مطالب
ایجاد لیستی از کلاسی جنریک
کلاس جنریک زیر را در نظر بگیرید:
public class Column<T>

{
public string Name { set; get; }
public T Data { set; get; }
}

مشکلی که با این نوع کلاس‌ها وجود دارد این است که نمی‌توان مثلا لیست زیر را در مورد آن‌ها تعریف کرد:

IList<Column<T>> myList = new List<Column<T>>();



به عبارتی می‌خواهیم یک لیست از کلاسی جنریک داشته باشیم. راه حل انجام آن به صورت زیر است:

using System.Collections;


namespace Tests
{
public interface IColumn
{
string Name { set; get; }
object Data { set; get; }
}

public class Column<T> : IColumn
{
public string Name { set; get; }

public T Data { set; get; }

object IColumn.Data
{
get { return this.Data; }
set { this.Data = (T)value; }
}
}
}

ابتدا یک اینترفیس عمومی را همانند اعضای کلاس Column تعریف می‌کنیم که در آن بجای T از object‌ استفاده شده است. سپس یک پیاده سازی جنریک از این اینترفیس را ارائه خواهیم داد؛ با این تفاوت که اینبار خاصیت Data مربوط به اینترفیس، به صورت خصوصی و صریح با استفاده از IColumn.Data تعریف می‌شود و نمونه‌ی جنریک هم نام آن، عمومی خواهد بود.
اکنون می‌توان نوشت:

var myList = new List<IColumn>();


برای مثال در این حالت تعریف لیست زیر که از تعدادی وهله‌ی کلاسی جنریک ایجاد شده، کاملا مجاز می‌باشد:

var myList = new List<IColumn>

{
new Column<int> { Data = 1, Name = "Col1"},
new Column<double> { Data = 1.2, Name = "Col2"}
};

خوب، تا اینجا یک مرحله پیشرفت است.اکنون اگر بخواهیم در این لیست، Data مثلا عنصری را که نامش Col1 است، دریافت کنیم چه باید کرد؟ آن هم نه به شکل object بلکه از نوع T مشخص:

static T GetColumnData<T>(IList<IColumn> list, string name)

{
var column = (Column<T>)Convert.ChangeType(list.Single(s => s.Name.Equals(name)), typeof(Column<T>), null);
return column.Data;
}

و نمونه‌ای از استفاده آن:

int data = GetColumnData<int>(myList, "Col1");


مطالب
Functional Programming - قسمت پنجم - وسواس استفاده از نوع های اولیه
در ادامه سری مقالات مرتبط با برنامه نویسی تابعی ، قصد دارم به استفاده کردن یا نکردن از نوع‌های داده اولیه (Primitive Types) را بررسی کنیم. پیشنهاد میکنم در صورتی که قسمت‌های قبلی را مطالعه نکرده اید ابتدا قسمت‌های قبل را بخوانید.

در طراحی مدل دامین، بیشتر مواقع از نوع‌های اولیه مانند int , string,… استفاده میکنیم و به عبارتی میتوانیم بگوییم در استفاده از این نوع داده وسواس داریم. قطعه کد زیر را در نظر بگیرید:
public class UserFactory
{
    public User CreateUser(string email) {
        return new User(email);
    }
}
کلاس UserFactory، یک متد به نام CreateUser دارد که یک رشته را به عنوان ورودی میگیرد و یک شیء از کلاس User را بر می‌گرداند. خوب مشکل این متد کجاست؟
اگر به خاطر داشته باشید، در قسمت‌های قبلی در مورد مفهومی به نام Honesty صحبت کردیم. به طور ساده باید بتوانیم از روی امضای تابع، کاری را که تابع انجام میدهد و خروجی آن را ببینیم. این تابع Honest نیست؛ شرایطی که string می‌تواند درست نباشد، خالی باشد، طول غیر مجاز داشته باشد و ... را نمیتوانیم از امضای تابع حدس بزنیم.

برای روشن‌تر شدن بحث، مثال بالا را همیشه در ذهن خود داشته باشید. در این مثال، در تابع Divide که عمل تقسیم را انجام می‌دهد، پارامتر y که یک عدد از نوع int است، میتواند مقدار صفر را داشته باشد و باعث یک exception شود.و از آنجائیکه نوع خروجی این متد هم int است، انتظار دریافت یک exception را نداریم. در مورد exception‌ها به طول مفصل در قسمت قبلی صحبت کردیم. در مثال بالا تصور کنید که بجای یک ایمیل، از چند ایمیل به عنوان ورودی می‌خواهید استفاده کنید. آیا منطق Validation را به ازای هر پارامتر ورودی باید تکرار کنید؟

به طور کلی استفاده‌ی نابجا و بیش از حد از نوع‌های داده‌ی اولیه، باعث می‌شود تا Honesty متد‌ها را از دست بدهیم و قاعده‌ی DRY را نقض کنیم.

صحبت در مورد استفاده کردن یا نکردن، جنبه‌های زیادی دارد و یکی از مواردی است که در معماری DDD تحت عنوان Value Object به آن پرداخته شده. هدف ما در این قسمت از مقاله، صرفا پرداختن به گوشه‌ای از این مورد هست. ولی شما میتوانید برای مطالعه بیشتر و اطلاعات تکمیلی کتاب Domain-Driven Design: Tackling Complexity in the Heart of Software نوشته Eric Evans را مطالعه کنید.


به جای نوع‌های اولیه از چی استفاده کنیم؟

جواب خیلی ساده‌است؛ شما نیاز دارید تا یک Type اختصاصی را ایجاد کنید. برای مثال بجای استفاده از نوع string برای یک ایمیل، می‌توانید یک کلاس را به عنوان Email ایجاد کنید که مشخصه‌ای به نام Value دارد. این کار به روش‌های مختلفی قابل انجام است؛ اما پیشنهاد من استفاده از این روش هست:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.Reflection;

namespace ValueOf
{
    public class ValueOf<TValue, TThis> where TThis : ValueOf<TValue, TThis>, new()
    {
        private static readonly Func<TThis> Factory;

        /// <summary>
        /// WARNING - THIS FEATURE IS EXPERIMENTAL. I may change it to do
        /// validation in a different way.
        /// Right now, override this method, and throw any exceptions you need to.
        /// Access this.Value to check the value
        /// </summary>
        protected virtual void Validate()
        {
        }

        static ValueOf()
        {
            ConstructorInfo ctor = typeof(TThis)
                .GetTypeInfo()
                .DeclaredConstructors
                .First();

            var argsExp = new Expression[0];
            NewExpression newExp = Expression.New(ctor, argsExp);
            LambdaExpression lambda = Expression.Lambda(typeof(Func<TThis>), newExp);

