مطالب
کوئری نویسی در EF Core - قسمت هفتم - کار با رشته‌‌ها
هدف از این سری مثال‌ها، آشنایی با متدها و توابعی است که در حین کار با خواص رشته‌ای در LINQ to Entities، مجاز به استفاده‌ی از آن‌ها هستیم و همچنین اگر تابعی در EF-Core هنوز تعریف نشده بود، راه حل چیست.


مثال 1: نام تمام کاربران را با قالب 'Surname, Firstname'  نمایش دهید.

var members = context.Members
                                    .Select(member => new { Name = member.Surname + ", " + member.FirstName })
                                    .ToList();
متد Select می‌تواند به همراه اعمال محاسباتی ساده‌ای نیز باشد که نمونه‌ای از آن‌را در اینجا مشاهده می‌کنید.
با این خروجی:



مثال 2: تمام امکاناتی را که با Tennis شروع می‌شوند، لیست کنید.
این گزارش به همراه تمام ستون‌های جدول است.

var facilities = context.Facilities
                                        .Where(facility => facility.Name.StartsWith("Tennis"))
                                        .ToList();
متدهای استانداردی مانند StartsWith، EndsWith و Contains را می‌توان بر روی خواص رشته‌ای بکار برد.
با این خروجی:



مثال 3: تمام امکاناتی را که با tennis شروع می‌شوند، لیست کنید. این جستجو باید غیرحساس به بزرگی و کوچکی حروف باشد.
این گزارش به همراه تمام ستون‌های جدول است.

نیازی به انجام مجزای این تمرین نیست؛ چون پاسخ آن همان پاسخ مثال 2 است. Collation پیش‌فرض در SQL Server، غیرحساس به بزرگی و کوچکی حروف است. بنابراین چه tennis را جستجو کنیم و یا TeNnis را، تفاوتی نمی‌کند.


مثال 4: شماره تلفن‌های دارای پرانتز را لیست کنید.
این گزارش باید به همراه ستون‌های memid, telephone باشد.

روش اول: در اینجا دوبار از متد Contains استفاده شده‌است:
var members = context.Members
                                    .Select(member => new { member.MemId, member.Telephone })
                                    .Where(member => member.Telephone.Contains("(")
                                                    && member.Telephone.Contains(")"))
                                    .ToList();
با این خروجی:


روش دوم: اگر می‌خواهیم کنترل بیشتری را بر روی خروجی نهایی LIKE تولیدی داشته باشیم، می‌توان از متد سفارشی استاندارد EF.Functions.Like استفاده کرد که از حروف wild cards نیز پشتیبانی می‌کند:
members = context.Members
                                    .Select(member => new { member.MemId, member.Telephone })
                                    .Where(member => EF.Functions.Like(member.Telephone, "%[()]%"))
                                    .ToList();
با این خروجی:



مثال 5: کد پستی‌ها 5 رقمی هستند. گزارشی را تهیه کنید که در آن اگر کدپستی کمتر از 5 رقم بود، ابتدای آن با صفر شروع شود.
هدف اصلی از این مثال، اعمال متد PadLeft(5, '0') به خاصیت member.ZipCode است.

روش اول: EF-Core فعلا قابلیت ترجمه‌ی PadLeft(5, '0') را به معادل SQL آن‌را ندارد. به همین جهت مجبور هستیم ابتدا ZipCode‌ها را به صورت رشته‌ای بازگشت دهیم که در اینجا استفاده‌ی از Convert.ToString مجاز است.
با این خروجی:
SELECT   CONVERT (NVARCHAR (MAX), [m].[ZipCode]) AS [Zip]
FROM     [Members] AS [m]
ORDER BY CONVERT (NVARCHAR (MAX), [m].[ZipCode]);
 سپس می‌توان بر روی لیست آماده‌ی موجود در حافظه، از LINQ to Objects استفاده کرد و در این حالت دسترسی کاملی به تمام امکانات زبان #C وجود دارد:
var members = context.Members
                                    .Select(member => new { ZipCode = Convert.ToString(member.ZipCode) })
                                    .OrderBy(m => m.ZipCode)
                                    .ToList();
// Now using LINQ to Objects
members = members.Select(member => new { ZipCode = member.ZipCode.PadLeft(5, '0') })
                                                    .OrderBy(m => m.ZipCode)
                                                    .ToList();

روش دوم: SQL Server به همراه تابع استانداردی به نام Replicate است که از آن می‌توان برای شبیه سازی PadLeft، بدون متوسل شدن به LINQ to Objects، استفاده کرد. اما چون این تابع هنوز به EF-Core معرفی نشده‌است، نیاز است خودمان اینکار را انجام دهیم. در این روش، از متد SqlDbFunctionsExtensions.SqlReplicate استفاده می‌شود. روش تعریف این نوع متدها را در مطلب «امکان تعریف توابع خاص بانک‌های اطلاعاتی در EF Core» پیشتر بررسی کرده‌ایم که برای مثال در اینجا چنین شکلی را پیدا می‌کند:
namespace EFCorePgExercises.Utils
{
    public static class SqlDbFunctionsExtensions
    {
        public static string SqlReplicate(string expression, int count)
            => throw new InvalidOperationException($"{nameof(SqlReplicate)} method cannot be called from the client side.");

        private static readonly MethodInfo _sqlReplicateMethodInfo = typeof(SqlDbFunctionsExtensions)
            .GetRuntimeMethod(
                nameof(SqlDbFunctionsExtensions.SqlReplicate),
                new[] { typeof(string), typeof(int) }
            );


        public static void AddCustomSqlFunctions(this ModelBuilder modelBuilder)
        {
            modelBuilder.HasDbFunction(_sqlReplicateMethodInfo)
                .HasTranslation(args =>
                {
                    return SqlFunctionExpression.Create("REPLICATE",
                        args,
                        _sqlReplicateMethodInfo.ReturnType,
                        typeMapping: null);
                });
        }
    }
}
پس از آن فقط کافی است متد AddCustomSqlFunctions را به Context برنامه معرفی کنیم:
namespace EFCorePgExercises.DataLayer
{
    public class ApplicationDbContext : DbContext
    {
         // ...

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
         // ...
            modelBuilder.AddCustomSqlFunctions();
         // ...
        }
    }
}
اکنون می‌توان از تابع SqlDbFunctionsExtensions.SqlReplicate جهت شبیه سازی PadLeft به صورت زیر استفاده کرد:
var newMembers = context.Members
                                        .Select(member => new
                                        {
                                            ZipCode =
                                                SqlDbFunctionsExtensions.SqlReplicate(
                                                    "0", 5 - Convert.ToString(member.ZipCode).Length)
                                                + member.ZipCode
                                        })
                        .OrderBy(m => m.ZipCode)
                        .ToList();
با این خروجی:



مثال 6: اولین حرف نام خانوادگی کاربران در کل ردیف‌های جدول چندبار تکرار شده‌است؟
این گزارش باید به همراه ستون‌های letter,  count باشد.

var members = context.Members
                                    .Select(member => new { Letter = member.Surname.Substring(0, 1) })
                                    .GroupBy(m => m.Letter)
                                    .Select(g => new
                                    {
                                        Letter = g.Key,
                                        Count = g.Count()
                                    })
                                    .OrderBy(r => r.Letter)
                                    .ToList();
هدف از این مثال بیان مجاز بودن استفاده‌ی از متد Substring بر روی خواص رشته‌ای است که EF-Core امکان ترجمه‌ی آن‌ها را به کدهای SQL دارد.
با این خروجی:



مثال 7: حروف '-','(',')', ' ' را از شماره تلفن‌ها حذف کنید.
این گزارش باید به همراه ستون‌های memid, telephone باشد.

بانک اطلاعاتی PostgreSQL به همراه تابع استاندارد regexp_replace است و می‌توان از آن برای حل یک چنین مسایلی استفاده کرد:
select memid, regexp_replace(telephone, '[^0-9]', '', 'g') as telephone
from members
order by memid;
اما SQL Server هنوز هم به همراه یک چنین تابعی نیست. بنابراین از روش زیر نیز می‌توان مثال جاری را حل کرد:
var members = context.Members
                                .Select(member => new
                                {
                                    member.MemId,
                                    Telephone = member.Telephone.Replace("-", "")
                                                        .Replace("(", "")
                                                        .Replace(")", "")
                                                        .Replace(" ", "")
                                })
                                .OrderBy(r => r.MemId)
                                .ToList();
با این خروجی:



کدهای کامل این قسمت را در اینجا می‌توانید مشاهده کنید.
مطالب
کوئری های پیشرفته، Error Handling و Data Loader در GraphQL
در قسمت قبل یادگرفتیم که چگونه GraphQL را با ASP.NET Core یکپارچه کنیم و اولین GraphQL query را ایجاد و داده‌ها را از سرور بازیابی کردیم. البته ما به این query ‌های ساده بسنده نخواهیم کرد. در این قسمت می‌خواهیم یاد بگیریم که چگونه query ‌های پیشرفته‌ی GraphQL را بنویسیم و در زمان انجام این کار، نمایش دهیم که چگونه خطا‌ها را  مدیریت کنیم و علاوه بر این با queries, aliases, arguments, fragments نیز کار خواهیم کرد.

Creating Complex Types for GraphQL Queries 
اگر نگاهی به owners و query (در پایان قسمت قبل)  بیندازیم، متوجه خواهیم شد که یک لیست از خصوصیات مدل Owner که در OwnerType معرفی شده‌اند، نسبت به کوئری برگشت داده می‌شود. OwnerType شامل فیلد‌های Id , Name  و Address می‌باشد. یک Owner می‌تواند چندین account مرتبط با خود را داشته باشد. هدف این است که در owners ،query لیست account ‌های مربوط به هر owner را بازگشت دهیم. 
قبل از اضافه کردن فیلد Accounts در کلاس OwnerType نیاز است کلاس AccountType را ایجاد کنیم. در ادامه یک کلاس را به نام AccountType در پوشه GraphQLTypes ایجاد می‌کنیم. 
public class AccountType : ObjectGraphType<Account>
{
    public AccountType()
    {
        Field(x => x.Id, type: typeof(IdGraphType)).Description("Id property from the account object.");
        Field(x => x.Description).Description("Description property from the account object.");
        Field(x => x.OwnerId, type: typeof(IdGraphType)).Description("OwnerId property from the account object.");
    }
}

 همانطور که مشخص است، خصوصیت Type را از کلاس Account، معرفی نکرده‌ایم (در ادامه اینکار را انجام خواهیم داد). در ادامه، واسط IAccountRepository و کلاس AccountRepository را باز کرده و آن را مطابق زیر ویرایش می‌کنیم: 
public interface IAccountRepository
{
    IEnumerable<Account> GetAllAccountsPerOwner(Guid ownerId);
}

public class AccountRepository : IAccountRepository
{
    private readonly ApplicationContext _context;
 
    public AccountRepository(ApplicationContext context)
    {
       _context = context;
    }
 
    public IEnumerable<Account> GetAllAccountsPerOwner(Guid ownerId) => _context.Accounts
        .Where(a => a.OwnerId.Equals(ownerId))
        .ToList();
}

اکنون می‌توان لیست account‌ها را به نتیجه owners ، query اضافه کنیم. پس کلاس OwnerType را باز کرده و آن را مطابق زیر ویرایش می‌کنیم:
public class OwnerType : ObjectGraphType<Owner>
{
    public OwnerType(IAccountRepository repository)
    {
        Field(x => x.Id, type: typeof(IdGraphType)).Description("Id property from the owner object.");
        Field(x => x.Name).Description("Name property from the owner object.");
        Field(x => x.Address).Description("Address property from the owner object.");
        Field<ListGraphType<AccountType>>(
            "accounts",
            resolve: context => repository.GetAllAccountsPerOwner(context.Source.Id)
        );
    }
}

چیز خاصی در اینجا وجود ندارد که ما تا کنون ندیده باشیم. به همان روش که یک فیلد را در کلاس AppQuery  ایجاد کردیم، یک فیلد را با نام  accounts در کلاس OwnerType ایجاد می‌کنیم. همچنین متد GetAllAccountsPerOwner نیاز به پارامتر id را دارد و این پارامتر را از طریق context.Source.Id فراهم می‌کنیم. زیرا context شامل خصوصیت Source است که در این حالت مشخص نوع Owner می‌باشد.

اکنون پروژه را اجرا کنید و به آدرس زیر بروید:
https://localhost:5001/ui/playground
سپس owners ، query را در UI.Playground به صورت زیر اجرا کنید که نتیجه آن علاوه بر owner‌ها، لیست account ‌های مربوط به هر owner هم می‌باشد:  
{
  owners{
    id,
    name,
    address,
    accounts{
      id,
      description,
      ownerId
    }
  }
}

Adding Enumerations in GraphQL Queries 
در کلاس AccountType  فیلد Type را اضافه نکرده‌ایم و این کار را عمدا انجام داده‌ایم. اکنون زمان انجام این کار می‌باشد. برای اضافه کردن گونه شمارشی به کلاس AccountType نیاز است تا در ابتدا یک کلاس تعریف شود که نسبت به type ‌های معمول در GraphQL متفاوت است. یک کلاس را به نام AccountTypeEnumType  در پوشه GraphQLTypes  ایجاد کرده و آن را مطابق زیر ویرایش می‌کنیم:  
public class AccountTypeEnumType : EnumerationGraphType<TypeOfAccount>
{
    public AccountTypeEnumType()
    {
        Name = "Type";
        Description = "Enumeration for the account type object.";
    }
}

کلاس AccountTypeEnumType باید از نوع جنریک کلاس EnumerationGraphType ارث بری کند و پارامتر جنریک آن، یک گونه شمارشی را دریافت می‌کند (که در قسمت قبل آن را ایجاد کردیم؛ TypeOfAccount).  همچنین مقدار خصوصیت Name نیز باید همان نام خصوصیت گونه شمارشی در کلاس Account باشد (نام آن در کلاس Account مساوی Type می‌باشد). سپس گونه شمارشی را در کلاس AccountType به صورت زیر اضافه می‌کنیم:
public class AccountType : ObjectGraphType<Account>
{
    public AccountType()
    {
        ...
        Field<AccountTypeEnumType>("Type", "Enumeration for the account type object.");
    }
}

اکنون پروژه را اجرا کنید و سپس owners ، query را در UI.Playground به صورت زیر اجرا کنید:
{
  owners{
    id,
    name,
    address,
    accounts{
      id,
      description,
      type,
      ownerId
    }
  }
}
که نتیجه آن اضافه شدن type  به هر account می‌باشد:


Implementing a Cache in the GraphQL Queries with Data Loader  
دیدم که query، نتیجه دلخواهی را برای ما بازگشت می‌دهد؛ اما این query هنوز به اندازه کافی بهینه نشده‌است. مشکل چیست؟
query  ایجاد شده به حالتی کار می‌کند که در ابتدا همه owner ‌ها را بازیابی می‌کند. سپس به ازای هر owner، یک Sql Query  را به سمت بانک اطلاعاتی ارسال می‌کند تا Account ‌های مربوط به آن Owner را بازگشت دهد که می‌توان log  آن را در Terminal مربوط به VS Code مشاهده کرد.
 


