کامپوننت Counter را مقدار دهی کردیم، می‌توان ویژگی‌های سفارشی دیگری را تعریف و مقدار دهی کرد:
  render() {
    return (
      <div>
        {this.state.counters.map(counter => (
          <Counter key={counter.id} value={counter.value} selected={true} />
        ))}
      </div>
    );
پس از تعریف ویژگی‌های دلخواه value و selected که یکی از آن‌ها به مقدار value شیء counter مرتبط متصل است، به خود کامپوننت Counter مراجعه کرده و سپس در ابتدای متد render آن، خاصیت props به ارث رسیده شده‌ی از کلاس پایه‌ی Component را جهت بررسی بیشتر لاگ می‌کنیم:
class Counter extends Component {
  state = {
    count: 0
  };

  render() {
    console.log("props", this.props);
    //...
پس از ذخیره‌ی فایل counter.jsx و بارگذاری مجدد برنامه، یک چنین خروجی در کنسول توسعه دهندگان مرورگر قابل مشاهده است:


خاصیت this.props، یک شیء ساده‌ی جاوا اسکریپتی است و شامل تمام ویژگی‌هایی می‌باشد که ما در کامپوننت Counters برای هر کدام از کامپوننت‌های Counter رندر شده‌ی توسط آن، تعریف کردیم. برای نمونه دو ویژگی جدید value و selected را که به تعاریف المان‌های Counter در کامپوننت Counters اضافه کردیم، در اینجا به همراه مقادیر منتسب به آن‌ها، قابل مشاهده هستند. البته در این خروجی، key را ملاحظه نمی‌کنید؛ چون هدف اصلی آن، معرفی یکتای المان‌ها در DOM مجازی React است.
بنابراین اکنون می‌توان به value تنظیم شده‌ی در کامپوننت Counters به صورت this.props.value در کامپوننت Counter دسترسی یافت و سپس از آن جهت مقدار دهی اولیه‌ی counter استفاده کرد.
class Counter extends Component {
  state = {
    count: this.props.value
  };
اکنون اگر تغییرات کامپوننت Counter را ذخیره کرده و به مرورگر مراجعه کنیم، در اولین بار نمایش برنامه و بدون اعمال هیچگونه تغییری، یک چنین خروجی حاصل می‌شود:


یک نکته: در اینجا selected={true} را داریم. اگر مقدار آن‌را حذف کنیم، یعنی selected تنها درج شود، مقدار آن، همان true دریافت خواهد شد.


تعریف فرزند برای المان‌های کامپوننت‌ها

ویژگی‌های اضافه شده‌ی به تعاریف المان‌های کامپوننت‌ها، توسط خاصیت this.props، به هر کدام از آن کامپوننت‌ها منتقل می‌شوند. این خاصیت props، یک خاصیت ویژه را به نام children، نیز دارا است و از آن برای دسترسی به المان‌های تعریف شده‌ی بین تگ‌های یک المان اصلی استفاده می‌شود:
  render() {
    return (
      <div>
        {this.state.counters.map(counter => (
          <Counter key={counter.id} value={counter.value} selected={true}>
            <h4>‍Counter #{counter.id}</h4>
          </Counter>
        ))}
      </div>
    );
  }
در اینجا بین تگ‌های ابتدا و انتهای تعریف المان Counter، یک محتوا نیز تعریف شده‌است. اکنون اگر به خروجی کنسول توسعه دهندگان مرورگر دقت کنیم، خاصیت جدید اضافه شده‌ی children را نیز می‌توان مشاهده کرد:


یک نمونه مثال واقعی این قابلیت، امکان تعریف محتوای دیالوگ باکس‌ها، توسط استفاده کنند‌ه‌ی از آن است.


روش دیباگ برنامه‌های React

افزونه‌ی مفید React developer tools را می‌توانید برای مرورگرهای کروم و فایرفاکس، دریافت و نصب کنید. برای نمونه پس از نصب آن در مرورگر کروم، یک برگه‌ی جدید به لیست برگه‌های کنسول توسعه دهندگان آن اضافه می‌شود:


همانطور که مشاهده کنید، درخت کامپوننت‌های برنامه را در برگه‌ی جدید Components، می‌توان مشاهده کرد. در اینجا با انتخاب هر کدام از فرزندان این درخت، مشخصات آن نیز مانند props و state، در کنار صفحه ظاهر می‌شوند. همچنین در بالای همین قسمت، 4 آیکن مشاهده‌ی سورس، مشاهده‌ی DOM و یا لاگ کردن جزئیات شیء کامپوننت انتخابی در کنسول هم درج شده‌اند:


که برای نمونه چنین خروجی را لاگ می‌کند:



بررسی تفاوت‌های خواص props و state

در کامپوننت Counter، از props برای مقدار دهی اولیه‌ی state استفاده می‌کنیم:
class Counter extends Component {
  state = {
    count: this.props.value
  };
اکنون این سؤال مطرح می‌شود که چه تفاوتی بین props و state وجود دارد؟
- props حاوی اطلاعاتی است که به یک کامپوننت ارسال می‌کنیم؛ اما state حاوی اطلاعاتی است که مختص به آن کامپوننت بوده و private است. یعنی سایر کامپوننت‌ها نمی‌توانند به state کامپوننت دیگری دسترسی پیدا کنند. برای مثال در کامپوننت Counters، تمام attributes سفارشی تنظیم شده‌ی بر روی تعاریف المان‌های کامپوننت Counter، جزئی از اطلاعات props خواهند بود. در اینجا نمی‌توان به state کامپوننت مدنظری دسترسی یافت و آن‌را مقدار دهی کرد. به همین ترتیب state کامپوننت Counters نیز در سایر کامپوننت‌ها قابل دسترسی نیست.
- همچنین باید درنظر داشت که props، در مقایسه با state، فقط خواندنی است. به عبارتی مقدار ورودی به یک کامپوننت را داخل آن کامپوننت نمی‌توان تغییر داد. برای مثال سعی کنید در داخل متد رویدادگردان کلیک موجود در کامپوننت Counter، مقدار this.props.value را به صفر تنظیم کنید. در این حالت با کلیک بر روی دکمه‌ی Increment، بلافاصله خطای readonly بودن خواص شیء منتسب به props را دریافت می‌کنیم. در اینجا اگر نیاز است این مقدار را داخل کامپوننت تغییر دهیم، باید ابتدا این مقدار را دریافت کرده و سپس آن‌را داخل state قرار دهیم. پس از آن امکان ویرایش اطلاعات منتسب به state، داخل یک کامپوننت وجود خواهد داشت.


صدور و مدیریت رخ‌دادها

در ادامه می‌خواهیم در کنار هر دکمه‌ی Increment کامپوننت شمارشگر، یک دکمه‌ی Delete هم قرار دهیم:


مشکل! اگر کد مدیریتی handleDelete را در کامپوننت Counter قرار دهیم، چگونه باید به لیست آرایه‌ی اشیاء counters والد آن، یعنی کامپوننت Counters که سبب رندر شدن کامپوننت‌های شمارشگر شده (state = { counters: [ ] })، دسترسی یافت و شیء‌ای را از آن حذف کرد؟ در React، کامپوننتی که state ای را تعریف می‌کند، باید کامپوننتی باشد که قرار است آن‌را تغییر دهد و اطلاعات state هر کامپوننت، صرفا متعلق به آن کامپوننت بوده و جزو اطلاعات خصوصی آن است. بنابراین مدیریت حذف و یا افزودن کامپوننت‌ها در لیست نمایش داده شده، باید جزو وظایف کامپوننت Counters باشد و نه Counter.
برای حل این مشکل، کامپوننت Counter تعریف شده (کامپوننت فرزند) باید سبب بروز رخ‌داد onDelete شود تا کامپوننت Counters (کامپوننت والد)، آن‌را توسط متد handleDelete مدیریت کند. بنابراین ابتدا به کامپوننت Counters (کامپوننت والد) مراجعه کرده و متد رویدادگردان handleDelete را به آن اضافه می‌کنیم:
  handleDelete = () => {
    console.log("handleDelete called.");
  };
سپس ارجاعی از این متد را به صورت خاصیتی از props به کامپوننت Counter (کامپوننت فرزند) ارسال خواهیم کرد؛ برای این منظور در کامپوننت Counters (کامپوننت والد)، ویژگی onDelete را به تعریف المان Counter اضافه کرده و آن‌را با ارجاعی به متدhandleDelete  مقدار دهی می‌کنیم:
<Counter
     key={counter.id}
     value={counter.value}
     selected={true}
     onDelete={this.handleDelete}
/>
پس از آن به کامپوننت Counter مراجعه کرده و دکمه‌ی جدید Delete را به صورت زیر در کنار دکمه‌ی Increment تعریف می‌کنیم:
<button
  onClick={this.props.onDelete}
  className="btn btn-danger btn-sm m-2"
>
  Delete
</button>
در اینجا onClick، به خاصیت onDelete شیء props ارسالی به کامپوننت متصل شده‌است.
اکنون اگر برنامه را ذخیره کرده و پس از بارگذاری مجدد برنامه در مرورگر بر روی دکمه‌ی Delete کلیک کنیم، پیام «handleDelete called» در کنسول توسعه دهندگان مرورگر لاگ می‌شود. به این ترتیب کامپوننت فرزند سبب بروز رخ‌دادی شده و والد آن، این رخ‌داد را مدیریت می‌کند.