            Factory = (Func<TThis>)lambda.Compile();
        }

        public TValue Value { get; protected set; }

        public static TThis From(TValue item)
        {
            TThis x = Factory();
            x.Value = item;
            x.Validate();

            return x;
        }

        protected virtual bool Equals(ValueOf<TValue, TThis> other)
        {
            return EqualityComparer<TValue>.Default.Equals(Value, other.Value);
        }

        public override bool Equals(object obj)
        {
            if (obj is null)
                return false;

            if (ReferenceEquals(this, obj))
                return true;

            return obj.GetType() == GetType() && Equals((ValueOf<TValue, TThis>)obj);
        }

        public override int GetHashCode()
        {
            return EqualityComparer<TValue>.Default.GetHashCode(Value);
        }

        public static bool operator ==(ValueOf<TValue, TThis> a, ValueOf<TValue, TThis> b)
        {
            if (a is null && b is null)
                return true;

            if (a is null || b is null)
                return false;

            return a.Equals(b);
        }

        public static bool operator !=(ValueOf<TValue, TThis> a, ValueOf<TValue, TThis> b)
        {
            return !(a == b);
        }

        public override string ToString()
        {
            return Value.ToString();
        }
    }
}
در این روش، یک کلاس را به عنوان Value Object ایجاد کرده‌ایم. این کلاس، نوع اولیه‌ای را که با آن سر و کار داریم، در بر خواهد گرفت و منطق مربوط به مقایسه، همچنین عملگرهای == و != را هم از طریق Equals و GetHashCode، پیاده سازی کرده. برای مثال جهت کلاس ایمیل می‌توانیم به صورت زیر عمل کنیم:
public class EmailAddress : ValueOf<string, EmailAddress> { }
همچنین برای مقدار دهی این کلاس میتوانید به صورت زیر عمل کنید:
EmailAddress emailAddress = EmailAddress.From("foo@bar.com");
برای مثال‌های پیچیده‌تر مانند آدرس، که شامل آدرس، کد پستی و … می‌باشد، میتوانید با استفاده از امکان Tuple‌ها که از سی شارپ 7 به بعد معرفی شده، مانند مثال زیر عمل کنید:
public class Address : ValueOf<(string firstLine, string secondLine, Postcode postcode), Address> { }
و در نهایت برای نوشتن منطق مربوط به validation می‌توانید متد Validate را Override کنید و قاعده‌ی DRY را هم نقض نکنید.

روش معرفی شده‌ی در این مقاله، صرفا جهت آشنایی بیشتر شما و داشتن کدی تمیز‌تر از طریق مفاهیم برنامه نویسی تابعی خواهد بود. در دنیای واقعی، احتمالا مسائلی را برای ذخیره سازی این آبجکت‌ها و یا کار با کتابخانه‌هایی مانند Entity Framework خواهید داشت که به سادگی قابل حل است.

در صورتیکه مشکلی در پیاده سازی داشتید، می‌توانید مشکل خود را زیر همین مطلب و یا بر روی gist آن کامنت کنید.
مطالب
پروکسی‌های اشیاء در ES 6
پروکسی‌ها، پایه‌ی مباحث AOP هستند. این اشیاء ویژه‌ی ES 6، امکان ردیابی تغییرات را بر روی اشیاء جاوا اسکریپتی فراهم می‌کنند. ابتدایی‌ترین مثالی را که در این زمینه می‌توان ارائه داد، بررسی تغییرات خواص Get و Set اشیاء هستند. فرض کنید شیء unicorn به صورت زیر تعریف شده‌است:
var unicorn = {
   legs: 4,
   color: 'brown',
   horn: true
};
اکنون می‌خواهیم اگر کسی درخواست مقدار خاصیت color این شیء را ارائه داد، بجای رنگ قهوه‌ای، یک مقدار سفارشی سازی شده را دریافت کند. برای تداخل در این بین و کنترل مقدار بازگشت داده شده‌ی توسط یک شیء مفروض، می‌توان از شیء جدیدی به نام Proxy استفاده کرد:
var proxyUnicorn = new Proxy(unicorn, {
      get: function(target, property) {
            if(property === 'color') {
                  return 'awesome ' + target[property];
              } else {
                  return target[property];
           }
      }
});
کار شیء پروکسی، ایجاد یک شیء جدید از unicorn نیست. بلکه به صورت غشایی نامرئی ظاهر شده و محصور کننده‌ی این شیء می‌شود. بنابراین کلیه‌ی درخواست‌های رسیده‌ی به unicorn، ابتدا باید از این غشاء رد شود و سپس به unicorn برسد. اینجا است که امکان ردیابی و همچنین سفارشی سازی دسترسی به خواص را می‌توان پیاده سازی کرد.
شیء Proxy در ES 6 دو پارامتر را دریافت می‌کند. پارامتر اول آن، شیء اصلی است که باید محصور شود و پارامتر دوم آن مشخص می‌کند که چه عملیاتی باید تحت کنترل و سفارشی سازی قرار گیرد. در این مثال عملیات get تحت نظر قرار گرفته‌است و برای اینکار متدی که تعریف شده (به آن handler نیز می‌گویند)، پارامتر اول آن target یا همان unicorn در این مثال است و property نام خاصیتی است که هم اکنون قرار است مقدار آن بازگشت داده شود. در مثال فوق دو حالت دسترسی به خاصیتی به نام color و همچنین سایر خواصی که این نام را ندارند، پیاده سازی شده‌است.
پس از این عملیات، اگر به خواص ارائه شده‌ی توسط شیء پروکسی دسترسی پیدا کنیم، یک چنین خروجی را دریافت خواهیم کرد:
 console.log(proxyUnicorn.legs); //4
console.log(proxyUnicorn.color); //'awesome brown'

مثالی دیگر در این زمینه می‌تواند کنترل عملیات دسترسی به حالت set باشد (هر دوی این حالت‌ها را با یک شیء پروکسی نیز می‌توان مدیریت کرد):
var proxyUnicorn = new Proxy(unicorn, {
           set: function(target, property, value) {
                    if(property === 'horn' && value === false) {
                         console.log('unicorn cannot ever lose its horn!');
                      } else {
                         target[property] = value;
                      }
           }
});
در حالت set، متد handler تعریف شده، پارامتر سومی را به نام value دارد و این مقدار، مساوی مقداری است که هم اکنون توسط کاربر تنظیم شده‌است. بنابراین در اینجا می‌توان پیاده سازی منطق خاصی را پیگیری کرد. برای مثال در اینجا اگر خاصیت مدنظر horn باشد و کاربر سعی کند مقدار false را به آن نسبت دهد، توسط این پروکسی از انجام عملیات منع خواهد شد.