البته زمانیکه چند موجودیت owner را داشته باشیم، این مورد یک مشکل نمی‌باشد؛ ولی وقتی تعداد موجودیت‌ها زیاد باشد چطور؟
 owners ، query را می‌توان با استفاده از DataLoader که توسط GraphQL فراهم شده‌است، بهینه سازی کرد. جهت انجام اینکار در ابتدا واسط IAccountRepository و کلاس AccountRepository را همانند زیر ویرایش می‌کنیم:
public interface IAccountRepository
{
    ...
    Task<ILookup<Guid, Account>> GetAccountsByOwnerIds(IEnumerable<Guid> ownerIds);
}
public class AccountRepository : IAccountRepository
{
    ...
    public async Task<ILookup<Guid, Account>> GetAccountsByOwnerIds(IEnumerable<Guid> ownerIds)
    {
        var accounts = await _context.Accounts.Where(a => ownerIds.Contains(a.OwnerId)).ToListAsync();
        return accounts.ToLookup(x => x.OwnerId);
    }
}

 نیاز است که یک متد داشته باشیم که <<Task<ILookup<TKey, T  را برگشت می‌دهد؛ زیرا DataLoader نیازمند یک متد با نوع برگشتی که در امضایش عنوان شده است می‌باشد .
در ادامه کلاس OwnerType را مطابق زیر ویرایش می‌کنیم:
public class OwnerType : ObjectGraphType<Owner>
{
    public OwnerType(IAccountRepository repository, IDataLoaderContextAccessor dataLoader)
    {
       ...
        Field<ListGraphType<AccountType>>(
            "accounts",
            resolve: context =>
            {
                var loader = dataLoader.Context.GetOrAddCollectionBatchLoader<Guid, Account>("GetAccountsByOwnerIds", repository.GetAccountsByOwnerIds);
                return loader.LoadAsync(context.Source.Id);
            });
    }
}

در کلاس OwnerType، واسط IDataLoaderContextAccessor را در سازنده کلاس تزریق می‌کنیم و سپس متد Context.GetOrAddCollectionBatchLoader را فراخوانی می‌کنیم که در پارامتر اول آن، یک کلید و در پارامتر دوم آن، متد GetAccountsByOwnerIds را از IAccountRepository معرفی می‌کنیم.
سپس باید DataLoader را در متد ConfigureServices موجود در کلاس Startup ثبت کنیم. در ادامه services.AddGraphQL را مطابق زیر ویرایش می‌کنیم: 
services.AddGraphQL(o => { o.ExposeExceptions = false; })
        .AddGraphTypes(ServiceLifetime.Scoped)
        .AddDataLoader(); 
اکنون پروژه را با دستور زیر اجرا کنید و سپس query قبلی را در UI.Playground اجرا کنید.
 اگر log  موجود در Terminal مربوط به  VS Code را مشاهده کنید، متوجه خواهید شد که در این حالت یک query برای تمام owner ‌ها و یک query برای تمام account ‌ها داریم.


Using Arguments in Queries and Handling Errors 
تا کنون ما  یک query را اجرا می‌کردیم که نتیجه آن بازیابی تمام owner ‌ها به همراه تمام account ‌های مربوط به هر owner بود. اکنون می‌خواهیم  براساس id، یک owner  مشخص را بازیابی کنیم. برای انجام این کار نیاز است که یک آرگومان را در query شامل کنیم.
در ابتدا واسط IOwnerRepository و کلاس OwnerRepository را همانند زیر ویرایش می‌کنیم:
public interface IOwnerRepository
{
    ...
    Owner GetById(Guid id);
}

public class OwnerRepository : IOwnerRepository
{
    ...
    Owner GetById(Guid id) => _context.Owners.SingleOrDefault(o => o.Id.Equals(id));
}
سپس کلاس AppQuery  را مطابق زیر ویرایش می‌کنیم:
public class AppQuery : ObjectGraphType
{
    public AppQuery(IOwnerRepository repository)
    {
        ...

        Field<OwnerType>(
            "owner",
            arguments: new QueryArguments(new QueryArgument<NonNullGraphType<IdGraphType>> { Name = "ownerId" }),
            resolve: context =>
            {
                var id = context.GetArgument<Guid>("ownerId");
                return repository.GetById(id);
            }
        );
    }
}
در اینجا یک فیلد را ایجاد کرده‌ایم که مقدار برگشتی آن یک OwnerType می‌باشد. نام query را owner تعیین می‌کنیم و از بخش arguments، برای ایجاد کردن آرگومان‌های این query استفاده می‌کنیم. آرگومان این query نمی‌تواند NULL باشد و باید از نوع IdGraphType و با نام ownerId باشد و در نهایت بخش resolve است که کاملا گویا می‌باشد. 
اگر پارامتر id، از نوع Guid نباشد، بهتر است که یک پیام را به سمت کلاینت برگشت دهیم. جهت انجام این کار یک اصلاح کوچک در بخش resolve انجام میدهیم:  
Field<OwnerType>(
    "owner",
    arguments: new QueryArguments(new QueryArgument<NonNullGraphType<IdGraphType>> { Name = "ownerId" }),
    resolve: context =>
    {
        Guid id;
        if (!Guid.TryParse(context.GetArgument<string>("ownerId"), out id))
        {
            context.Errors.Add(new ExecutionError("Wrong value for guid"));
            return null;
        }
 
         return repository.GetById(id);
     }
);

 اکنون پروژه را اجرا کنید و سپس یک query جدید را در  UI.Playground به صورت زیر ارسال  کنید: 
{
  owner(ownerId:"6f513773-be46-4001-8adc-2e7f17d52d83"){
    id,
    name,
    address,
    accounts{
      id,
      description,
      type,
      ownerId
    }
  }
که نتیجه آن بازیابی یک owner  با ( Id=6f513773-be46-4001-8adc-2e7f17d52d83 ) می‌باشد.

نکته: 
در صورتیکه قصد داشته باشیم علاوه بر id، یک name را هم ارسال کنیم، در بخش resolve به صورت زیر آن را دریافت می‌کنیم: 
 string name = context.GetArgument<string>("name");
و در زمان ارسال query:
{
  owner(ownerId:"53270061-3ba1-4aa6-b937-1f6bc57d04d2", name:"ANDY") {
   ...
  }
}


Aliases, Fragments, Named Queries, Variables, Directives 
می توانیم برای query ‌های ارسال شده از سمت کلاینت با معرفی aliases، یک سری تغییرات را داشته باشیم. وقتی‌که می‌خواهیم نام نتیجه دریافتی یا هر فیلدی را در نتیجه دریافتی تغییر دهیم، بسیار کاربردی می‌باشند. اگر یک query داشته باشیم که یک آرگومان را دارد و بخواهیم دو تا از این query داشته باشیم، برای ایجاد تفاوت بین query ‌ها می‌توان از aliases  استفاده کرد. 
جهت استفاده باید نام مورد نظر را در ابتدای query یا فیلد قرار دهیم:
{
  first:owners{
    ownerId:id,
    ownerName:name,
    ownerAddress:address,
    ownerAccounts:accounts
    {
      accountId:id,
      accountDescription:description,
      accountType:type
    }
  },
  second:owners{
    ownerId:id,
    ownerName:name,
    ownerAddress:address,
    ownerAccounts:accounts
    {
      accountId:id,
      accountDescription:description,
      accountType:type
    }
  }
}
اینبار در خروجی بجای ownerId ، id و بجای ownerName ، name و ... را مشاهده خواهید کرد.


همانطور که از مثال بالا مشخص است، دو query با فیلد‌های یکسانی را داریم. اگر بجای 2  query یکسان (مانند مثال بالا) ولی با آرگومان‌های متفاوت، اینبار 10 query یکسان با آرگومان‌های متفاوتی را داشته باشیم، در این حالت خواندن query ‌ها مقداری سخت می‌باشد. در این صورت می‌توان این مشکل را با استفاده از fragment‌ها برطرف کرد. Fragment‌‌ها این اجازه را به ما می‌دهند تا فیلد‌ها را با استفاده از کاما ( ، ) از یکدیگر جدا و تبدیل به یک بخش مجزا کنیم و سپس استفاده مجدد از آن بخش را در تمام query ‌ها داشته باشیم. Syntax آن به حالت زیر می‌باشد: 
fragment SampleName on Type{
  ...
}
تعریف یک fragment به نام ownerFields  و استفاده از آن : 
{
  first:owners{
    ...ownerFields
  },
  second:owners{
    ...ownerFields
  },
  ...
}


fragment ownerFields on OwnerType{
    ownerId:id,
    ownerName:name,
    ownerAddress:address,
    ownerAccounts:accounts
    {
      accountId:id,
      accountDescription:description,
      accountType:type
    }
}

برای ایجاد کردن یک named query، مجبور هستیم از کلمه کلیدی query در آغاز کل query استفاده کنیم؛ به همراه نام query، که بعد از کلمه کلیدی query قرار میگیرد. اگر نیاز داشته باشیم می‌توان آرگومان‌ها را به query ارسال کرد.
نکته مهمی که در رابطه با named query ‌ها وجود دارد این است که اگر یک query آرگومان داشته باشد نیاز است از پنجره QUERY VARIABLES برای تخصیص مقدار به آن آرگومان استفاده کنیم. 
query OwnerQuery($ownerId:ID!)
{
  owner(ownerId:$ownerId){
    id,
    name,
    address,
    accounts{
      id,
      description,
      type
    }
  }
}
و سپس در قسمت QUERY VARIABLES 
{
  "ownerId":"6f513773-be46-4001-8adc-2e7f17d52d83"
}
اکنون اجرا کنید و خروجی را مشاهده کنید .

در نهایت می‌توان بعضی فیلد‌ها را از نتیجه دریافتی با استفاده از directive‌ها در query حذف یا اضافه کرد. دو directive وجود دارد که می‌توان از آن‌ها استفاده کرد (include  و skip). 


در قسمت بعد در رابطه با GraphQL Mutations صحبت خواهیم کرد.  
کد‌های مربوط به این قسمت را از اینجا دریافت کنید .  ASPCoreGraphQL_2.zip  
مطالب
کلاس‌ها در ES 6
رسمی‌ترین زبان‌های شیء گرا از کلاس‌ها و وراثت مربوط به آنها پشتیبانی می‌کنند؛ ولی از زمانی که JavaScript ساخته شد، به دلیل نداشتن کلاس‌ها باعث سردرگمی بیشتر توسعه دهنده‌ها شد. برای آشنایی با مباحث شیء گرایی در جاوااسکریپت  ^ و را مطالعه کنید.
در واقع کلاس‌ها در ES 6 هم واقعا مانند کلاس‌ها در سایر زبان‌ها نبوده و صرفا یک syntax آسان بر فراز روش‌های پیاده سازی انواع داده‌های شخصی در ورژن‌ها قبلی می‌باشند. این syntax به معنای تولید مدل جدید شیء گرایی در JavaScript نمی‌باشد و در ادامه خواهیم دید که این کلاس‌ها چیزی بجز یک function نیستند. در ورژن‌های قبل ES، تعریف نوع داده جدید به عنوان مثال به شکل زیر بود:
function PersonType(name) {
    this.name = name;
}

PersonType.prototype.sayName = function() {
    console.log(this.name);
};

let person = new PersonType("Nicholas");
person.sayName();   // outputs "Nicholas"

console.log(person instanceof PersonType);  // true
console.log(person instanceof Object);      // true
‫در کد بالا که مربوط است به ورژن 5 اکما اسکریپت، PersonType یک تابع سازنده است که دارای یک پراپرتی به نام name و یک متد در سطح آبجکت به نام sayName میباشد.
Class declarations یکی از روش‌های تعریف کلاس در ES 6 میباشد. به عنوان مثال در ورژن جدید، تعریف کلاس مثال فوق به شکل زیر خواهد بود:
class PersonClass {

    // equivalent of the PersonType constructor
    constructor(name) {
        this.name = name;
    }