به روز رسانی state

تا اینجا دکمه‌ی Delete فرزند، به متد handleDelete والد متصل شده‌است. مرحله‌ی بعد، پیاده سازی واقعی حذف یک المان از DOM مجازی و به روز رسانی state است. برای اینکار ابتدا به رخ‌دادگردان onClick، در کامپوننت شمارشگر، مراجعه کرده و id دریافتی را به سمت والد ارسال می‌کنیم:
onClick={() => this.props.onDelete(this.props.id)}
البته در سمت والد نیز باید این id را به صورت یک خاصیت جدید به props اضافه کنیم (تا this.props.id فوق کار کند)؛ چون ویژگی key، مختص DOM مجازی بوده و به props اضافه نمی‌شود:
<Counter
  key={counter.id}
  value={counter.value}
  selected={true}
  onDelete={this.handleDelete}
  id={counter.id}
/>
اکنون این id را در کامپوننت والد دریافت و به آن واکنش نشان می‌دهیم:
  handleDelete = counterId => {
    console.log("handleDelete called.", counterId);
    const counters = this.state.counters.filter(
      counter => counter.id !== counterId
    );
    this.setState({ counters }); // = this.setState({ counters: counters });
  };
همانطور که پیشتر نیز در این سری عنوان شده، در React، مقدار state را به صورت مستقیم تغییر نمی‌دهیم و اینکار باید از طریق متد setState آن صورت گیرد. به عبارت دیگر مستقیما خاصیت counters شیء منتسب به خاصیت state را تغییر نمی‌دهیم. ابتدا یک آرایه‌ی جدید از المان‌ها را تولید کرده و به متد setState ارسال می‌کنیم. سپس React، هم خاصیت counters و هم UI را بر این اساس به روز رسانی خواهد کرد. در اینجا، لیست جدید counters، بر اساس id دریافتی از کامپوننت فرزند، تولید شده و به متد this.setState ارسال می‌شود. در این حالت اگر برنامه را ذخیره کرده و پس از بارگذاری مجدد آن در مرورگر، بر روی دکمه‌ی Delete هر ردیف کلیک کنیم، آن ردیف از UI حذف خواهد شد.

البته پیاده سازی ما تا به اینجا بدون مشکل کار می‌کند، اما به ازای هر خاصیت counter، یک ویژگی جدید را به تعریف المان مرتبط اضافه کرده‌ایم که در طول زمان بیش از اندازه طولانی خواهد شد. برای رفع این مشکل، خود شیء counter را به صورت یک ویژگی جدید به کامپوننت مرتبط با آن ارسال می‌کنیم. به این ترتیب اگر در آینده خاصیتی را به این شیء اضافه کردیم، دیگر نیازی نیست تا آن‌را به صورت دستی و مجزا تعریف کنیم. به همین جهت ابتدا تعریف المان Counter را به صورت زیر خلاصه می‌کنیم که در آن ویژگی جدید counter، حاوی کل شیء counter است:
<Counter
  key={counter.id}
  counter={counter}
  onDelete={this.handleDelete}
/>
سپس در سمت کامپوننت فرزند شمارشگر، دو تغییر this.props.counter.value و this.props.counter.id باید صورت گیرند تا مقادیر شیء counter به درستی خوانده شوند.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: sample-07.zip
مطالب
مقید سازی پارامترهای نوع جنریک
احتمالا در بیشتر مقالات (فارسی/انگلیسی) عبارات هایی مثل نمونه‌های زیر را دیده اید :
where T:clas
where T:struc
...
در این مقاله قصد داریم بپردازیم به «مقید سازی پارامتر‌های نوع جنریک» و اینکه چه کاربردی دارند و در چه زمانی بهتر است از آن‌ها استفاده کنیم و نحوه استفاده از آنها چگونه است. فرض میکنیم که خواننده‌ی محترم با مفاهیم جنریک آشنایی دارد. در صورتیکه با جنریک‌ها آشنا نیستید ابتدا مروری داشته باشید بر جنریک‌ها و بعد این مقاله را مطالعه فرمایید؛ به این دلیل که موضوع مورد بحث بر پایه‌ی جنریک‌ها می‌باشد.