ردگیری فراخوانی‌های توابع توسط پروکسی‌های ES 6

در ادامه همان شیء unicorn را مشاهده می‌کنید که متد hornAttack نیز به آن اضافه شده‌است.
var unicorn = {
   legs: 4,
   color: 'brown',
   horn: true,
   hornAttack: function(target) {
        return target.name + ' was obliterated!';
   }
};
اکنون می‌خواهیم دسترسی به متد hornAttack را تحت نظر قرار داده و اجازه‌ی استفاده‌ی از آن‌را به سایر اشیاء ندهیم.
 var thief = { name: 'Rupert'}
thief.attack = unicorn.hornAttack;
thief.attack();
برای نمونه در این حالت نمی‌خواهیم که شیء thief بتواند از hornAttack یک unicorn استفاده کند. به همین جهت برای unicorn.hornAttack یک پروکسی جدید را تعریف می‌کنیم که دسترسی به آن‌را تحت نظر قرار دهد:
unicorn.hornAttack = new Proxy(unicorn.hornAttack, {
        apply: function(target, context, args) {
                  if(context !== unicorn) {
                     return 'nobody can use unicorn horn but unicorn!';
                   } else {
                     return target.apply(context, args);
                 }
        }
});
پس از این تعریف و انتساب، unicorn.hornAttack دیگر همان unicorn.hornAttack اصلی نخواهد بود و اکنون یک proxy object است. در این پروکسی برای کنترل متدها از کلید apply استفاده می‌شود. متد handler آن دارای سه پارامتر است. پارامتر target همان متد مدنظر است. پارامتر context شیءایی است که قرار است این متد را فراخوانی کند. پارامتر سوم نیز لیست پارامترهای ارسالی به متد است.
در ادامه اگر متد thief.attack فراخوانی شود، این فراخوانی عمل نکرده (چون حالت context !== unicorn برقرار است) و پیام «nobody can use unicorn horn but unicorn» نمایش داده می‌شود.

در این متد handler (پارامتر دوم شیء پروکسی) مواردی مانند افزودن یا حذف خواص را نیز می‌توان تحت کنترل قرار داد:
function NOPE() {
  throw new Error("can't modify read-only view");
}

var handler = {
  // Override all five mutating methods.
  set: NOPE,
  defineProperty: NOPE,
  deleteProperty: NOPE,
  preventExtensions: NOPE,
  setPrototypeOf: NOPE
};
نظرات مطالب
شروع به کار با EF Core 1.0 - قسمت 10 - استفاده از امکانات بومی بانک‌های اطلاعاتی
یک نکته‌ی تکمیلی: در EF-Core 8x، برای کار با کوئری‌های دستی، دیگر نیازی به تعریف DbQuery و نگاشت‌های آن نیست

تا پیش از EF-Core 8x، جهت نگاشت خروجی کوئری‌های دستی به مدل‌های سفارشی، ابتدا می‌بایستی این خروجی دقیقا معادل یکی از موجودیت‌های تعریف شده می‌بود. سپس DbQuery معرفی شد که شرح آن در بالا آمده و این محدودیت «دقیقا معادل بودن با یکی از موجودیت‌ها» را لغو کرد و ... اکنون در EF-Core 8x، این محدودیت‌ها و تنظیمات مرتبط، به‌طور کامل برطرف شده‌اند. برای مثال همین مثال نگاشت View سفارشی فوق و کوئری گرفتن از آن، در EF 8x، فقط نیاز به یک سطر زیر را دارد که توسط متد SqlQuery انجام می‌شود:
var postCounts = await context.Database.SqlQuery<BlogPostsCount>(@$"SELECT * FROM View_BlogPostCounts").ToListAsync();
و دیگر نیازی به تعریف آن به صورت DbQuery و سپس تعریف نگاشتی برای آن نیست.
خروجی SqlQuery، از نوع IQueryable است. یعنی می‌توان بر روی آن، توابع Linq، مانند Where را هم در صورت نیاز اعمال کرد:
var postCounts = await context.Database
                              .SqlQuery<BlogPostsCount>(@$"SELECT * FROM View_BlogPostCounts")
                              .Where(x => x.PostCount > 1)
                              .ToListAsync();
به این ترتیب کار کردن با کوئری‌های دستی، Viewها و حتی رویه‌های ذخیره شده‌ای که خروجی را بر می‌گردانند، به سادگی فراخوانی متد SqlQuery، مانند مثال‌های فوق شده‌است و نیازی به تنظیمات اضافه‌تری ندارد (و ... حتی نیازی به Dapper هم ندارد!).

چند نکته:
  • مدلی که در اینجا تعریف می‌شود، باید ساده بوده و چندسطحی و یا به همراه روابطی نباشد.
  • نگاشت‌ها، بر اساس نام ستون‌های بازگشت داده شده، انجام می‌شوند و حتی بکارگیری mapping attributes هم مجاز هستند.
  • مدل‌ها، بدون کلید اصلی هستند.
  • متد SqlQuery، برای بار اول در EF 7x اضافه شد که توسط آن، تنها امکان داشتن خروجی‌های scalar (یا غیر موجودیتی)، مانند اعداد و رشته‌ها وجود داشت (<SqlQuery<int).

مشاهده یک مثال کامل رسمی در این مورد که به همراه تعریف یک View، یک Function و یک رویه‌ی ذخیره شده و فراخوانی آن‌ها توسط متد SqlQuery است.

نظرات مطالب
طریقه بررسی صحت کدملی به کمک متدهای الحاقی
با تشکر از توجه شما،
یک متد الحاقی با عنوان IsItNumber به پروژه اضافه شد. همچنین متد IsValidNationalCode اصلاح شد.
        public static bool IsValidNationalCode(this string nationalcode, out int lastNumber)
        {
            lastNumber = -1;
            if (!nationalcode.IsItNumber()) return false;
            var array = nationalcode.ToCharArray();
            if (array.Length != 10) return false;
            var j = 10;
            var sum = 0;
            for (var i = 0; i < array.Length - 1; i++)
            {
                sum += Int32.Parse(array[i].ToString(CultureInfo.InvariantCulture)) * j;
                j--;
            }
            var div = sum / 11;
            var r = div * 11;
            var diff = Math.Abs(sum - r);

            if (diff <= 2)
            {
                lastNumber = diff;
                return diff == Int32.Parse(array[9].ToString(CultureInfo.InvariantCulture));
            }
            var temp = Math.Abs(diff - 11);
            lastNumber = temp;
            return temp == Int32.Parse(array[9].ToString(CultureInfo.InvariantCulture));
        }

مطالب
پشتیبانی از انقیاد پویا در سی‌شارپ
زبان سی‌شارپ strongly typed و type safe است. کامپایلر بیشتر کد را از نظر صحت نوع (Type) بررسی میکند و در صورت بروز خطا، روند کامپایل متوقف خواهد شد. با این وجود سی‌شارپ اجازه میدهد که کدهای داینامیک نیز داشته باشیم؛ کدهایی که در زمان کامپایل برای کامپایلر ناشناس هستند و اگر خطای نوع در آنها وجود داشته باشد، در زمان اجرا مشخص شده و باعث توقف برنامه میشود. 