    // equivalent of PersonType.prototype.sayName
    sayName() {
        console.log(this.name);
    }
}

let person = new PersonClass("Nicholas");
person.sayName();   // outputs "Nicholas"

console.log(person instanceof PersonClass);     // true
console.log(person instanceof Object);          // true

console.log(typeof PersonClass);                    // "function"
console.log(typeof PersonClass.prototype.sayName);  // "function"
در کد بالا این بار به جای تعریف یک  تابع (function) به عنوان سازنده، برای ساخت نوع داده‌ی شخصی، خواهید توانست به صورت مستقیم این سازنده را درون کلاس خود با نام constructor که مشخصا برای این منظور در نظر گرفته شده است، تعریف کنید. همانطور که در خطوط آخر کد بالا مشخص است، کلاس PersonClass چیزی بجز یک function نیست و همین مورد گفته‌های ابتدایی مطلب را تأیید می‌کند.  باید توجه داشت که در تعریف هر کلاسی فقط یک تابع سازنده با نام constructor می‌تواند وجود داشته باشد؛ در غیر این صورت خطای syntax error را دریافت خواهیم کرد.
شباهت‌هایی و معادل‌هایی که در پیاده سازی مثال بالا در دو ورژن مختلف وجود دارد باعث خواهد شد که بدون نگرانی از اینکه با کدام ورژن کار می‌کنید، به صورت ترکیبی از آنها استفاده کنید.
Class Expressions روش دوم پیاده سازی کلاس‌ها در ES 6 می‌باشد؛ به دو صورت named و unnamed که به صورتیکه در زیر مشاهده می‌کنید، قابل تعریف خواهد بود:
//unnamed class expressions do not require identifiers after "class"
let PersonClass = class {

    // equivalent of the PersonType constructor
    constructor(name) {
        this.name = name;
    }

    // equivalent of PersonType.prototype.sayName
    sayName() {
        console.log(this.name);
    }
};

let person = new PersonClass("Nicholas");
person.sayName();   // outputs "Nicholas"

console.log(person instanceof PersonClass);     // true
console.log(person instanceof Object);          // true

console.log(typeof PersonClass);                    // "function"
console.log(typeof PersonClass.prototype.sayName);  // "function"


//named
let PersonClass = class PersonClass2 {

    // equivalent of the PersonType constructor
    constructor(name) {
        this.name = name;
    }

    // equivalent of PersonType.prototype.sayName
    sayName() {
        console.log(this.name);
    }
};

console.log(PersonClass === PersonClass2);  // true
همانطور که متوجه شدید، class‌ها به همانند function‌ها به دو شکل declarations و expressions قابل تعریف هستند (یکی دیگر از شباهت ها). یک نکته در حالت تعریف به صورت named این است که میتوان PerssonClass2 و PerssonClass را به دلیل اینکه هر دوی آنها اشاره‌گر به یک کلاس هستند، به جای هم استفاده کنید.
نکته جالب این که class expressions‌ها را می‌توان به عنوان آرگومان توابع دیگر هم ارسال کرد؛ برای مثال :
function createObject(classDef) {
    return new classDef();
}

let obj = createObject(class {
    sayHi() {
        console.log("Hi!");
    }
});

obj.sayHi();        // "Hi!"
در کد بالا createObject، متدی است که class expression ما به عنوان آرگومان آن پاس داده شده است و در نهایت توانسته‌ایم از این کلاس پاس داده شده در داخل متد نمونه سازی کرده و آن را به عنوان نتیجه‌ی برگشتی return کنیم. 
نکته جالب دیگر این که با استفاده از class expressions‌ها خواهیم توانست singleton‌ها را با فراخوانی بلافاصله‌ی سازنده کلاس، پیاده سازی کنیم. برای این منظور باید کلمه‌ی کلیدی new را قبل از کلمه‌ی کلیدی class نوشته و در پایان هم از دو پرانتز باز و بسته استفاده کنید که معادل فراخوانی سازنده‌ی کلاس خواهد بود.
let person = new class {
    constructor(name) {
        this.name = name;
    }

    sayName() {
        console.log(this.name);
    }
}("Nicholas");

person.sayName();       // "Nicholas  

در کد بالا ، "Nicholas" به عنوان آرگومان سازنده کلاس بی نام در هنگام ساخت نمونه از طریق پرانتز‌های باز و بسته انتهایی، پاس داده شده است. استفاده از class declarations یا class expressions برای کار با کلاس‌ها به سبک کاری شما مربوط خواهد شد و بس. ولی نکته این است که هر دو شکل پیاده سازی کلاس‌ها بر خلاف function declarations و function expressions ، قابلیت  hoisting  را نخواهند داشت و به صورت پیش فرض در حالت strict mode اجرا خواهند شد.

Accessor Properties

کلاس‌ها این امکان را دارند تا بتوان برای پراپرتی‌هایی که در سازنده‌ی کلاس تعریف شده‌اند، accessor property تعریف کرد. سینتکس استفاده شده‌ی برای این منظور، شبیه به ساخت object literal accessor‌ها در ES 5 میباشد.برای مثال:

class CustomHTMLElement {

    constructor(element) {
        this.element = element;
    }

    get html() {
        return this.element.innerHTML;
    }

    set html(value) {
        this.element.innerHTML = value;
    }
}

var descriptor = Object.getOwnPropertyDescriptor(CustomHTMLElement.prototype,\
 "html");

console.log("get" in descriptor);   // true
console.log("set" in descriptor);   // true

در کد بالا ، getter و setter برای محتوای html مربوط به پراپرتی element در نظر گرفته شده است که در واقعا نمایندگان (delegates) مربوط به متد innterHTML خود element می‌باشند. معادل همین پیاده سازی بدون استفاده از سینتکس کلاس، به شکل زیر خواهد بود:

// direct equivalent to previous example
let CustomHTMLElement = (function() {
    "use strict";

    const CustomHTMLElement = function(element) {
        // make sure the function was called with new
        if (typeof new.target === "undefined") {
            throw new Error("Constructor must be called with new.");
        }
        this.element = element;
    }

    Object.defineProperty(CustomHTMLElement.prototype, "html", {
        enumerable: false,
        configurable: true,
        get: function() {
            return this.element.innerHTML;
        },
        set: function(value) {
            this.element.innerHTML = value;
        }
    });
    return CustomHTMLElement;
}());

حتما متوجه شدید که با استفاده از سینتکس کلاس برای تعریف accessor property‌ها حجم کد نویسی شما خیلی کاهش خواهد یافت و این تنها تفاوت بین دو شکل پیاده سازی فوق میباشد.

Static Members

ساخت اعضای استاتیک در ورژن قبل برای مثال به شکل زیر بود:

function PersonType(name) {
    this.name = name;
}

// static method
PersonType.create = function(name) {
    return new PersonType(name);
};

// instance method
PersonType.prototype.sayName = function() {
    console.log(this.name);
};

var person = PersonType.create("Nicholas");

 در کد بالا یک متد استاتیک برای نوع داده شخصی PersonType در نظر گرفته شده است. این مورد در ES 6 بهبود یافته و فقط با قرار دادن کلمه‌ی کلیدی static قبل از نام متد و یا accessor property می‌توان به نتیجه‌ی مثال بالا دست یافت:

class PersonClass {

    // equivalent of the PersonType constructor
    constructor(name) {
        this.name = name;
    }

    // equivalent of PersonType.prototype.sayName
    sayName() {
        console.log(this.name);
    }

    // equivalent of PersonType.create
    static create(name) {
        return new PersonClass(name);
    }
}

let person = PersonClass.create("Nicholas");

نکته این که نمی‌توان سازنده‌ی استاتیک در کلاس خود تعریف کرد. 


Inheritance

مشکل دیگری که در ES 5 برای پیاده سازی انواع داده شخصی وجود داشت، حجم بالای کد و مراحلی بود که برای پیاده سازی وراثت می‌بایستی متحمل می‌شدیم. برای مثال در ورژن قبلی باید به شکل زیر عمل میکردیم:

function Rectangle(length, width) {
    this.length = length;
    this.width = width;
}

Rectangle.prototype.getArea = function() {
    return this.length * this.width;
};

function Square(length) {
    Rectangle.call(this, length, length);
}

Square.prototype = Object.create(Rectangle.prototype, {
    constructor: {
        value:Square,
        enumerable: true,
        writable: true,
        configurable: true
    }
});

var square = new Square(3);
console.log(square.getArea());              // 9
console.log(square instanceof Square);      // true
console.log(square instanceof Rectangle);   // true

درکد بالا Square از Rectangle ارث بری کرده که برای این منظور Square.prototype را با ساخت نمونه‌ای از Rectangle.prototype بازنویسی کرده‌ایم. این سینتکس باعث سردرگمی اغلب تازه کاران خواهد شد. برای این منظور در ES 6 خیلی راحت با استفاده از کلمه‌ی کلیدی  extends بعد از نام کلاس و سپس نوشتن نام کلاس پایه خواهیم توانست به نتیجه‌ی بالا دست یابیم. به عنوان مثال:

class Rectangle {

    constructor(length, width) {
        this.length = length;
        this.width = width;
    }

    getArea() {
        return this.length * this.width;
    }
}

class Square extends Rectangle {
    constructor(length) {
        // same as Rectangle.call(this, length, length)
        super(length, length);
    }
}

var square = new Square(3);
console.log(square.getArea());              // 9
console.log(square instanceof Square);      // true
console.log(square instanceof Rectangle);   // true

در کد بالا نیز کلاس Square از کلاس Rectangle ارث بری کرده و همانطور که مشخص است و انتظار داشتیم، متد getArea در یکی از اعضای به ارث برده شده از کلاس پایه، قابل دسترسی می‌باشد. در سازنده‌ی کلاس Square با استفاده از ()super توانسته‌ایم سازنده‌ی کلاس Rectangle را با آرگومان‌های مشخصی فراخوانی کنیم. 

اگر برای subclass، سازنده در نظر گرفته شود، باید سازنده‌ی کلاس پیاده سازی کننده حتما فراخوانی شود. در غیر این صورت با خطا روبرو خواهید شد. ولی در مقابل اگر هیچ سازنده‌ای برای subclass در نظر نگرفته باشید، به صورت خودکار سازنده‌ی کلاس پایه هنگام ساخت نمونه از این subclass فراخوانی خواهد شد:

class Square extends Rectangle {
    // no constructor
}

// Is equivalent to
class Square extends Rectangle {
    constructor(...args) {
        super(...args);
    }
}

همانطور که در کد بالا مشخص است اگر سازنده‌ای برای subclass در نظر گرفته نشود، تمام آرگومان‌های ارسالی، هنگام نمونه سازی از آن، به ترتیب به سازنده‌ی کلاس پایه نیز پاس داده خواهند شد.

 چند نکته

- فقط زمانی میتوان ()super را فراخوانی کرد که از بعد از نام کلاس از کلمه‌ی کلیدی extends استفاده شده باشد.
- باید قبل از دسترسی به کلمه‌ی کلیدی this در سازنده subclass، سازنده‌ی کلاس پایه را با استفاده از ()super فراخوانی کرد.
 

Class Methods 

 اگر در subclass متدی همنام متد کلاس پایه داشته باشید، به صورت خودکار متد کلاس پایه override خواهد شد. البته همیشه میتوان متد کلاس پایه را مستقیم هم فراخوانی کرد؛ به عنوان مثال:

class Square extends Rectangle {
    constructor(length) {
        super(length, length);
    }

    // override, shadow, and call Rectangle.prototype.getArea()
    getArea() {
        return super.getArea();
    }
}

در کد بالا متد getArea کلاس پایه بازنویسی شده است. ولی با این حال با استفاده از کلمه‌ی super به متد اصلی در کلاس پایه دسترسی داریم. 

نام متد‌ها حتی می‌توانند قابلیت محاسباتی داشته باشند. به عنوان مثال خواهید توانست به شکل زیر عمل کنید:

let methodName = "getArea";

class Square extends Rectangle {
    constructor(length) {
        super(length, length);
    }

    // override, shadow, and call Rectangle.prototype.getArea()
    [methodName]() {
        return super.getArea();
    }
}

کد بالا دقیقا با مثال قبل یکسان است با این تفاوت که نام متد getArea را به صورت رشته‌ای با قابلیت محاسباتی در نظر گرفتیم.

ارث بردن اعضای استاتیک یک مفهوم جدید در جاوااسکریپت می‌باشد که نمونه‌ی آن را می‌توانید در کد زیر مشاهده کنید:

class Rectangle {
    constructor(length, width) {
        this.length = length;
        this.width = width;
    }

    getArea() {
        return this.length * this.width;
    }

    static create(length, width) {
        return new Rectangle(length, width);
    }
}

class Square extends Rectangle {
    constructor(length) {
        // same as Rectangle.call(this, length, length)
        super(length, length);
    }
}

var rect = Square.create(3, 4);
console.log(rect instanceof Rectangle);     // true
console.log(rect.getArea());                // 12
console.log(rect instanceof Square);        // false

در کد بالا متد استاتیک create یک متد استاتیک در کلاس پایه Rectangle می‌باشد که این بار در کلاس Square هم قابل دسترسی است.

قدرتمندترین جنبه‌ی کلاس‌های مشتق شده در ES 6 ، توانایی ارث بری از expression‌ها می‌باشد. شما می‌توانید کلمه‌ی کلیدی extends را با هر expression ای استفاده کنید. برای مثال:

function Rectangle(length, width) {
    this.length = length;
    this.width = width;
}

Rectangle.prototype.getArea = function() {
    return this.length * this.width;
};

class Square extends Rectangle {
    constructor(length) {
        super(length, length);
    }
}

var x = new Square(3);
console.log(x.getArea());               // 9
console.log(x instanceof Rectangle);    // true

در کد بالا Rectangle یک تابع سازنده برای تعریف نوع داده شخصی در ES 5 و Square، نوع داده با سینتکس کلاس در ES 6 می‌باشند. ولی با این حال کلاس Square توانسته است از Rectangle ارث بری کند.