همانطور که مطلع هستید هر عنصری جنریکی را که تعریف میکنید حداقل دارای یک پارامتر نوع هست و در زمان بکارگیری آن جنریک باید نوع آن را مشخص نمایید. برای نمونه مثال زیر را در نظر بگیرید :
public  class MyCollection<T>
        {
            private List<T> collections = new List<T>();
            public void Add(T value)
            {
                collections.Add(value);
            }
        }
کلاس فوق یک کلاس جنریک است که در هنگام ساخت نمونه‌ای از آن، باید ابتدا data type نوعی را که که می‌خواهیم با آن کار کنیم، تعیین کنیم. برای مثال در کد فوق در هنگام ساخت نمونه‌ای از آن، نوع int را برای آن مشخص میکنیم و هر وقت بخواهیم متد Add آن را فراخوانی کنیم، فقط نوعی را قبول خواهد کرد که در ابتدا برای آن تعیین کرده ایم (int):
MyCollection<int> myintObj = new MyCollection<int>();
            myintObj.Add(12);
            myintObj.Add(33);
             myintObj.Add(33.3);// ERROR z 
سؤال: می‌خواهیم فقط نوع‌هایی را بتوان به T نسبت داد که از نوع ارجاعی (reference type) هستن و یا فقط نوع هایی را به T نسبت داد که یک سازنده دارند؛ چگونه؟

ایجاد قید‌ها یا محدودیت‌ها بر روی پارامتر‌های جنریک‌ها شامل پنج حالت می‌باشد:

حالت اول : Where T:struct
در این حالت T باید یک ساختار باشد .

حالت دوم : where T:class
T  باید یک نوع ارجاعی باشد. اگر در مثال فوق این قید را به آن اضافه کنیم، در هنگام ساخت نمونه‌ای از کلاس فوق، اگر یک نوع value type را به T نسبت دهیم، در هنگام وارد کردن یک نوع value type با خطا مواجه خواهیم شد. مثال:
public  class MyCollection<T> where T:class
        {
            private List<T> collections = new List<T>();
            public void Add(T value)
            {
                collections.Add(value);
            }
        }
و برای استفاده :
 MyCollection<int> myintObj = new MyCollection<int>(); // ERROR , int is value type

حالت سوم : ()Where T:new
نوعی که به T نسبت داده می‌شود باید یک سازنده‌ی پیش فرض داشته باشد.
داخل پرانتز : سازنده‌ی پیش فرض: زمانی که شما یک کلاس می‌نویسید اگر آن کلاس دارای هیچ سازنده‌ای نباشد، کامپایلر یک سازنده‌ی بدون پارامتر را به کلاس فوق اضافه می‌کند که کار آن مقدار دهی به فیلد‌های کلاس است. در اینجا از مقادیر پیش فرض استفاده می‌شود. مثلا برای int مقدار صفر و برای string مقدار "" و به همین ترتیب.
اگر از مقدار دهی پیش فرض توسط کامپایلر خرسند نیستید، می‌توانید سازنده پیش فرض را تغییر داده و مطابق میل خود فیلد‌ها را مقدار دهی اولیه کنید .


حالت چهارم : where T:NameOfBaseClass
نوعی که به T نسبت داده می‌شود باید از کلاس NameOfBaseClass ارث بری کرده باشد.

حالت پنجم : where T:NameOfInterface
همانند حالت چهارم می‌باشد؛ با این تفاوت: نوعی که به T نسبت داده می‌شود باید واسط NameOfInterface را پیاده سازی کرده باشد.

پنج حالت فوق نمونه‌هایی از ایجاد محدودیت بر روی پرامتر نوع اعضای جنریک بودند و اما در ادامه قصد داریم نکاتی را در این باب، بیان کنیم:

نکته اول : می‌توانید محدودیت‌های فوق را با هم ترکیب کنید برای اینکار آنها را با کاما از هم جدا کنید :
 public  class MyCollection<T> where T:class,IDisposable,new()
        {
   //content
}
نوعی که به T نسبت داده می‌شود
  • باید از نوع ارجاعی باشد.
  • باید واسط IDisposable را پیاده سازی کرده باشد.
  • باید یک سازنده‌ی پیش فرض داشته باشد.

نکته دوم : زمانیکه از چندین محدودیت استفاده می‌کنید مثل مثال فوق، باید محدودیت ()new در آخرین جایگاه محدودیت‌ها قرار گیرد؛ در غیر اینصورت با خطای زمان ترجمه روبه رو خواهید شد .

نکته سوم : می‌توان محدودیت‌های فوق را علاوه بر کلاس، بر روی متد‌های جنریک نیز اعمال کنید:

public void Swap<T>(ref T val1,ref T val2) where T:struct
            {
//content
            }
نکته چهارم : زمانیکه کلاس و یا متدهای شما بیش از یک نوع پارامتر از نوع جنریک را دریافت می‌کنند، باید محدودیت‌های مورد نظر را برای هر کدام به صورت جداگانه قید کنید. به طور مثال به کلاس زیر که دو پارمتر T و K را دارد، باید برای هر کدام جداگانه محدودیت‌های مورد نظر را اعمال کنیم (در صورت نیاز):
 public  class MyCollection<T,K> where T:class where K:IDisposable,new()
        {
//content
}