Type Safety

ایمنی نوع، قاعده‌ای است در زبانهای برنامه‌نویسی که اجازه نمیدهد متغیرها، مقادیری را دریافت کنند که متفاوت با نوع تعریف شده‌ی آنها باشد. اگر این بررسی وجود نداشت، در زمان اجرا مقادیر خوانده شده از حافظه باعث رفتاری غیر قابل پیش‌بینی میشد؛ مثلا در یک متغیر عددی، مقدار رشته‌ای ذخیره و در زمان اجرا با یک مقدار عددی دیگر جمع بسته و نمایش داده شود. کامپایلر همچنین بررسی اعضای اعلان نشده‌ی متغیرها را نیز انجام میدهد که در قطعه کد زیر آمده‌است:
string text = “String value”;
int textLength = text.Length;
int textMonth = text.Month; // won’t compile
با این حال ایمنی نوع در سی‌شارپ کاملا قابل اعتماد نیست و میشود به روشی آن را دور زد!  
public interface IGeometricShape
{
     double Circumference { get; }
     double Area { get; }
}
public class Square : IGeometricShape
{
     public double Side { get; set; }
     public double Circumference => 4 * Side;
     public double Area => Side * Side;
}
public class Circle : IGeometricShape
{
     public double Radius { get; set; }
     public double Circumference => 2 * Math.PI * Radius;
     public double Area => Math.PI * Radius * Radius;
}

IGeometricShape circle = new Circle { Radius = 1 };
Square square = ((Square)circle); // no compiler error
var side = square.Side;
در خط کدی که با کامنت مشخص شده، هر چند که دیده میشود نوع circle نمیتواند به نوع square تبدیل شود، اما این کد بدون خطا کامپایل و خطای InvalidCastException  در زمان اجرا رخ خواهد داد. به دلیل اینکه هر دو نوع circle و square از نوع پایه IGeometricShape هستند، کامپایلر خطایی نخواهد گرفت؛ اما در زمان اجرا و زمانیکه برنامه میخواهد اجزاء circle را به square تبدیل کند، مشخص میشود که امکان تبدیل کامل circle به square نیست و خطا رخ خواهد داد.

Dynamic Binding

توسط انقیاد پویا در سی‌شارپ، کامپایلر بررسی نوع را در زمان کامپایل انجام نخواهد داد. کامپایلر فرض را بر این میگیرد که کد معتبر است و تمام متغیرها به درستی قابل دسترسی هستند. بررسی‌ها در زمان اجرا خواهند بود و زمانی خطا رخ خواهد داد که مثلا دسترسی به یک عضو از یک متغیر امکانپذیر نباشد؛ به این دلیل که آن عضو برای آن نوع وجود ندارد. 
توسط کلمه کلیدی dynamic میتوان متغیرهایی را تعریف کرد که در زمان کامپایل از نظر نوع بررسی نشوند؛ مانند مثال زیر.
dynamic text = “String value”;
int textLength = text.Length;
int textMonth = text.Month; // throws exception at runtime
واضح است که مثال بالا بی‌فایده است؛  اولا خطا در زمان کامپایل مشخص نمیشود و ثانیا مدیریت خطا در زمان اجرا بر کارآیی برنامه تاثیر خواهد داشت. روش دیگر استفاده از dynamic که کارآیی پایینی دارد در مثال زیر آمده.  
public dynamic GetAnonymousType()
{
  return new
    {
        Name = “John”,
        Surname = “Doe”,
        Age = 42
    };
}

dynamic value = GetAnonymousType();
Console.WriteLine($”{value.Name} {value.Surname}, {value.Age}”);
در مثال بالا نوع بازگشتی متد و متغیری که برای نگهداری نوع بازگشتی تعریف شده از نوع dynamic هستند. هر چند که در زمان کامپایل میشود هر مقداری و نوعی را از متد بازگشت داد، اما مانند مثال قبل، تا زمان اجرا، صحت اینکه آیا واقعا چنین نوعی جهت بازگشت وجود دارد یا نه و همچنین اساسا نوع بازگشت داده شده قابل استفاده و تبدیل هست یا نه، بررسی نخواهد شد. مضاف بر این مشکلات، IntelliSense نخواهیم داشت و اگر بخواهیم از یک اسمبلی دیگر به متد بالا دسترسی پیدا کنیم با خطای RuntimeBinderException مواجه خواهیم شد؛ علت این است که  نوع‌های anonymous به صورت internal اعلان می‌شوند. اما میشود استفاده‌های بهتری از نوع dynamic داشت؛ برای مثال زمان استفاده از کتابخانه‌ی JSON.NET که نمونه‌ای از آن در زیر آمده.
string json = @"
{
     ""name"": ""John"",
     ""surname"": ""Doe"",
     ""age"": 42
}";

dynamic value = JObject.Parse(json);
Console.WriteLine($"{ value.name} { value.surname}, { value.age}");
مانند نوع anonymous در مثال قبل، متد Parse میتواند مقادیر را به صورت پویا برگشت دهد و میتوان از این مقادیر مانند خصوصیات شیء ایجاد شده، از JSON استفاده کرد، بدون آنکه کامپایلر از وجود آنها اطلاعی داشته باشد. به این ترتیب در زمان اجرا میشود اشیاء JSON را به برنامه داد و از مقادیر آن مانند دسترسی به یک property استفاده کرد؛ کاری که نمیشود با نوعهای anonymous که در مثال بالاتر آورده شد انجام داد. برای حل این مسئله میتوان از دو شیء کمکی در کتابخانه NET Framework. استفاده کرد.

ExpandoObject

بین این دو شیء، ExpandoObject ساده‌تر است. به همراه کلمه کلیدی dynamic، این شیء اجازه میدهد که به نوع ساخته شده از آن در زمان اجرا و به صورت پویا، عضوی اضافه یا حذف کنیم؛ این اعضا میتوانند متد هم باشند.
dynamic person = new ExpandoObject();
person.Name = "John";
person.Surname = "Doe";
person.Age = 42;
person.ToString = (Func<string>)(() => $”{person.Name} {person.Surname}, {person. Age}”);

Console.WriteLine($"{ person.Name}{ person.Surname}, { person.Age}");

  برای اینکه ببینیم در زمان اجرا چه اعضایی به این شی اضافه شده، می‌توان نمونه ساخته شده از آن را به نوع <IDictionary<string, object تبدیل و در یک حلقه به آنها دسترسی پیدا کرد. از همین طریق هم میشود عضوی را حذف کرد.

var dictionary = (IDictionary<string, object>)person;
foreach (var member in dictionary)
{
     Console.WriteLine($”{member.Key} = {member.Value}”);
}
dictionary.Remove(“ToString”);