یکی دیگر از امکانات فوق العاده‌ی آن، مشخص کردن داینامیک کلاس پایه است. برای مثال: 

function Rectangle(length, width) {
    this.length = length;
    this.width = width;
}

Rectangle.prototype.getArea = function() {
    return this.length * this.width;
};

function getBase() {
    return Rectangle;
}

class Square extends getBase() {
    constructor(length) {
        super(length, length);
    }
}

var x = new Square(3);
console.log(x.getArea());               // 9
console.log(x instanceof Rectangle);    // true

در کد بالا متد getBase می‌تواند شامل منطق بیشتری هم برای مشخص کردن داینامیک کلاس پایه باشد که این مورد در بعضی از سناریوها مفید خواهد بود.

new.target

با استفاده از مقدار موجود در این شیء، در سازنده‌ی کلاس می‌توان مشخص کرد که به چه شکلی به  کلاس مورد نظر استناد شده‌است. برای مثال:

class Rectangle {
    constructor(length, width) {
        console.log(new.target === Rectangle);
        this.length = length;
        this.width = width;
    }
}

// new.target is Rectangle
var obj = new Rectangle(3, 4);      // outputs true

در کد بالا با استفاده از new.target توانستیم که مشخص کنیم شیء ایجاد شده از نوع Rectangle می‌باشد. با استفاده از این امکان خوب می‌توان به ساخت کلاس‌های abstract رسید. برای مثال:

// abstract base class
class Shape {
    constructor() {
        if (new.target === Shape) {
            throw new Error("This class cannot be instantiated directly.")
        }
    }
}

class Rectangle extends Shape {
    constructor(length, width) {
        super();
        this.length = length;
        this.width = width;
    }
}

var x = new Shape();                // throws error
var y = new Rectangle(3, 4);        // no error
console.log(y instanceof Shape);    // true

در کد بالا که کاملا هم مشخص است؛ در سازنده‌ی کلاس Shape مشخص کرده‌ایم که اگر مستقیما از کلاس Shape نمونه سازی شد، یک exception را پرتاب کند. با این اوصاف ما توانسته‌ایم که کلاس Shape را به صورت Abstract معرفی کنیم.

مطالب
آپلود فایل‌ها توسط برنامه‌های React به یک سرور ASP.NET Core به همراه نمایش درصد پیشرفت
قصد داریم اطلاعات یک فرم React را به همراه دو فایل الصاقی به آن، به سمت یک سرور ASP.NET Core ارسال کنیم؛ بطوریکه درصد پیشرفت ارسال فایل‌ها، زمان سپری شده، زمان باقی مانده و سرعت آپلود نیز گزارش داده شوند:



پیشنیازها
«بررسی روش آپلود فایل‌ها در ASP.NET Core»
«ارسال فایل و تصویر به همراه داده‌های دیگر از طریق jQuery Ajax »

- در مطلب اول، روش دریافت فایل‌ها از کلاینت، در سمت سرور و ذخیره سازی آن‌ها در یک برنامه‌ی ASP.NET Core بررسی شده‌است که کلیات آن در اینجا نیز صادق است.
- در مطلب دوم، روش کار با FormData استاندارد بررسی شده‌است. هرچند در مطلب جاری از jQuery استفاده نمی‌شود، اما نکات نحوه‌ی کار با شیء FormData استاندارد، در اینجا نیز یکی است.


برپایی پروژه‌های مورد نیاز

ابتدا یک پوشه‌ی جدید مانند UploadFilesSample را ایجاد کرده و در داخل آن دستور زیر را اجرا می‌کنیم:
 dotnet new react
در مورد این قالب که امکان تجربه‌ی توسعه‌ی یکپارچه‌ی ASP.NET Core و React را میسر می‌کند، در مطلب «روش یکی کردن پروژه‌های React و ASP.NET Core» بیشتر بحث کرده‌ایم.
سپس در این پوشه، پوشه‌ی ClientApp پیش‌فرض آن‌را حذف می‌کنیم؛ چون کمی قدیمی است. همچنین فایل‌های کنترلر و سرویس آب و هوای پیش‌فرض آن‌را به همراه پوشه‌ی صفحات Razor آن، حذف و پوشه‌ی خالی wwwroot را نیز به آن اضافه می‌کنیم.
همچنین بجای تنظیم پیش فرض زیر در فایل کلاس آغازین برنامه:
spa.UseReactDevelopmentServer(npmScript: "start");
از تنظیم زیر استفاده کرده‌ایم تا با هر بار تغییری در کدهای پروژه‌ی ASP.NET، یکبار دیگر از صفر npm start اجرا نشود:
spa.UseProxyToSpaDevelopmentServer("http://localhost:3000");
بدیهی است در این حالت باید از طریق خط فرمان به پوشه‌ی clientApp وارد شد و دستور npm start را یکبار به صورت دستی اجرا کرد، تا این وب سرور بر روی پورت 3000، راه اندازی شود. البته ما برنامه را به صورت یکپارچه بر روی پورت 5001 وب سرور ASP.NET Core، مرور می‌کنیم.

اکنون در ریشه‌ی پروژه‌ی ASP.NET Core ایجاد شده، دستور زیر را صادر می‌کنیم تا پروژه‌ی کلاینت React را با فرمت جدید آن ایجاد کند:
> create-react-app clientapp
سپس وارد این پوشه‌ی جدید شده و بسته‌های زیر را نصب می‌کنیم:
> cd clientapp
> npm install --save bootstrap axios react-toastify
توضیحات:
- برای استفاده از شیوه‌نامه‌های بوت استرپ، بسته‌ی bootstrap نیز در اینجا نصب می‌شود که برای افزودن فایل bootstrap.css آن به پروژه‌ی React خود، ابتدای فایل clientapp\src\index.js را به نحو زیر ویرایش خواهیم کرد:
import "bootstrap/dist/css/bootstrap.css";
این import به صورت خودکار توسط webpack ای که در پشت صحنه کار bundling & minification برنامه را انجام می‌دهد، مورد استفاده قرار می‌گیرد.
- برای نمایش پیام‌های برنامه از کامپوننت react-toastify استفاده می‌کنیم که پس از نصب آن، با مراجعه به فایل app.js نیاز است importهای لازم آن‌را اضافه کنیم:
import { ToastContainer } from "react-toastify";
import "react-toastify/dist/ReactToastify.css";
همچنین نیاز است ToastContainer را به ابتدای متد render آن نیز اضافه کرد:
  render() {
    return (
      <React.Fragment>
        <ToastContainer />
- برای ارسال فایل‌ها به سمت سرور از کتابخانه‌ی معروف axios استفاده خواهیم کرد.


ایجاد کامپوننت React فرم ارسال فایل‌ها به سمت سرور

پس از این مقدمات، فایل جدید clientapp\src\components\UploadFileSimple.jsx را ایجاد کرده و به صورت زیر تکمیل می‌کنیم:
import React, { useState } from "react";
import axios from "axios";
import { toast } from "react-toastify";

export default function UploadFileSimple() {

  const [description, setDescription] = useState("");
  const [selectedFile1, setSelectedFile1] = useState();
  const [selectedFile2, setSelectedFile2] = useState();


  return (
    <form>
      <fieldset className="form-group">
        <legend>Support Form</legend>

        <div className="form-group row">
          <label className="form-control-label" htmlFor="description">
            Description
          </label>
          <input
            type="text"
            className="form-control"
            name="description"
            onChange={event => setDescription(event.target.value)}
            value={description}
          />
        </div>

        <div className="form-group row">
          <label className="form-control-label" htmlFor="file1">
            File 1
          </label>
          <input
            type="file"
            className="form-control"
            name="file1"
            onChange={event => setSelectedFile1(event.target.files[0])}
          />
        </div>

        <div className="form-group row">
          <label className="form-control-label" htmlFor="file2">
            File 2
          </label>
          <input
            type="file"
            className="form-control"
            name="file2"
            onChange={event => setSelectedFile2(event.target.files[0])}
          />
        </div>

        <div className="form-group row">
          <button
            className="btn btn-primary"
            type="submit"
          >
            Submit
          </button>
        </div>
      </fieldset>
    </form>
  );
}
کاری که تا این مرحله انجام شده، بازگشت UI فرم برنامه توسط یک functional component است.
- توسط آن یک textbox به همراه دو فیلد ارسال فایل، به فرم اضافه شده‌اند.
- مرحله‌ی بعد، دسترسی به فایل‌های انتخابی کاربر و همچنین مقدار توضیحات وارد شده‌است. به همین جهت با استفاده از useState Hook، روش دریافت و تنظیم این مقادیر را مشخص کرده‌ایم:
  const [description, setDescription] = useState("");
  const [selectedFile1, setSelectedFile1] = useState();
  const [selectedFile2, setSelectedFile2] = useState();
با React Hooks، بجای تعریف یک state، به صورت خاصیت، آن‌را صرفا use می‌کنیم و یا همان useState، که یک تابع است و باید در ابتدای کامپوننت، مورد استفاده قرار گیرد. این متد برای شروع به کار، نیاز به یک state آغازین را دارد؛ مانند انتساب یک رشته‌ی خالی به description. سپس اولین خروجی متد useState که داخل یک آرایه مشخص شده‌است، همان متغیر description است که توسط state ردیابی خواهد شد. اینبار بجای متد this.setState قبلی که یک متد عمومی بود، متدی اختصاصی را صرفا جهت تغییر مقدار همین متغیر description به نام setDescription به عنوان دومین خروجی متد useState، تعریف می‌کنیم. بنابراین متد useState، یک initialState را دریافت می‌کند و سپس یک مقدار را به همراه یک متد، جهت تغییر state آن، بازگشت می‌دهد. همین کار را برای دو فیلد دیگر نیز تکرار کرده‌ایم. بنابراین selectedFile1، فایلی است که توسط متد setSelectedFile1 تنظیم خواهد شد و این تنظیم، سبب رندر مجدد UI نیز خواهد گردید.
- پس از طراحی state این فرم، مرحله‌ی بعدی، استفاده از متدهای set تمام useStateهای فوق است. برای مثال در مورد یک textbox معمولی، می‌توان آن‌را به صورت inline تعریف کرد و با هر بار تغییری در محتوای آن، این رخ‌داد را به متد setDescription ارسال نمود تا مقدار وارد شده را به متغیر حالت description انتساب دهد:
          <input
            type="text"
            className="form-control"
            name="description"
            onChange={event => setDescription(event.target.value)}
            value={description}
          />
در مورد فیلدهای دریافت فایل‌ها، روش انجام اینکار به صورت زیر است:
          <input
            type="file"
            className="form-control"
            name="file1"
            onChange={event => setSelectedFile1(event.target.files[0])}
          />
چون المان‌های دریافت فایل می‌توانند بیش از یک فایل را نیز دریافت کنند (اگر ویژگی multiple، به تعریف تگ آن‌ها اضافه شود)، به همین جهت خاصیت files بر روی آن‌ها قابل دسترسی شده‌است. اما چون در اینجا ویژگی multiple ذکر نشده‌است، بنابراین تنها یک فایل توسط آن‌ها قابل دریافت است و به همین جهت دسترسی به اولین فایل و یا files[0] را در اینجا مشاهده می‌کنید. بنابراین با فراخوانی متد setSelectedFile1، اکنون متغیر حالت selectedFile1، مقدار دهی شده و قابل استفاده است.


تشکیل مدل ارسال داده‌ها به سمت سرور

در فرم‌های معمولی، عموما داده‌ها به صورت یک شیء JSON به سمت سرور ارسال می‌شوند؛ اما در اینجا وضع متفاوت است و به همراه توضیحات وارد شده، دو فایل باینری نیز وجود دارند.
در حالت ارسال متداول فرم‌هایی که به همراه المان‌های دریافت فایل هستند، ابتدا یک ویژگی enctype با مقدار multipart/form-data به المان فرم اضافه می‌شود و سپس این فرم به سادگی قابلیت post-back به سمت سرور را پیدا می‌کند:
<form enctype="multipart/form-data" action="/upload" method="post">
   <input id="file-input" type="file" />
</form>
اما اگر قرار باشد همین فرم را توسط جاوا اسکریپت به سمت سرور ارسال کنیم، روش کار به صورت زیر است:
let file = document.getElementById("file-input").files[0];
let formData = new FormData();
 
formData.append("file", file);
fetch('/upload/image', {method: "POST", body: formData});
ابتدا به خاصیت files و اولین فایل آن دسترسی پیدا کرده و سپس شیء استاندارد FormData را بر اساس آن و تمام فیلدهای فرم تشکیل می‌دهیم. FormData ساختاری شبیه به یک دیکشنری را دارد و از کلیدهایی که متناظر با Id المان‌های فرم و مقادیری متناظر با مقادیر آن المان‌ها هستند، تشکیل می‌شود که توسط متد append آن، به این دیکشنری اضافه خواهند شد. در آخر هم شیء formData را به سمت سرور ارسال می‌کنیم.
در یک برنامه‌ی React نیز باید دقیقا چنین مراحلی طی شوند. تا اینجا کار دسترسی به مقدار files[0] و تشکیل متغیرهای حالت فرم را انجام داده‌ایم. در مرحله‌ی بعد، شیء FormData را تشکیل خواهیم داد:
  // ...

export default function UploadFileSimple() {
  // ...

  const handleSubmit = async event => {
    event.preventDefault();

    const formData = new FormData();
    formData.append("description", description);
    formData.append("file1", selectedFile1);
    formData.append("file2", selectedFile2);


      toast.success("Form has been submitted successfully!");

      setDescription("");
  };

  return (
    <form onSubmit={handleSubmit}>
    </form>
  );
}
به همین جهت، ابتدا کار مدیریت رخ‌داد onSubmit فرم را انجام داده و توسط آن با استفاده از متد preventDefault، از post-back متداول فرم به سمت سرور جلوگیری می‌کنیم. سپس شیء FormData را بر اساس مقادیر حالت متناظر با المان‌های فرم، تشکیل می‌دهیم. کلیدهایی که در اینجا ذکر می‌شوند، نام خواص مدل متناظر سمت سرور را نیز تشکیل خواهند داد.