DynamicObject

از آنجایی که ExpandoObject برای سناریو‌های ساده کاربرد دارد و کنترل کمتری بر روی اعضا و نمونه‌های ایجاد شده‌ی توسط آن داریم، می‌توان از شیء DynamicObject استفاده کرد؛ البته نیاز به کدنویسی بیشتری دارد. پیاده‌سازی اعضا برای شیء DynamicObject در یک کلاس صورت میگیرد که در زیر آورده شده‌است:

class MyDynamicObject : DynamicObject
{
       private readonly Dictionary<string, object> members = new Dictionary<string, object>();

       public override bool TryGetMember(GetMemberBinder binder, out object result)
       {
              if (members.ContainsKey(binder.Name))
              {
                  result = members[binder.Name];
                  return true;
              }
              else
              {
                  result = null;
                  return false;
             }
       }

      public override bool TrySetMember(SetMemberBinder binder, object value)
      {
               members[binder.Name] = value;
              return true;
      }

      public bool RemoveMember(string name)
      {
            return members.Remove(name);
      }

}

dynamic person = new MyDynamicObject();
person.Name = “John”;
person.Surname = “Doe”;
person.Age = 42;
person.AsString = (Func<string>)(() => $”{person.Name} {person.Surname}, {person.
Age}”);
یک نکته در قطعه کد بالا وجود دارد. در شیء ExpandoObject، متد ToString را اضافه کردیم، اما برای شیء DynamicObject نام آن را تغییر داده و مثلا AsString گذاشتیم. اگر از نام ToString استفاده میکردیم در زمان فراخوانی، متد پیش‌فرض کلاس DynamicObject فراخوانی میشد. DynamicObject زمانی یک عضو پویا را فراخوانی میکند که آن عضو جدید از قبل وجود نداشته باشد. از آنجا که خود کلاس، متد ToString را دارد متد TryGetMember برای فراخوانی کردن آن اجرا نخواهد شد.
نظرات مطالب
C# 7 - Ref Returns and Ref Locals
یک نکته‌ی تکمیلی: امکان تعریف خروجی از نوع ref readonly در C# 7.2

modifier جدیدی در C# 7.2 به نام ref readonly جهت تعریف نوع خروجی متدها نیز معرفی شده‌است. به این ترتیب یک متد می‌تواند بازگشت ارجاعی به اطلاعاتی موجود را بیان و همچنین فراخوان را از تغییر آن منع کند.
البته فراخوان می‌تواند تصمیم گیری کند که آیا یک کپی و یا یک ارجاع فقط خواندنی را از این متد ویژه دریافت کند. به این معنا که خروجی از نوع ref readonly، فراخوان را ملزم به تعریف یک متغیر محلی از نوع ref readonly نمی‌کند.

در مثال زیر، متد ReturnBiggestA یک خروجی کپی را باز می‌گرداند و متد ReturnBiggestARefReadonly دقیقا ارجاعی را به DataInfo اصلی بازگشت می‌دهد و با آن یکی است:
namespace CS72Tests
{
    public struct DataInfo
    {
        public double A;
    }

    public class RefReadonlyExamples
    {
        public DataInfo ReturnBiggestA(in DataInfo data1, in DataInfo data2)
        {
            return data1.A > data2.A ? data1 : data2;
        }

        public ref readonly DataInfo ReturnBiggestARefReadonly(in DataInfo data1, in DataInfo data2)
        {
            if (data1.A > data2.A)
            {
                return ref data1;
            }
            return ref data2;
        }

        public void TestingRefReadonly()
        {
            var data1 = new DataInfo { A = 0 };
            var data2 = new DataInfo { A = 100 };

            var biggest = ReturnBiggestA(data1, data2);
            biggest.A = 42;


            var biggest2 = ReturnBiggestARefReadonly(data1, data2);
            biggest2.A = 99;


            ref readonly var biggest3 = ref ReturnBiggestARefReadonly(data1, data2);
            biggest3.A = 99; // ERROR: The left-hand side of an assignment must be a variable, property or indexer
        }
    }
}
- در این فراخوانی‌ها، biggest یک کپی از data2 را باز می‌گرداند. به همین جهت می‌توان A آن‌را تغییر داد.
- در اولین فراخوانی ReturnBiggestARefReadonly، با تعریف خروجی به صورت var biggest2، یک کپی از data2 را دریافت کرده‌ایم. به همین جهت A آن قابل تغییر است.
- اما در دومین فراخوانی ReturnBiggestARefReadonly، چون خروجی آن‌را از نوع ref readonly var دریافت کرده‌ایم، این خروجی به data2 اصلی اشاره می‌کند و همچنین فقط خواندنی است. بنابراین سطر بعدی آن که A را تغییر می‌دهد، مجاز نیست.

پ.ن
در ابتدا قصد داشتند ref readonly را برای تعریف پارامترهای value type نیز بکار برند، اما این تصمیم با معرفی پارامترهای از نوع in جایگزین شد. به همین جهت ممکن است مقالات قدیمی‌تر C# 7.2 را با تعریف متدهایی مانند ذیل نیز مشاهده کنید که در نگارش آخر C# 7.2، تمام این‌ها به in تغییر کرده‌اند:
public static void Add(ref readonly int x, ref readonly int y, ref int z)
{
   z = x + y + z;
}
نظرات مطالب
پشتیبانی توکار از انجام کارهای پس‌زمینه در ASP.NET Core 2x
- یک وظیفه در اینجا همیشه در حال اجرا نیست. فقط زمانیکه به تنظیمات خاصیت Schedule آن برسد، اجرا می‌شود. تمام وظایف پشت صحنه به همین صورت اجرا و مدیریت می‌شوند. یک حلقه مخصوص بررسی رسیدن به زمان‌بندی مدنظر وجود دارد و سپس اجرای آن وظیفه‌ی خاص. نمونه‌ی دیگر آن پروژه‌ی « DNTScheduler.Core » است که معادل NET Core. مطلب «انجام کارهای زمانبندی شده در برنامه‌های ASP.NET توسط DNT Scheduler» هست. 
- برای غیرفعال کردن یک Task در مطلب جاری، باید آن‌را از لیست سرویس‌های ثبت شده‌ی سیستم حذف کنید (و یا برای معرفی آن به سیستم باید به سیستم تزریق وابستگی‌ها توسط services.AddHostedService اضافه شود).
public static class ServiceCollectionExtensions
{
    public static IServiceCollection Remove<T>(this IServiceCollection services)
    {
        var serviceDescriptor = services.FirstOrDefault(descriptor => descriptor.ServiceType == typeof(T));
        if (serviceDescriptor != null) services.Remove(serviceDescriptor);