ارسال مدل داده‌های فرم React به سمت سرور

پس از تشکیل شیء FormData در متد مدیریت کننده‌ی handleSubmit، اکنون با استفاده از کتابخانه‌ی axios، کار ارسال این اطلاعات را به سمت سرور انجام خواهیم داد:
  // ...

export default function UploadFileSimple() {
  const apiUrl = "https://localhost:5001/api/SimpleUpload/SaveTicket";

  // ...
  const [isUploading, setIsUploading] = useState(false);

  const handleSubmit = async event => {
    event.preventDefault();

    const formData = new FormData();
    formData.append("description", description);
    formData.append("file1", selectedFile1);
    formData.append("file2", selectedFile2);

    try {
      setIsUploading(true);

      const { data } = await axios.post(apiUrl, formData, {
        headers: {
          "Content-Type": "multipart/form-data"
        }}
      });

      toast.success("Form has been submitted successfully!");

      console.log("uploadResult", data);

      setIsUploading(false);
      setDescription("");
    } catch (error) {
      setIsUploading(false);
      toast.error(error);
    }
  };


  return (
  // ...
  );
}
در اینجا نحوه‌ی ارسال شیء FormData را توسط کتابخانه‌ی axios به سمت سرور مشاهده می‌کنید. با استفاده از متد post آن، به سمت مسیر api/SimpleUpload/SaveTicket که آن‌را در ادامه تکمیل خواهیم کرد، شیء formData متناظر با اطلاعات فرم، به صورت async، ارسال شده‌است. همچنین headers آن نیز به همان «"enctype="multipart/form-data» که پیشتر توضیح داده شد، تنظیم شده‌است.
در قطعه کد فوق، متغیر جدید حالت isLoading را نیز مشاهده می‌کنید. از آن می‌توان برای فعال و غیرفعال کردن دکمه‌ی submit فرم در زمان ارسال اطلاعات به سمت سرور، استفاده کرد:
<button
   disabled={ isUploading }
   className="btn btn-primary"
   type="submit"
>
  Submit
</button>
به این ترتیب اگر فراخوانی await axios.post هنوز به پایان نرسیده باشد، مقدار isUploading مساوی true بوده و سبب غیرفعال شدن دکمه‌ی submit می‌شود.


اعتبارسنجی سمت کلاینت فایل‌های ارسالی به سمت سرور

در اینجا شاید نیاز باشد نوع و یا اندازه‌ی فایل‌های انتخابی توسط کاربر را تعیین اعتبار کرد. به همین جهت متدی را برای اینکار به صورت زیر تهیه می‌کنیم:
  const isFileValid = selectedFile => {
    if (!selectedFile) {
      // toast.error("Please select a file.");
      return false;
    }

    const allowedMimeTypes = [
      "image/png",
      "image/jpeg",
      "image/gif",
      "image/svg+xml"
    ];
    if (!allowedMimeTypes.includes(selectedFile.type)) {
      toast.error(`Invalid file type: ${selectedFile.type}`);
      return false;
    }

    const maxFileSize = 1024 * 500;
    const fileSize = selectedFile.size;
    if (fileSize > maxFileSize) {
      toast.error(
        `File size ${(fileSize / 1024).toFixed(
          2
        )} KB must be less than ${maxFileSize / 1024} KB`
      );
      return false;
    }

    return true;
  };
در اینجا ابتدا بررسی می‌شود که آیا فایلی انتخاب شده‌است یا خیر؟ سپس فایل انتخاب شده، باید دارای یکی از MimeTypeهای تعریف شده باشد. همچنین اندازه‌ی آن نیز نباید بیشتر از 500 کیلوبایت باشد. در هر کدام از این موارد، یک خطا توسط react-toastify به کاربر نمایش داده خواهد شد.

اکنون برای استفاده‌ی از این متد دو راه وجود دارد:
الف) استفاده از آن در متد مدیریت کننده‌ی submit اطلاعات:
  const handleSubmit = async event => {
    event.preventDefault();

    if (!isFileValid(selectedFile1) || !isFileValid(selectedFile2)) {
      return;
    }
در ابتدای متد مدیریت کننده‌ی handleSubmit، متد isFileValid را بر روی دو متغیر حالتی که حاوی اطلاعات فایل‌های انتخابی توسط کاربر هستند، فراخوانی می‌کنیم.

ب) استفاده‌ی از آن جهت غیرفعال کردن دکمه‌ی submit:
<button
            disabled={
              isUploading ||
              !isFileValid(selectedFile1) ||
              !isFileValid(selectedFile2)
            }
            className="btn btn-primary"
            type="submit"
>
   Submit
</button>
می‌توان دقیقا در همان زمانیکه کاربر فایلی را انتخاب می‌کند نیز به انتخاب او واکنش نشان داد. چون مقدار دهی‌های متغیرهای حالت، همواره سبب رندر مجدد فرم می‌شوند و در این حالت مقدار ویژگی disabled نیز محاسبه‌ی مجدد خواهد شد، بنابراین در همان زمانیکه کاربر فایلی را انتخاب می‌کند، متد isFileValid نیز بر روی آن فراخوانی شده و در صورت نیاز، خطایی به او نمایش داده می‌شود.


نمایش درصد پیشرفت آپلود فایل‌ها

کتابخانه‌ی axios، امکان دسترسی به میزان اطلاعات آپلود شده‌ی به سمت سرور را به صورت یک رخ‌داد فراهم کرده‌است که در ادامه از آن برای نمایش درصد پیشرفت آپلود فایل‌ها استفاده می‌کنیم:
      const startTime = Date.now();

      const { data } = await axios.post(apiUrl, formData, {
        headers: {
          "Content-Type": "multipart/form-data"
        },
        onUploadProgress: progressEvent => {
          const { loaded, total } = progressEvent;

          const timeElapsed = Date.now() - startTime;
          const uploadSpeed = loaded / (timeElapsed / 1000);

          setUploadProgress({
            queueProgress: Math.round((loaded / total) * 100),
            uploadTimeRemaining: Math.ceil((total - loaded) / uploadSpeed),
            uploadTimeElapsed: Math.ceil(timeElapsed / 1000),
            uploadSpeed: (uploadSpeed / 1024).toFixed(2)
          });
        }
      });
هر بار که متد رویدادگردان onUploadProgress فراخوانی می‌شود، به همراه اطلاعات شیء progressEvent است که خواص loaded آن به معنای میزان اطلاعات آپلود شده و total هم جمع کل اندازه‌ی اطلاعات در حال ارسال است. بر این اساس و همچنین زمان شروع عملیات، می‌توان اطلاعاتی مانند درصد پیشرفت عملیات، مدت زمان باقیمانده، مدت زمان سپری شده و سرعت آپلود اطلاعات را محاسبه کرد و سپس توسط آن، شیء state ویژه‌ای را به روز رسانی کرد که به صورت زیر تعریف می‌شود:
  const [uploadProgress, setUploadProgress] = useState({
    queueProgress: 0,
    uploadTimeRemaining: 0,
    uploadTimeElapsed: 0,
    uploadSpeed: 0
  });
هر بار به روز رسانی state، سبب رندر مجدد UI می‌شود. به همین جهت متدی را برای رندر جدولی که اطلاعات شیء state فوق را نمایش می‌دهد، به صورت زیر تهیه می‌کنیم:
  const showUploadProgress = () => {
    const {
      queueProgress,
      uploadTimeRemaining,
      uploadTimeElapsed,
      uploadSpeed
    } = uploadProgress;

    if (queueProgress <= 0) {
      return <></>;
    }

    return (
      <table className="table">
        <thead>
          <tr>
            <th width="15%">Event</th>
            <th>Status</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td>
              <strong>Elapsed time</strong>
            </td>
            <td>{uploadTimeElapsed} second(s)</td>
          </tr>
          <tr>
            <td>
              <strong>Remaining time</strong>
            </td>
            <td>{uploadTimeRemaining} second(s)</td>
          </tr>
          <tr>
            <td>
              <strong>Upload speed</strong>
            </td>
            <td>{uploadSpeed} KB/s</td>
          </tr>
          <tr>
            <td>
              <strong>Queue progress</strong>
            </td>
            <td>
              <div
                className="progress-bar progress-bar-info progress-bar-striped"
                role="progressbar"
                aria-valuemin="0"
                aria-valuemax="100"
                aria-valuenow={queueProgress}
                style={{ width: queueProgress + "%" }}
              >
                {queueProgress}%
              </div>
            </td>
          </tr>
        </tbody>
      </table>
    );
  };
و این متد را به این شکل در ذیل المان fieldset فرم، اضافه می‌کنیم تا کار رندر نهایی را انجام دهد:
{showUploadProgress()}
هربار که state به روز می‌شود، مقدار شیء uploadProgress دریافت شده و بر اساس آن، 4 سطر جدول نمایش پیشرفت آپلود، تکمیل می‌شوند.
در اینجا از کامپوننت progress-bar خود بوت استرپ برای نمایش درصد آپلود فایل‌ها استفاده شده‌است. اگر style آن‌را هر بار با مقدار جدید queueProgress به روز رسانی کنیم، سبب نمایش پویای این progress-bar خواهد شد.

یک نکته: اگر می‌خواهید درصد پیشرفت آپلود را در حالت آزمایش local بهتر مشاهده کنید، دربرگه‌ی network، سرعت را بر روی 3G تنظیم کنید (مانند تصویر ابتدای بحث)؛ در غیراینصورت همان ابتدای کار به علت بالا بودن سرعت ارسال فایل‌ها، 100 درصد را مشاهده خواهید کرد.


دریافت فرم React درخواست پشتیبانی، در سمت سرور و ذخیره‌ی فایل‌های آن‌

بر اساس نحوه‌ی تشکیل FormData سمت کلاینت:
const formData = new FormData();
formData.append("description", description);
formData.append("file1", selectedFile1);
formData.append("file2", selectedFile2);
مدل سمت سرور معادل با آن به صورت زیر خواهد بود:
using Microsoft.AspNetCore.Http;

namespace UploadFilesSample.Models
{
    public class Ticket
    {
        public int Id { set; get; }

        public string Description { set; get; }

        public IFormFile File1 { set; get; }

        public IFormFile File2 { set; get; }
    }
}
که در اینجا هر selectedFile سمت کلاینت، به یک IFormFile سمت سرور نگاشت می‌شود. نام این خواص نیز باید با نام کلیدهای اضافه شده‌ی به دیکشنری FormData، یکی باشند.
پس از آن کنترلر ذخیره سازی اطلاعات Ticket را مشاهده می‌کنید:
using System.IO;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using UploadFilesSample.Models;

namespace UploadFilesSample.Controllers
{
    [Route("api/[controller]")]
    [ApiController]
    public class SimpleUploadController : Controller
    {
        private readonly IWebHostEnvironment _environment;

        public SimpleUploadController(IWebHostEnvironment environment)
        {
            _environment = environment;
        }

        [HttpPost("[action]")]
        public async Task<IActionResult> SaveTicket([FromForm]Ticket ticket)
        {
            var file1Path = await saveFileAsync(ticket.File1);
            var file2Path = await saveFileAsync(ticket.File2);

            //TODO: save the ticket ... get id

            return Created("", new { id = 1001 });
        }

        private async Task<string> saveFileAsync(IFormFile file)
        {
            const string uploadsFolder = "uploads";
            var uploadsRootFolder = Path.Combine(_environment.WebRootPath, "uploads");
            if (!Directory.Exists(uploadsRootFolder))
            {
                Directory.CreateDirectory(uploadsRootFolder);
            }

            //TODO: Do security checks ...!

            if (file == null || file.Length == 0)
            {
                return string.Empty;
            }

            var filePath = Path.Combine(uploadsRootFolder, file.FileName);
            using (var fileStream = new FileStream(filePath, FileMode.Create))
            {
                await file.CopyToAsync(fileStream);
            }

            return $"/{uploadsFolder}/{file.Name}";
        }
    }
}
توضیحات تکمیلی:
- تزریق IWebHostEnvironment در سازنده‌ی کلاس کنترلر، سبب می‌شود تا از طریق خاصیت WebRootPath آن، به wwwroot دسترسی پیدا کنیم و فایل‌های نهایی را در آنجا ذخیره سازی کنیم.
- همانطور که ملاحظه می‌کنید، هنوز هم model binding کار کرده و می‌توان شیء Ticket را به نحو متداولی دریافت کرد:
public async Task<IActionResult> SaveTicket([FromForm]Ticket ticket)
ویژگی FromForm نیز مرتبط است به هدر multipart/form-data ارسالی از سمت کلاینت:
      const { data } = await axios.post(apiUrl, formData, {
        headers: {
          "Content-Type": "multipart/form-data"
        }}
      });


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: UploadFilesSample.zip
برای اجرای آن، پس از صدور فرمان dotnet restore که سبب بازیابی وابستگی‌های سمت کلاینت نیز می‌شود، ابتدا به پوشه‌ی clientapp مراجعه کرده و فایل run.cmd را اجرا کنید. با اینکار react development server بر روی پورت 3000 شروع به کار می‌کند. سپس به پوشه‌ی اصلی برنامه‌ی ASP.NET Core بازگشت شده و فایل dotnet_run.bat را اجرا کنید. این اجرا سبب راه اندازی وب سرور برنامه و همچنین ارائه‌ی برنامه‌ی React بر روی پورت 5001 می‌شود.
مطالب
ویژگی Batching در EF Core
در EF 6.x به ازای هر عبارت insert/update/delete یکبار رفت و برگشت به بانک اطلاعاتی صورت می‌گیرد. به همین جهت کارآیی تعداد بالای ثبت، به روز رسانی و حذف رکوردها توسط آن پایین است. برای رفع این مشکل ویژگی Batching به EF Core اضافه شده‌است که توسط آن اینبار دسته‌ای از عبارات را به صورت یکجا و در طی یک رفت و برگشت، به سمت بانک اطلاعاتی ارسال می‌کند. به این ترتیب کارآیی و سرعت insert/update/delete آن به شدت افزایش خواهد یافت.