        return services;
    }
}
و یا با توجه به اینکه این وظایف به صورت یک سرویس ثبت می‌شوند، می‌توانید یک سرویس سفارشی فعال یا غیرفعالسازی را تعریف کنید و آن‌را به سازنده‌ی این وظایف تزریق و استفاده کنید. برای مثال زمانیکه حلقه‌ی انجام وظایف به به تنظیمات خاصیت Schedule رسید، متد ScheduledExecuteInScope را اجرا می‌کند. در این متد فرصت خواهید داشت تا سرویس سفارشی جدید تزریق شده را بررسی کرده و از فعال بودن یا نبودن این وظیفه مطلع شوید (برای مثال این سرویس بر اساس نامی که به آن ارسال می‌کنید، به بانک اطلاعاتی مراجعه کرده و روشن و یا خاموش بودن آن‌را بررسی کند. تنظیم بانک اطلاعاتی آن‌را هم واگذار کنید به قسمت مدیریتی برنامه).
مطالب دوره‌ها
تبدیلگر تاریخ شمسی برای AutoMapper
فرض کنید مدل معادل با جدول بانک اطلاعاتی ما چنین ساختاری را دارد:
public class User
{
    public int Id { set; get; }
    public string Name { set; get; }
    public DateTime RegistrationDate { set; get; }
}
و ViewModel ایی که قرار است به کاربر نمایش داده شود این ساختار را دارد:
public class UserViewModel
{
    public int Id { set; get; }
    public string Name { set; get; }
    public string RegistrationDate { set; get; }
}
در اینجا می‌خواهیم حین تبدیل User به UserViewModel، تاریخ میلادی به صورت خودکار، تبدیل به یک رشته‌ی شمسی شود. برای مدیریت یک چنین سناریوهایی توسط AutoMapper، امکان نوشتن تبدیلگرهای سفارشی نیز پیش بینی شده‌است.


تبدیلگر سفارشی تاریخ میلادی به شمسی مخصوص AutoMapper

در ذیل یک تبدیلگر سفارشی مخصوص AutoMapper را با پیاده سازی اینترفیس ITypeConverter آن ملاحظه می‌کنید:
public class DateTimeToPersianDateTimeConverter : ITypeConverter<DateTime, string>
{
    private readonly string _separator;
    private readonly bool _includeHourMinute;
 
    public DateTimeToPersianDateTimeConverter(string separator = "/", bool includeHourMinute = true)
    {
        _separator = separator;
        _includeHourMinute = includeHourMinute;
    }
 
    public string Convert(ResolutionContext context)
    {
        var objDateTime = context.SourceValue;
        return objDateTime == null ? string.Empty : toShamsiDateTime((DateTime)context.SourceValue);
    }
 
    private string toShamsiDateTime(DateTime info)
    {
        var year = info.Year;
        var month = info.Month;
        var day = info.Day;
        var persianCalendar = new PersianCalendar();
        var pYear = persianCalendar.GetYear(new DateTime(year, month, day, new GregorianCalendar()));
        var pMonth = persianCalendar.GetMonth(new DateTime(year, month, day, new GregorianCalendar()));
        var pDay = persianCalendar.GetDayOfMonth(new DateTime(year, month, day, new GregorianCalendar()));
        return _includeHourMinute ?
            string.Format("{0}{1}{2}{1}{3} {4}:{5}", pYear, _separator, pMonth.ToString("00", CultureInfo.InvariantCulture), pDay.ToString("00", CultureInfo.InvariantCulture), info.Hour.ToString("00"), info.Minute.ToString("00"))
            : string.Format("{0}{1}{2}{1}{3}", pYear, _separator, pMonth.ToString("00", CultureInfo.InvariantCulture), pDay.ToString("00", CultureInfo.InvariantCulture));
    } 
}
ITypeConverter دو پارامتر جنریک را قبول می‌کند. پارامتر اول نوع ورودی و پارامتر دوم، نوع خروجی مورد انتظار است. در اینجا باید خروجی متد Convert را بر اساس آرگومان دوم ITypeConverter مشخص کرد. توسط ResolutionContext می‌توان به برای مثال context.SourceValue که معادل DateTime دریافتی است، دسترسی یافت. سپس این DateTime را بر اساس متد toShamsiDateTime تبدیل کرده و بازگشت می‌دهیم.


ثبت و معرفی تبدیلگرهای سفارشی AutoMapper

پس از تعریف یک تبدیلگر سفارشی AutoMapper، اکنون نیاز است آن‌را به AutoMapper معرفی کنیم:
public class TestProfile1 : Profile
{
    protected override void Configure()
    {
        // این تنظیم سراسری هست و به تمام خواص زمانی اعمال می‌شود
        this.CreateMap<DateTime, string>().ConvertUsing(new DateTimeToPersianDateTimeConverter()); 
        this.CreateMap<User, UserViewModel>();
     }
 
    public override string ProfileName
    {
        get { return this.GetType().Name; }
    }
}
جهت مدیریت بهتر نگاشت‌های AutoMapper ابتدا یک کلاس Profile را آغاز خواهیم کرد و سپس توسط متدهای CreateMap، کار معرفی نگاشت‌ها را آغاز می‌کنیم.
همانطور که مشاهده می‌کنید در اینجا دو نگاشت تعریف شده‌اند. یکی برای تبدیل User به UserViewModel و دیگری، معرفی نحوه‌ی نگاشت DateTime به string، توسط تبدیلگر سفارشی DateTimeToPersianDateTimeConverter است که به کمک متد الحاقی ConvertUsing صورت گرفته‌است.
باید دقت داشت که تنظیمات تبدیلگرهای سفارشی سراسری هستند و در کل برنامه و به تمام پروفایل‌ها اعمال می‌شوند.


بررسی خروجی تبدیلگر سفارشی تاریخ

اکنون کار استفاده از تنظیمات AutoMapper با ثبت پروفایل تعریف شده آغاز می‌شود:
Mapper.Initialize(cfg => // In Application_Start()
{
     cfg.AddProfile<TestProfile1>();
});
سپس نحوه‌ی استفاده از متد Mapper.Map همانند قبل خواهد بود:
var dbUser1 = new User
{
    Id = 1,
    Name = "Test",
    RegistrationDate = DateTime.Now.AddDays(-10)
};
 
var uiUser = new UserViewModel();

Mapper.Map(source: dbUser1, destination: uiUser);
در اینجا در حین کار تبدیل و نگاشت dbUser به uiUser، زمانیکه AutoMapper به هر خاصیت DateTime ایی می‌رسد، مقدار آن‌را با توجه به تبدیلگر سفارشی تاریخی که به آن معرفی کردیم، تبدیل به معادل رشته‌ای شمسی می‌کند.


نوشتن تبدیلگرهای غیر سراسری

همانطور که عنوان شد، معرفی تبدیلگرها به AutoMapper سراسری است و در کل برنامه اعمال می‌شود. اگر نیاز است فقط برای یک مدل خاص و یک خاصیت خاص آن تبدیلگر نوشته شود، باید نگاشت مورد نظر را به صورت ذیل تعریف کرد:
this.CreateMap<User, UserViewModel>()
             .ForMember(userViewModel => userViewModel.RegistrationDate,
                        opt => opt.ResolveUsing(src =>
                        {
                             var dt = src.RegistrationDate;
                             return dt.ToShortDateString();
                        }));
اینبار در همان کلاس پروفایل ابتدای بحث، نگاشت User به ViewModel آن با کمک متد ForMember، سفارشی سازی شده‌است. در اینجا عنوان شده‌است که اگر به خاصیت ویژه‌ی RegistrationDate رسیدی، مقدار آن‌را با توجه به فرمولی که مشخص شده، محاسبه کرده و بازگشت بده. این تنظیم خصوصی است و به کل برنامه اعمال نمی‌شود.


خصوصی سازی تبدیلگرها با تدارک موتورهای نگاشت اختصاصی

اگر می‌خواهید تنظیمات TestProfile1 به کل برنامه اعمال نشود، نیاز است یک MappingEngine جدید و مجزای از MappingEngine سراسری AutoMapper را ایجاد کرد:
var configurationStore = new ConfigurationStore(new TypeMapFactory(), MapperRegistry.Mappers);
configurationStore.AddProfile<TestProfile1>();
var mapper = new MappingEngine(configurationStore);
mapper.Map(source: dbUser1, destination: uiUser);
به صورت پیش فرض و در پشت صحنه، متد Mapper.Map از یک MappingEngine سراسری استفاده می‌کند. اما می‌توان در یک برنامه چندین MappingEngine مجزا داشت که نمونه‌ای از آن‌را در اینجا مشاهده می‌کنید.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید:
AM_Sample02.zip
مطالب
بررسی تفصیلی رابطه Many-to-Many در EF Code first
رابطه چند به چند در مطالب EF Code first سایت جاری، در حد تعریف نگاشت‌های آن بررسی شده، اما نیاز به جزئیات بیشتری برای کار با آن وجود دارد که در ادامه به بررسی آن‌ها خواهیم پرداخت:


1) پیش فرض‌های EF Code first در تشخیص روابط چند به چند

تشخیص اولیه روابط چند به چند، مانند یک مطلب موجود در سایت و برچسب‌های آن؛ که در این حالت یک برچسب می‌تواند به چندین مطلب مختلف اشاره کند و یا برعکس، هر مطلب می‌تواند چندین برچسب داشته باشد، نیازی به تنظیمات خاصی ندارد. همینقدر که دو طرف رابطه توسط یک ICollection به یکدیگر اشاره کنند، مابقی مسایل توسط EF Code first به صورت خودکار حل و فصل خواهند شد:
using System;
using System.Linq;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Data.Entity;
using System.Data.Entity.Migrations;
using System.Data.Entity.ModelConfiguration;

namespace Sample
{
    public class BlogPost
    {
        public int Id { set; get; }

        [StringLength(maximumLength: 450, MinimumLength = 1), Required]
        public string Title { set; get; }

        [MaxLength]
        public string Body { set; get; }

        public virtual ICollection<Tag> Tags { set; get; } // many-to-many

        public BlogPost()
        {
            Tags = new List<Tag>();
        }
    }

    public class Tag
    {
        public int Id { set; get; }

        [StringLength(maximumLength: 450), Required]
        public string Name { set; get; }

        public virtual ICollection<BlogPost> BlogPosts { set; get; } // many-to-many

        public Tag()
        {
            BlogPosts = new List<BlogPost>();
        }
    }

    public class MyContext : DbContext
    {
        public DbSet<BlogPost> BlogPosts { get; set; }
        public DbSet<Tag> Tags { get; set; }
    }

    public class Configuration : DbMigrationsConfiguration<MyContext>
    {
        public Configuration()
        {
            AutomaticMigrationsEnabled = true;
            AutomaticMigrationDataLossAllowed = true;
        }

        protected override void Seed(MyContext context)
        {
            var tag1 = new Tag { Name = "Tag1" };
            context.Tags.Add(tag1);

            var post1 = new BlogPost { Title = "Title...1", Body = "Body...1" };
            context.BlogPosts.Add(post1);

            post1.Tags.Add(tag1);

            base.Seed(context);
        }
    }

    public static class Test
    {
        public static void RunTests()
        {
            Database.SetInitializer(new MigrateDatabaseToLatestVersion<MyContext, Configuration>());

            using (var ctx = new MyContext())
            {
                var post1 = ctx.BlogPosts.Find(1);
                if (post1 != null)
                {
                    Console.WriteLine(post1.Title);
                }
            }
        }
    }
}
در این مثال، رابطه بین مطالب ارسالی در یک سایت و برچسب‌های آن به صورت many-to-many تعریف شده است و همینقدر که دو طرف رابطه توسط یک ICollection به هم اشاره می‌کنند، رابطه زیر تشکیل خواهد شد:


در اینجا تمام تنظیمات صورت گرفته بر اساس یک سری از پیش فرض‌ها است. برای مثال نام جدول واسط تشکیل شده، بر اساس تنظیم پیش فرض کنار هم قرار دادن نام دو جدول مرتبط تهیه شده است.
همچنین بهتر است بر روی نام برچسب‌ها، یک ایندکس منحصربفرد نیز تعیین شود: (^ و ^)


2) تنظیم ریز جزئیات روابط چند به چند در EF Code first

تنظیمات پیش فرض انجام شده آنچنان نیازی به تغییر ندارند و منطقی به نظر می‌رسند. اما اگر به هر دلیلی نیاز داشتید کنترل بیشتری بر روی جزئیات این مسایل داشته باشید، باید از Fluent API جهت اعمال آن‌ها استفاده کرد:
    public class TagMap : EntityTypeConfiguration<Tag>
    {
        public TagMap()
        {
            this.HasMany(x => x.BlogPosts)
                .WithMany(x => x.Tags)
                .Map(map =>
                    {
                        map.MapLeftKey("TagId");
                        map.MapRightKey("BlogPostId");
                        map.ToTable("BlogPostsJoinTags");
                    });
        }
    }

    public class MyContext : DbContext
    {
        public DbSet<BlogPost> BlogPosts { get; set; }
        public DbSet<Tag> Tags { get; set; }

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            modelBuilder.Configurations.Add(new TagMap());
            base.OnModelCreating(modelBuilder);
        }
    }
در اینجا توسط متد Map، نام کلیدهای تعریف شده و همچنین جدول واسط تغییر داده شده‌اند:


3) حذف اطلاعات چند به چند

برای حذف تگ‌های یک مطلب، کافی است تک تک آن‌ها را یافته و توسط متد Remove جهت حذف علامتگذاری کنیم. نهایتا با فراخوانی متد SaveChanges، حذف نهایی انجام و اعمال خواهد شد.
            using (var ctx = new MyContext())
            {
                var post1 = ctx.BlogPosts.Find(1);
                if (post1 != null)
                {
                    Console.WriteLine(post1.Title);
                    foreach (var tag in post1.Tags.ToList())
                        post1.Tags.Remove(tag);
                    ctx.SaveChanges();
                }
            }
در اینجا تنها اتفاقی که رخ می‌دهد، حذف اطلاعات ثبت شده در جدول واسط BlogPostsJoinTags است. Tag1 ثبت شده در متد Seed فوق، حذف نخواهد شد. به عبارتی اطلاعات جداول Tags و BlogPosts بدون تغییر باقی خواهند ماند. فقط یک رابطه بین آن‌ها که در جدول واسط تعریف شده است، حذف می‌گردد.