نحوه‌ی فعالسازی Batching در EF Core

Batching به صورت پیش فرض در EF Core بدون نیاز به هیچگونه تنظیم اضافه‌تری فعال است. اما اگر خواستید برای مثال، حالت پیش فرض EF 6.x را توسط آن شبیه سازی کنید، می‌توانید مقدار MaxBatchSize را به عدد 1 تنظیم نمائید (تا غیرفعال شود):
optionsBuilder.UseSqlServer(
   @"Server=(localdb)\mssqllocaldb;Database=Demo.Batching;Trusted_Connection=True;",
   options => options.MaxBatchSize(1)
);

مقدار پیش فرض MaxBatchSize را در کلاس SqlServerModificationCommandBatch می‌توانید مشاهده کنید:
public class SqlServerModificationCommandBatch : AffectedCountModificationCommandBatch
    {
        private const int DefaultNetworkPacketSizeBytes = 4096;
        private const int MaxScriptLength = 65536 * DefaultNetworkPacketSizeBytes / 2;
        private const int MaxParameterCount = 2100;
        private const int MaxRowCount = 1000;
در اینجا MaxRowCount همان MaxBatchSize پیش فرض است که به عدد 1000 تنظیم شده‌است. بنابراین اگر تنظیم options => options.MaxBatchSize(1) را ذکر نکنید، به معنای ارسال 1000 تایی دستورات insert/update/delete در طی یک درخواست به سمت سرور است.


آیا محدودیتی هم در مورد عملیات Batching وجود دارد؟

SQL Server به ازای هر batch تنها 2100 پارامتر را پشتیبانی می‌کند. در این حالت EF Core به صورت خودکار یک چنین کوئری‌های حجیمی را به چند Batch جهت تنظیم این محدودیت تقسیم خواهد کرد و در نهایت برنامه به مشکلی بر نمی‌خورد.


یک آزمایش: Batching پیش فرض به چه صورتی کار می‌کند و چه اثری را دارد؟

کدهای کامل این آزمایش را از اینجا می‌توانید دریافت کنید: Batching.zip
در اینجا کلاس Blog را به همراه Context متناظر با آن مشاهده می‌کنید:
    public class Blog
    {
        public int BlogId { get; set; }
        public string Name { get; set; }
        public string Url { get; set; }
    }

    public class BloggingContext : DbContext
    {
        public DbSet<Blog> Blogs { get; set; }

        protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
        {
            optionsBuilder.UseSqlServer(
                @"Server=(localdb)\mssqllocaldb;Database=Demo.Batching;Trusted_Connection=True;"/*,
                options => options.MaxBatchSize(2)*/
                );
            optionsBuilder.EnableSensitiveDataLogging();
        }
    }
در ابتدا MaxBatchSize را تنظیم نخواهیم کرد. یعنی از همان عدد 1000 پیش فرض استفاده می‌شود. تنظیم EnableSensitiveDataLogging نیز سبب می‌شود تا لاگ نهایی تهیه شده جهت نمایش، پرمحتواتر شود.
در این حالت اگر به روز رسانی‌ها (2 مورد) و ثبت‌های ذیل (6 مورد) را انجام دهیم:
            using (var db = new BloggingContext())
            {
                db.GetService<ILoggerFactory>().AddProvider(new MyLoggerProvider());

                // Modify some existing blogs
                var existing = db.Blogs.ToArray();
                existing[0].Url = "http://sample.com/blogs/dogs";
                existing[1].Url = "http://sample.com/blogs/cats";

                // Insert some new blogs
                db.Blogs.Add(new Blog { Name = "The Horse Blog", Url = "http://sample.com/blogs/horses" });
                db.Blogs.Add(new Blog { Name = "The Snake Blog", Url = "http://sample.com/blogs/snakes" });
                db.Blogs.Add(new Blog { Name = "The Fish Blog", Url = "http://sample.com/blogs/fish" });
                db.Blogs.Add(new Blog { Name = "The Koala Blog", Url = "http://sample.com/blogs/koalas" });
                db.Blogs.Add(new Blog { Name = "The Parrot Blog", Url = "http://sample.com/blogs/parrots" });
                db.Blogs.Add(new Blog { Name = "The Kangaroo Blog", Url = "http://sample.com/blogs/kangaroos" });

                db.SaveChanges();
            }
یک چنین خروجی SQL ایی تولید می‌شود:
Executed DbCommand (41ms) [Parameters=[@p1='57', @p0='http://sample.com/blogs/dogs' (Size = 4000), @p3='58', @p2='http://sample.com/blogs/cats' (Size = 4000), @p4='The Horse Blog' (Size = 4000), @p5='http://sample.com/blogs/horses' (Size = 4000), @p6='The Snake Blog' (Size = 4000), @p7='http://sample.com/blogs/snakes' (Size = 4000), @p8='The Fish Blog' (Size = 4000), @p9='http://sample.com/blogs/fish' (Size = 4000), @p10='The Koala Blog' (Size = 4000), @p11='http://sample.com/blogs/koalas' (Size = 4000), @p12='The Parrot Blog' (Size = 4000), @p13='http://sample.com/blogs/parrots' (Size = 4000), @p14='The Kangaroo Blog' (Size = 4000), @p15='http://sample.com/blogs/kangaroos' (Size = 4000)], CommandType='Text', CommandTimeout='30']
SET NOCOUNT ON;
UPDATE [Blogs] SET [Url] = @p0
WHERE [BlogId] = @p1;
SELECT @@ROWCOUNT;

UPDATE [Blogs] SET [Url] = @p2
WHERE [BlogId] = @p3;
SELECT @@ROWCOUNT;

DECLARE @inserted2 TABLE ([BlogId] int, [_Position] [int]);
MERGE [Blogs] USING (
VALUES (@p4, @p5, 0),
(@p6, @p7, 1),
(@p8, @p9, 2),
(@p10, @p11, 3),
(@p12, @p13, 4),
(@p14, @p15, 5)) AS i ([Name], [Url], _Position) ON 1=0
WHEN NOT MATCHED THEN
INSERT ([Name], [Url])
VALUES (i.[Name], i.[Url])
OUTPUT INSERTED.[BlogId], i._Position
INTO @inserted2;

SELECT [t].[BlogId] FROM [Blogs] t
INNER JOIN @inserted2 i ON ([t].[BlogId] = [i].[BlogId])
ORDER BY [i].[_Position];
در این دستورات موارد ذیل قابل توجه هستند:
- فقط یکبار Executed DbCommand مشاهده می‌شود.
- کل دستورات update و insert در طی یک درخواست و یک تراکنش به سمت بانک اطلاعاتی ارسال شده‌اند.
- ثبت دسته‌ای توسط merge using انجام شده‌است.
- در آخر نیز طبق معمول کار EF، شماره Idهای رکوردهای ثبت شده به سمت کلاینت بازگشت داده می‌شود.

در ادامه MaxBatchSize را به عدد 2 تنظیم می‌کنیم:
protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
   optionsBuilder.UseSqlServer(
     @"Server=(localdb)\mssqllocaldb;Database=Demo.Batching;Trusted_Connection=True;",
     options => options.MaxBatchSize(2)
    );
    optionsBuilder.EnableSensitiveDataLogging();
}
در این حالت اگر برنامه را اجرا کنیم، یک چنین خروجی قابل مشاهده خواهد بود:
Executed DbCommand (17ms) [Parameters=[@p1='65', @p0='http://sample.com/blogs/dogs' (Size = 4000), @p3='66', @p2='http://sample.com/blogs/cats' (Size = 4000)], CommandType='Text', CommandTimeout='30']
SET NOCOUNT ON;
UPDATE [Blogs] SET [Url] = @p0
WHERE [BlogId] = @p1;
SELECT @@ROWCOUNT;

UPDATE [Blogs] SET [Url] = @p2
WHERE [BlogId] = @p3;
SELECT @@ROWCOUNT;

Executed DbCommand (18ms) [Parameters=[@p0='The Horse Blog' (Size = 4000), @p1='http://sample.com/blogs/horses' (Size = 4000), @p2='The Snake Blog' (Size = 4000), @p3='http://sample.com/blogs/snakes' (Size = 4000)], CommandType='Text', CommandTimeout='30']
SET NOCOUNT ON;
DECLARE @inserted0 TABLE ([BlogId] int, [_Position] [int]);
MERGE [Blogs] USING (
VALUES (@p0, @p1, 0),
(@p2, @p3, 1)) AS i ([Name], [Url], _Position) ON 1=0
WHEN NOT MATCHED THEN
INSERT ([Name], [Url])
VALUES (i.[Name], i.[Url])
OUTPUT INSERTED.[BlogId], i._Position
INTO @inserted0;

SELECT [t].[BlogId] FROM [Blogs] t
INNER JOIN @inserted0 i ON ([t].[BlogId] = [i].[BlogId])
ORDER BY [i].[_Position];

Executed DbCommand (34ms) [Parameters=[@p0='The Fish Blog' (Size = 4000), @p1='http://sample.com/blogs/fish' (Size = 4000), @p2='The Koala Blog' (Size = 4000), @p3='http://sample.com/blogs/koalas' (Size = 4000)], CommandType='Text', CommandTimeout='30']
SET NOCOUNT ON;
DECLARE @inserted0 TABLE ([BlogId] int, [_Position] [int]);
MERGE [Blogs] USING (
VALUES (@p0, @p1, 0),
(@p2, @p3, 1)) AS i ([Name], [Url], _Position) ON 1=0
WHEN NOT MATCHED THEN
INSERT ([Name], [Url])
VALUES (i.[Name], i.[Url])
OUTPUT INSERTED.[BlogId], i._Position
INTO @inserted0;

SELECT [t].[BlogId] FROM [Blogs] t
INNER JOIN @inserted0 i ON ([t].[BlogId] = [i].[BlogId])
ORDER BY [i].[_Position];

Executed DbCommand (15ms) [Parameters=[@p0='The Parrot Blog' (Size = 4000), @p1='http://sample.com/blogs/parrots' (Size = 4000), @p2='The Kangaroo Blog' (Size = 4000), @p3='http://sample.com/blogs/kangaroos' (Size = 4000)], CommandType='Text', CommandTimeout='30']
SET NOCOUNT ON;
DECLARE @inserted0 TABLE ([BlogId] int, [_Position] [int]);
MERGE [Blogs] USING (
VALUES (@p0, @p1, 0),
(@p2, @p3, 1)) AS i ([Name], [Url], _Position) ON 1=0
WHEN NOT MATCHED THEN
INSERT ([Name], [Url])
VALUES (i.[Name], i.[Url])
OUTPUT INSERTED.[BlogId], i._Position
INTO @inserted0;

SELECT [t].[BlogId] FROM [Blogs] t
INNER JOIN @inserted0 i ON ([t].[BlogId] = [i].[BlogId])
ORDER BY [i].[_Position];
در این دستورات موارد ذیل قابل توجه هستند:
- اینبار تعداد 4 دستور Executed DbCommand مشاهده می‌شود ( برای انجام 2 به روز رسانی و 6 ثبت).
- هر batch بر اساس تنظیم MaxBatchSize به 2 دستور T-SQL محدود شده‌است که البته در انتها در حالت‌های insert، یک select هم برای بازگشت Idها به سمت کلاینت وجود دارد.
بنابراین اینبار بجای یکبار رفت و برگشت حالت قبل (استفاده از مقدار پیش فرض 1000 برای MaxBatchSize)، 4 بار رفت و برگشت به سمت بانک اطلاعاتی صورت گرفته‌است.

زمان کل انجام عملیات در حالت اول 41 میلی ثانیه و در حالت دوم 84 میلی ثانیه است که سرعت آن 51 درصد نسبت به حالت اول کاهش یافته‌است.
مطالب
کش خروجی API در ASP.NET Core با Redis
در این مقاله نمی‌خواهیم به طور عمیقی وارد جزییاتی مثل توضیح Redis یا کش بشویم؛ فرض شده‌است که کاربر با این مفاهیم آشناست. به طور خلاصه کش کردن یعنی همیشه به دیتابیس یا هارددیسک برای گرفتن اطلاعاتی که می‌خواهیم و گرفتنش هم کند است، وصل نشویم و بجای آن، اطلاعات را در یک محل موقتی که گرفتنش خیلی سریعتر بوده قرار دهیم و برای استفاده به آنجا برویم و اطلاعات را با سرعت بالا بخوانیم. کش کردن هم دسته بندی‌های مختلفی دارد که بر حسب سناریوهای مختلفی که وجود دارد، کاربرد خود را دارند. مثلا ساده‌ترین کش در ASP.NET Core، کش محلی (In-Memory Cache) می‌باشد که اینترفیس IMemoryCache را اعمال می‌کند و نیازی به هیچ پکیجی ندارد و به صورت درونی در ASP.NET Core در دسترس است که برای حالت توسعه، یا حالتیکه فقط یک سرور داشته باشیم، مناسب است؛ ولی برای برنامه‌های چند سروری، نوع دیگری از کش که به اصطلاح به آن Distributed Cache می‌گویند، بهتر است استفاده شود. چند روش برای پیاده‌سازی با این ساختار وجود دارد که نکته مشترکشان اعمال اینترفیس واحد IDistributedCache می‌باشد. در نتیجه‌ی آن، تغییر ساختار کش به روش‌های دیگر، که اینترفیس مشابهی را اعمال می‌کنند، با کمترین زحمت صورت می‌گیرد. این روش‌ها به طور خیلی خلاصه شامل موارد زیر می‌باشند: 

1- Distributed Memory Cache: در واقع Distributed نیست و کش معمولی است؛ فقط برای اعمال اینترفیس IDistributedCache که امکان تغییر آن در ادامه‌ی توسعه نرم‌افزار میسر باشد، این روش توسط مایکروسافت اضافه شده‌است. نیاز به نصب پکیجی را ندارد و به صورت توکار در ASP.NET Core در دسترس است.
2- Distributed SQL Server Cache: کاربرد چندانی ندارد. با توجه به اینکه هدف اصلی از کش کردن، افزایش سرعت و عدم اتصال به دیتابیس است، استفاده از حافظه‌ی رم، بجای دیتابیس ترجیح داده می‌شود.
3- Distributed Redis Cache: استفاده از Redis که به طور خلاصه یک دیتابیس Key/Value در حافظه است. سرعت بالایی دارد و محبوب‌ترین روش بین برنامه‌نویسان است. برای اعمال آن در ASP.NET Core نیاز به نصب پکیج می‌باشد.