در ادامه اینبار اگر خود post1 را حذف کنیم:
                var post1 = ctx.BlogPosts.Find(1);
                if (post1 != null)
                {
                    ctx.BlogPosts.Remove(post1);
                    ctx.SaveChanges();
                }
علاوه بر حذف post1، رابطه تعریف شده آن در جدول BlogPostsJoinTags نیز حذف می‌گردد؛ اما Tag1 حذف نخواهد شد.
بنابراین دراینجا cascade delete ایی که به صورت پیش فرض وجود دارد، تنها به معنای حذف تمامی ارتباطات موجود در جدول میانی است و نه حذف کامل طرف دوم رابطه. اگر مطلبی حذف شد، فقط آن مطلب و روابط برچسب‌های متعلق به آن از جدول میانی حذف می‌شوند و نه برچسب‌های تعریف شده برای آن.
البته این تصمیم هم منطقی است. از این لحاظ که اگر قرار بود دو طرف یک رابطه چند به چند با هم حذف شوند، ممکن بود با حذف یک مطلب، کل بانک اطلاعاتی خالی شود! فرض کنید یک مطلب دارای سه برچسب است. این سه برچسب با 20 مطلب دیگر هم رابطه دارند. اکنون مطلب اول را حذف می‌کنیم. برچسب‌های متناظر آن نیز باید حذف شوند. با حذف این برچسب‌ها طرف دوم رابطه آن‌ها که چندین مطلب دیگر است نیز باید حذف شوند!


4) ویرایش و یا افزودن اطلاعات چند به چند

در مثال فوق فرض کنید که می‌خواهیم به اولین مطلب ثبت شده، تعدادی تگ جدید را اضافه کنیم:
                var post1 = ctx.BlogPosts.Find(1);
                if (post1 != null)
                {
                    var tag2 = new Tag { Name = "Tag2" };                    
                    post1.Tags.Add(tag2);
                    ctx.SaveChanges();
                }
در اینجا به صورت خودکار، ابتدا tag2 ذخیره شده و سپس ارتباط آن با post1 در جدول رابط ذخیره خواهد شد.

در مثالی دیگر اگر یک برنامه ASP.NET را درنظر بگیریم، در هربار ویرایش یک مطلب، تعدادی Tag به سرور ارسال می‌شوند. در ابتدای امر هم مشخص نیست کدامیک جدید هستند، چه تعدادی در لیست تگ‌های قبلی مطلب وجود دارند، یا اینکه کلا از لیست برچسب‌ها حذف شده‌اند:
                //نام تگ‌های دریافتی از کاربر  
                var tagsList = new[] { "Tag1", "Tag2", "Tag3" };

                //بارگذاری یک مطلب به همراه تگ‌های آن
                var post1 = ctx.BlogPosts.Include(x => x.Tags).FirstOrDefault(x => x.Id == 1);
                if (post1 != null)
                {
                    //ابتدا کلیه تگ‌های موجود را حذف خواهیم کرد
                    if (post1.Tags != null && post1.Tags.Any())
                        post1.Tags.Clear();

                    //سپس در طی فقط یک کوئری بررسی می‌کنیم کدامیک از موارد ارسالی موجود هستند
                    var listOfActualTags = ctx.Tags.Where(x => tagsList.Contains(x.Name)).ToList();
                    var listOfActualTagNames = listOfActualTags.Select(x => x.Name.ToLower()).ToList();

                    //فقط موارد جدید به تگ‌ها و ارتباطات موجود اضافه می‌شوند
                    foreach (var tag in tagsList)
                    {
                        if (!listOfActualTagNames.Contains(tag.ToLowerInvariant().Trim()))
                        {
                            ctx.Tags.Add(new Tag { Name = tag.Trim() });
                        }
                    }
                    ctx.SaveChanges(); // ثبت موارد جدید

                    //موارد قبلی هم حفظ می‌شوند
                    foreach (var item in listOfActualTags)
                    {
                        post1.Tags.Add(item);
                    }
                    ctx.SaveChanges();
                }
در این مثال فقط تعدادی رشته از کاربر دریافت شده است، بدون Id آن‌ها. ابتدا مطلب متناظر، به همراه تگ‌های آن توسط متد Include دریافت می‌شود. سپس نیاز داریم به سیستم ردیابی EF اعلام کنیم که اتفاقاتی قرار است رخ دهد. به همین جهت تمام تگ‌های مطلب یافت شده را خالی خواهیم کرد. سپس در یک کوئری، بر اساس نام تگ‌های دریافتی، معادل آن‌ها را از بانک اطلاعاتی دریافت خواهیم کرد؛ کوئری tagsList.Contains به where in در طی یک رفت و برگشت، ترجمه می‌شود:
SELECT
[Extent1].[Id] AS [Id],
[Extent1].[Name] AS [Name]
FROM [dbo].[Tags] AS [Extent1]
WHERE [Extent1].[Name] IN (N'Tag1',N'Tag2',N'Tag3')
 آن‌هایی که جدید هستند به بانک اطلاعاتی اضافه شده (بدون نیاز به تعریف قبلی آن‌ها)، آن‌هایی که در لیست قبلی برچسب‌های مطلب بوده‌اند، حفظ خواهند شد.
لازم است لیست موارد موجود را (listOfActualTags) از بانک اطلاعاتی دریافت کنیم، زیرا به این ترتیب سیستم ردیابی EF آن‌ها را به عنوان رکوردی جدید و تکراری ثبت نخواهد کرد.


5) تهیه کوئری‌های LINQ بر روی روابط چند به چند

الف) دریافت یک مطلب خاص به همراه تمام تگ‌های آن:
 ctx.BlogPosts.Where(p => p.Id == 1).Include(p => p.Tags).FirstOrDefault()
ب) دریافت کلیه مطالبی که شامل Tag1 هستند:

var posts = from p in ctx.BlogPosts
                 from t in p.Tags
                 where t.Name == "Tag1"
                 select p;
و یا :
 var posts = ctx.Tags.Where(x => x.Name == "Tag1").SelectMany(x => x.BlogPosts);