موارد بالا انواع زیرساخت و ساختار (Cache Provider) برای پیاده‌سازی کش می‌باشند. روش‌های مختلفی برای استفاده از این Cache Providerها وجود دارد. مثلا یک روش، استفاده مستقیم در کدهای درونی متد یا کلاسمان می‌باشد و یا در روش دیگر می‌توانیم به صورت یک Middleware این پروسه را مدیریت کنیم، یا در روش دیگر (که موضوع این مقاله است) از ActionFilterAttribute استفاده می‌کنیم. یکی از روش‌های جالب دیگر کش کردن، اگر از Entity Framework به عنوان ORM استفاده می‌کنیم، استفاده از سطح دوم کش آن (EF Second Level Cache) می‌باشد. EF دو سطح کش دارد که سطح اول آن توسط خود Context به صورت درونی استفاده می‌شود و ما می‌توانیم از سطح دوم آن استفاده کنیم. مزیت آن به نسبت روش‌های قبلی این است که نتیجه‌ی کوئری ما (که با عبارات لامبدا نوشته می‌شود) را کش می‌کند و علاوه بر امکان تنظیم زمان انقضا برای این کش، در صورت تغییر یک entity خاص (انجام عملیات Update/Insert/Delete) خود به خود، کش کوئری مربوط به آن entity پاک می‌شود تا با مقدار جدید آن جایگزین شود که روش‌های دیگر این مزیت را ندارند. در این مقاله قرار نیست در مورد این روش کش صحبت کنیم. استفاده از این روش کش به صورت توکار در EF Core وجود ندارد و برای استفاده از آن در صورتی که از EF Core قبل از ورژن 3 استفاده می‌کنید می‌توانید از پکیج  EFSecondLevelCache.Core  و در صورت استفاده از EF Core 3 از پکیج  EF Core Second Level Cache Interceptor  استفاده نمایید که در هر دو حالت می‌توان هم از Memory Cache Provider و هم از Redis Cache Provider استفاده نمود.

در این مقاله می‌خواهیم Responseهای APIهایمان را در یک پروژه‌ی Web API، به ساده‌ترین حالت ممکن کش کنیم. زیرساخت این کش می‌تواند هر کدام از موارد ذکر شده‌ی بالا باشد. در این مقاله از Redis برای پیاده‌سازی آن استفاده می‌کنیم که با نصب پکیج Microsoft.Extensions.Caching.StackExchangeRedis انجام می‌گیرد. این بسته‌ی نیوگت که متعلق به مایکروسافت بوده و روش پایه‌ی استفاده از Redis در ASP.NET Core است، اینترفیس IDistributedCache را اعمال می‌کند:
Install-Package Microsoft.Extensions.Caching.StackExchangeRedis

سپس اینترفیس IResponseCacheService را می‌سازیم تا از این اینترفیس به جای IDistributedCache استفاده کنیم. البته می‌توان از IDistributedCache به طور مستقیم استفاده کرد؛ ولی چون همه‌ی ویژگی‌های این اینترفیس را نمی‌خواهیم و هم اینکه می‌خواهیم serialize کردن نتایج API را در کلاسی که از این اینترفیس ارث‌بری می‌کند (ResponseCacheService) بیاوریم (تا آن را کپسوله‌سازی (Encapsulation) کرده باشیم تا بعدا بتوانیم مثلا بجای پکیج Newtonsoft.Json، از System.Text.Json برای serialize کردن‌ها استفاده کنیم):
public interface IResponseCacheService
    {
        Task CacheResponseAsync(string cacheKey, object response, TimeSpan timeToLive);
        Task<string> GetCachedResponseAsync(string cacheKey);
    }
یادآوری: Redis قابلیت ذخیره‌ی داده‌هایی از نوع آرایه‌ی بایت‌ها را دارد (و نه هر نوع دلخواهی را). بنابراین اینجا ما بجای ذخیره‌ی مستقیم نتایج APIهایمان (که ممکن نیست)، می‌خواهیم ابتدا آن‌ها را با serialize کردن به نوع رشته‌ای (که فرمت json دارد) تبدیل کنیم و سپس آن را ذخیره نماییم.

حالا کلاس ResponseCacheService که این اینترفیس را اعمال می‌کند می‌سازیم: 
    public class ResponseCacheService : IResponseCacheService, ISingletonDependency
    {
        private readonly IDistributedCache _distributedCache;

        public ResponseCacheService(IDistributedCache distributedCache)
        {
            _distributedCache = distributedCache;
        }

        public async Task CacheResponseAsync(string cacheKey, object response, TimeSpan timeToLive)
        {
            if (response == null) return;
            var serializedResponse = JsonConvert.SerializeObject(response);
            await _distributedCache.SetStringAsync(cacheKey, serializedResponse, new DistributedCacheEntryOptions
            {
                AbsoluteExpirationRelativeToNow = timeToLive
            });
        }

        public async Task<string> GetCachedResponseAsync(string cacheKey)
        {
            var cachedResponse = await _distributedCache.GetStringAsync(cacheKey);
            return string.IsNullOrWhiteSpace(cachedResponse) ? null : cachedResponse;
        }
    }
دقت کنید که اینترفیس IDistributedCache در این کلاس استفاده شده است. اینترفیس ISingletonDependency صرفا یک اینترفیس نشان گذاری برای اعمال خودکار ثبت سرویس به صورت Singleton می‌باشد (اینترفیس را خودمان ساخته‌ایم و آن را برای رجیستر راحت سرویس‌هایمان تنظیم کرده‌ایم). اگر نمی‌خواهید از این روش برای ثبت این سرویس استفاده کنید، می‌توانید به صورت عادی این سرویس را رجیستر کنید که در ادامه، در قسمت مربوطه به صورت کامنت شده آمده است.

حالا کدهای لازم برای رجیستر کردن Redis و تنظیمات آن را در برنامه اضافه می‌کنیم. قدم اول ایجاد یک کلاس POCO به نام RedisCacheSettings است که به فیلدی به همین نام در appsettings.json نگاشت می‌شود:
public class RedisCacheSettings
    {
        public bool Enabled { get; set; }
        public string ConnectionString { get; set; }
        public int DefaultSecondsToCache { get; set; }
    }

این فیلد را در appsettings.json هم اضافه می‌کنیم تا در استارتاپ برنامه، با مپ شدن به کلاس RedisCacheSettings، قابلیت استفاده شدن در تنظیمات Redis را داشته باشد. 
"RedisCacheSettings": {
      "Enabled": true,
      "ConnectionString": "192.168.1.107:6379,ssl=False,allowAdmin=True,abortConnect=False,defaultDatabase=0,connectTimeout=500,connectRetry=3",
      "DefaultSecondsToCache": 600
    },

  حالا باید سرویس Redis را در متد ConfigureServices، به همراه تنظیمات آن رجیستر کنیم. می‌توانیم کدهای مربوطه را مستقیم در متد ConfigureServices بنویسیم و یا به صورت یک متد الحاقی در کلاس جداگانه بنویسیم و از آن در ConfigureServices استفاده کنیم و یا اینکه از روش Installer برای ثبت خودکار سرویس و تنظیماتش استفاده کنیم. اینجا از روش آخر استفاده می‌کنیم. برای این منظور کلاس CacheInstaller را می‌سازیم: 
    public class CacheInstaller : IServiceInstaller
    {
        public void InstallServices(IServiceCollection services, AppSettings appSettings, Assembly startupProjectAssembly)
        {
            var redisCacheService = appSettings.RedisCacheSettings;
            services.AddSingleton(redisCacheService);

            if (!appSettings.RedisCacheSettings.Enabled) return;

            services.AddStackExchangeRedisCache(options =>
                options.Configuration = appSettings.RedisCacheSettings.ConnectionString);

            // Below code applied with ISingletonDependency Interface
            // services.AddSingleton<IResponseCacheService, ResponseCacheService>();
        }
    }

خب تا اینجا اینترفیس اختصاصی خودمان را ساختیم و Redis را به همراه تنظیمات آن، رجیستر کردیم. برای اعمال کش، چند روش وجود دارد که همانطور که گفته شد، اینجا از روش ActionFilterAttribute استفاده می‌کنیم که یکی از راحت‌ترین راه‌های اعمال کش در APIهای ماست. کلاس CachedAttribute را ایجاد می‌کنیم:
    [AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
    public class CachedAttribute : Attribute, IAsyncActionFilter
    {
        private readonly int _secondsToCache;
        private readonly bool _useDefaultCacheSeconds;
        public CachedAttribute()
        {
            _useDefaultCacheSeconds = true;
        }
        public CachedAttribute(int secondsToCache)
        {
            _secondsToCache = secondsToCache;
            _useDefaultCacheSeconds = false;
        }

        public async Task OnActionExecutionAsync(ActionExecutingContext context, ActionExecutionDelegate next)
        {
            var cacheSettings = context.HttpContext.RequestServices.GetRequiredService<RedisCacheSettings>();

            if (!cacheSettings.Enabled)
            {
                await next();
                return;
            }

            var cacheService = context.HttpContext.RequestServices.GetRequiredService<IResponseCacheService>();

            // Check if request has Cache
            var cacheKey = GenerateCacheKeyFromRequest(context.HttpContext.Request);
            var cachedResponse = await cacheService.GetCachedResponseAsync(cacheKey);

            // If Yes => return Value
            if (!string.IsNullOrWhiteSpace(cachedResponse))
            {
                var contentResult = new ContentResult
                {
                    Content = cachedResponse,
                    ContentType = "application/json",
                    StatusCode = 200
                };
                context.Result = contentResult;
                return;
            }

            // If No => Go to method => Cache Value
            var actionExecutedContext = await next();

            if (actionExecutedContext.Result is OkObjectResult okObjectResult)
            {
                var secondsToCache = _useDefaultCacheSeconds ? cacheSettings.DefaultSecondsToCache : _secondsToCache;
                await cacheService.CacheResponseAsync(cacheKey, okObjectResult.Value,
                    TimeSpan.FromSeconds(secondsToCache));
            }
        }

        private static string GenerateCacheKeyFromRequest(HttpRequest httpRequest)
        {
            var keyBuilder = new StringBuilder();
            keyBuilder.Append($"{httpRequest.Path}");
            foreach (var (key, value) in httpRequest.Query.OrderBy(x => x.Key))
            {
                keyBuilder.Append($"|{key}-{value}");
            }

            return keyBuilder.ToString();
        }
    }
در این کلاس، تزریق وابستگی‌های IResponseCacheService و RedisCacheSettings به روش خاصی انجام شده است و نمی‌توانستیم از روش Constructor Dependency Injection استفاده کنیم چون در این حالت می‌بایستی این ورودی در Controller مورد استفاده هم تزریق شود و سپس در اتریبیوت [Cached] بیاید که مجاز به اینکار نیستیم؛ بنابراین از این روش خاص استفاده کردیم. مورد دیگر فرمول ساخت کلید کش می‌باشد تا بتواند کش بودن یک Endpoint خاص را به طور خودکار تشخیص دهد که این متد در همین کلاس آمده است. 
 
حالا ما می‌توانیم با استفاده از attributeی به نام  [Cached]  که روی APIهای از نوع HttpGet قرار می‌گیرد آن‌ها را براحتی کش کنیم. کلاس بالا هم طوری طراحی شده (با دو سازنده متفاوت) که در حالت استفاده به صورت [Cached] از مقدار زمان پیشفرضی استفاده می‌کند که در فایل appsettings.json تنظیم شده است و یا اگر زمان خاصی را مد نظر داشتیم (مثال 1000 ثانیه) می‌توانیم آن را به صورت  [(Cached(1000]  بیاوریم. کلاس زیر نمونه‌ی استفاده‌ی از آن می‌باشد:
[Cached]
[HttpGet]
public IActionResult Get()
  {
    var rng = new Random();
    var weatherForecasts = Enumerable.Range(1, 5).Select(index => new WeatherForecast
    {
      Date = DateTime.Now.AddDays(index),
      TemperatureC = rng.Next(-20, 55),
      Summary = Summaries[rng.Next(Summaries.Length)]
    })
      .ToArray();
    return Ok(weatherForecasts);
  }
بنابراین وقتی تنظیمات اولیه، برای پیاده‌سازی این کش انجام شود، اعمال کردن آن به سادگی قرار دادن یک اتریبیوت ساده‌ی [Cached] روی هر apiی است که بخواهیم خروجی آن را کش کنیم. فقط توجه نمایید که این روش فقط برای اکشن‌هایی که کد 200 را بر می‌گردانند، یعنی متد Ok را return می‌کنند (OkObjectResult) کار می‌کند. بعلاوه اگر از اتریبیوت ApiResultFilter یا مفهوم مشابه آن برای تغییر خروجی API به فرمت خاص استفاده می‌کنید، باید در آن تغییرات کوچکی را انجام دهید تا با این حالت هماهنگ شود. 
مطالب
پارامترها در ES 6
Destructuring assignment این امکان را به ES 6 اضافه کرده‌است تا بتوان خواص یک شیء یا اعضای یک آرایه را با سهولت بیشتری به متغیرها نسبت داد و نگارش آن بسیار شبیه است به تعریف اشیاء یا آرایه‌ها در جاوا اسکریپت.

Destructuring Arrays

بدون استفاده از Destructuring assignment برای دسترسی به اعضای یک آرایه و انتساب آن‌ها به متغیرهای مختلف، روش متداول زیر مرسوم است:
var first = someArray[0];
var second = someArray[1];
var third = someArray[2];
اما با استفاده از Destructuring assignment این سه سطر، تبدیل به یک سطر می‌شوند:
 var [first, second, third] = someArray;
همانطور که ملاحظه می‌کنید، سمت چپ این انتساب، بسیار شبیه است به تعریف یک آرایه، اما در اینجا مفهوم Destructuring assignment را دارد و سه متغیر جدید را تعریف می‌کند.

یک مثال:
 let [one, two, three] = ['globin', 'ghoul', 'ghost', 'white walker'];
console.log(`one is ${one}, two is ${two}, three is ${three}`)
// => one is globin, two is ghoul, three is ghost
در اینجا ترکیبی از Destructuring assignment و بهبودهای کار با رشته‌ها را در ES 6، ملاحظه می‌کنید. سمت چپ انتساب، سه متغیر جدید را تعریف کرده‌است که این سه متغیر با سه عضو اول آرایه مقدار دهی می‌شوند.

همچنین در این مثال اگر علاقمند بودیم صرفا به اعضای اول و چهارم این آرایه دسترسی پیدا کنیم، می‌توان نوشت:
 let [firstMonster, , , fourthMonster] =  ['globin', 'ghoul', 'ghost', 'white walker'];
console.log(`the first monster is ${firstMonster}, the fourth is ${fourthMonster}`)
// => one is globin, two is ghoul, three is ghost
تعریف یک کامای خالی، سبب پرش به عضو بعدی خواهد شد و به معنای صرفنظر کردن از ایندکس مطرح شده‌است. برای مثال در اینجا از ایندکس‌های 2 و 3 صرفنظر شده‌است.

امکان دسترسی به اعضای تو در تو نیز با Destructuring assignment پیش بینی شده‌است:
 let nested = [1, [2, 3], 4];
let [a, [b], d] = nested;
console.log(a); // 1
console.log(b); // 2
console.log(d); // 4
در مثال فوق، دومین عضو آرایه، خود نیز یک آرایه‌است. برای دسترسی به این آرایه‌ی دوم، دومین عضو Destructuring assignment نیز باید یک Destructuring assignment جدید باشد.

می‌توان از Destructuring assignment جهت جابجایی مقادیر متغیرها بدون انتساب به یک متغیر موقتی نیز استفاده کرد:
 let point = [1, 2];
let [xVal, yVal] = point;
[xVal, yVal] = [yVal, xVal];
console.log(xVal); // 2
console.log(yVal); // 1
در این مثال ابتدا یک آرایه با دو عضو تعریف شده‌است. سپس اعضای این آرایه به دو متغیر جدید xVal و yVal انتساب یافته‌اند. در ادامه در سطر سوم، مقادیر این دو متغیر با هم تعویض شده‌اند.


Destructuring Objects

امکانات Destructuring assignment، به کار با آرایه‌ها محدود نمی‌شود و از آن می‌توان برای کار با اشیاء نیز استفاده کرد. فرض کنید شیء pouch به صورت زیر تعریف شده‌است:
 let pouch = {coins: 10};
روش متداول دسترسی به خاصیت coins، به صورت pouch.coins است:
 let coins = pouch.coins;
اما با استفاده از Destructuring assignment می‌توان نوشت (در حالت کار با اشیاء، بجای [] از {} استفاده می‌شود):
 let {coins} = pouch;
در این مثال، خاصیت coins شیء pouch به متغیر جدید coins انتساب داده شده‌است. نکته‌ای که در اینجا باید به آن دقت داشت، همنامی متغیر جدید coins با خاصیت coins است. اگر بخواهیم این خاصیت را به یک متغیر غیرهمنام انتساب دهیم، باید به صورت زیر عمل کرد:
 let pouch = {coins: 10};
let {coins: newVar1 } = pouch;
console.log(newVar1); //10
در مثال فوق، مقدار خاصیت coins به متغیر جدیدی با نام newVar1 انتساب داده شده‌است.

در اینجا نیز امکان کار با اشیای تو در تو، پیش بینی شده‌است:
let point = {
    x: 1,
    y: 2,
    z: {
         one: 3,
         two: 4
    }
};
let { x: a, y: b, z: { one: c, two: d } } = point;
console.log(a); // 1
console.log(b); // 2
console.log(c); // 3
console.log(d); // 4
در این مثال، خاصیت z شیء point نیز خود یک شیء دیگر است. برای دسترسی به آن همانند کار با آرایه‌ها نیاز است از یک {} دیگر برای استخراج خواص one و two استفاده کرد.
در انتساب فوق، خاصیت x شیء point به متغیر جدید a، خاصیت y شیء point به متغیر جدید b و خاصیت one شیء منتسب به خاصیت z، به متغیر c و خاصیت two شیء منتسب به خاصیت z، به متغیر d انتساب یافته‌اند.


ترکیب Destructuring Objects و Destructuring Arrays

در مثال زیر، نمونه‌ای ترکیبی از Destructuring اشیاء و آرایه‌ها را با هم مشاهده می‌کنید:
let mixed = {
    one: 1,
    two: 2,
    values: [3, 4, 5]
};
let { one: a, two: b, values: [c, , e] } = mixed;
console.log(a); // 1
console.log(b); // 2
console.log(c); // 3
console.log(e); // 5
در این مثال، خاصیت one شیء mixed به متغیر جدید a، خاصیت two آن به متغیر جدید b و اعضای اول و سوم آرایه‌ی values به متغیرهای جدید c و e انتساب داده شده‌اند. از ایندکس دوم آرایه‌ی values نیز با معرفی یک کاما، صرفنظر گردیده‌است.


Destructuring Function Arguments

از Destructuring در حین تعریف پارامترهای متدها نیز می‌توان استفاده کرد.
 function removeBreakpoint({ url, line, column }) {
  // ...
}
در این مثال، متد removeBreakpoint دارای سه پارامتر ورودی تعریف شده‌ی توسط Destructuring است. در این حالت این پارامترها به صورت خودکار از شیء ارسالی به این متد دریافت و مقدار دهی خواهند شد.

و یا برای مثال در زبان #C امکان تعریف named arguments (آرگومان‌های نامدار) و همچنین تعریف مقادیر پیش فرضی برای آن‌ها وجود دارد. در اینجا نیز می‌توان با استفاده از Destructuring به تعریفی مشابه آن برای ارائه‌ی آرگومان‌هایی با مقادیر پیش فرض رسید:
 function random ({ min=1, max=300 }) {
    return Math.floor(Math.random() * (max - min)) + min
}
console.log(random({}))
// <- 174
console.log(random({max: 24}))
// <- 18
در این مثال پارامترهای min و max تعریف شده‌ی با Destructuring، دارای یک مقدار پیش فرض هستند. اگر شیءایی خالی را به این متد ارسال کنیم، از مقادیر پیش فرض استفاده خواهد شد و یا اگر max را مقدار دهی کنیم، مقدار min، از مقدار پیش فرض آن دریافت می‌گردد.
و یا اینبار jQuery Ajax را می‌توان با پارامترهای پیش فرض آن به صورت ذیل خلاصه نویسی کرد:
 jQuery.ajax = function (url, {
  async = true,
  beforeSend = noop,
  cache = true,
  complete = noop,
  crossDomain = false,
  global = true,
  // ... more config
}) {
    // ... do stuff
};
همچنین اینبار امکان شبیه سازی دریافت چندین خروجی از متد، به نحو ساده‌تر و واضح‌تری میسر است:
 function returnMultipleValues() {
     return [1, 2];
}
var [foo, bar] = returnMultipleValues();
در ابتدا، متدی تعریف شده‌است که یک آرایه‌ی معمولی را بازگشت می‌دهد. اما با استفاده از Destructuring می‌توان چندین خروجی با معنا را در طی یک سطر، از آن دریافت کرد.
شبیه به همین مورد در حین کار با اشیاء نیز میسر است:
function returnMultipleValues() {
  return {
            foo: 1,
            bar: 2
     };
}
var { foo, bar } = returnMultipleValues();
متدی که یک شیء را بر می‌گرداند و با استفاده از Destructuring، خروجی آن به دو متغیر جدید، انتساب داده شده‌اند.


تعریف مقادیر پیش فرض در حین Destructuring

در انتساب ذیل، چون شیء سمت راست، دارای خاصیت foo نیست، مقدار این پارامتر جدید undefined خواهد بود. برای رفع این مشکل می‌توان به آن مقدار پیش فرضی را نیز نسبت داد:
var {foo=3} = { bar: 2 }
console.log(foo)
// <- 3
چند مثال دیگر:
اگر مقدار پیش فرض، ذکر شود و خاصیت متناظر با آن دارای مقدار باشد، از همان مقدار اصلی ذکر شده استفاده می‌شود:
var {foo=3} = { foo: 2 }
console.log(foo)
// <- 2
اما اگر این مقدار undefined باشد، به مقدار پیش فرض سوئیچ خواهد شد:
var {foo=3} = { foo: undefined }
console.log(foo)
// <- 3
این مورد در حین کار با آرایه‌ها نیز برقرار است:
var [b=10] = [undefined]
console.log(b)
// <- 10

var [c=10] = []
console.log(c)
// <- 10


ES6 — default + rest + spread

علاوه بر destructuring، سه قابلیت و بهبود دیگر نیز در زمینه‌ی کار با متغیرها و پارامترها به ES 6 اضافه شده‌اند:

1) امکان تعریف مقادیر پیش فرض پارامترها
function inc(number, increment) {
        increment = increment || 1;
        return number + increment;
}
console.log(inc(2, 2)); // 4
console.log(inc(2)); // 3
در جاوا اسکریپت، الزامی برای فراخوانی و ذکر تمام پارامترهای یک متد وجود ندارد. برای نمونه در مثال فوق می‌توان متد inc را با یک و یا دو پارامتر فراخوانی کرد. در حالتیکه پارامتری ذکر نشود، مقدار آن تعریف نشده خواهد بود و روش برخورد با آن استفاده از عملگر || برای تعریف مقداری پیش فرض است. برای بهبود این وضعیت در ES 6، امکان تعریف مقدار پیش فرض پارامترها نیز درنظر گرفته شده‌است:
function inc(number, increment = 1) {
        return number + increment;
}
console.log(inc(2, 2)); // 4
console.log(inc(2)); // 3
در ES 6 امکان تعریف پارامترهایی با مقادیر پیش فرض، پیش از پارامترهایی که دارای مقادیر پیش فرض نیستند نیز میسر است (برخلاف زبان سی‌شارپ که چنین اجازه‌ای را نمی‌دهد):
function sum(a, b = 2, c) {
     return a + b + c;
}
console.log(sum(1, 5, 10)); // 16 -> b === 5
console.log(sum(1, undefined, 10)); // 13 -> b as default
همچنین در حین تعریف این مقدار پیش فرض، می‌توان از مقادیر غیر ثابت هم استفاده کرد (باز هم برخلاف سی‌شارپ). برای نمونه در مثال ذیل، خروجی یک متد، به عنوان مقدار پیش فرض پارامتری تعریف شده‌است:
 function getDefaultIncrement() {
    return 1;
}
function inc(number, increment = getDefaultIncrement()) {
    return number + increment;
}
console.log(inc(2, 2)); // 4
console.log(inc(2)); // 3


2) Spread

متد جمع زیر را درنظر بگیرید:
function sum(a, b, c) {
   return a + b + c;
}
روش متداول فراخوانی آن، ذکر تک تک آرگومان‌های آن به ترتیب است. اما با استفاده از عملگر spread اضافه شده به ES 6 که با سه نقطه بیان می‌شود، می‌توان نوشت:
 var args = [1, 2, 3];
console.log(sum(…args)); // 6
عملگر spread اجازه‌ی بسط و پخش شدن اعضای یک آرایه را به پارامترهای متناظر با آن‌ها می‌دهد. به علاوه امکان ترکیب این روش، با روش متداول ذکر صریح آرگومان‌ها نیز وجود دارد:
var args = [1, 2];
console.log(sum(…args, 3)); // 6
در این مثال، آرایه‌ی مدنظر تنها دو عضو دارد و متد sum دارای سه پارامتر است. با استفاده از عملگر spread، دو پارامتر اول متد به صورت خودکار از آرایه واکشی شده و جایگزین می‌شوند. آرگومان سوم هم به صورت متداولی ذکر شده‌است.

مثال‌هایی از ساده سازی اعمال متداول در ES 5 (جاوا اسکریپت فعلی) با کمک ES 6:
الف) ترکیب spread و Destructuring
 a = list[0], rest = list.slice(1)
معادل Destructuring ذیل است:
 [a, ...rest] = list

ب) ساده سازی کار با concat
بجای
 [1, 2].concat(more)
می‌توان نوشت:
[1, 2, ...more]

ج) افزودن یک رنج به یک آرایه
بجای
 list.push.apply(list, [3, 4])
می‌توان نوشت:
 list.push(...[3, 4])


3) Rest

جاوا اسکریپت دارای شیءایی است به نام arguments که توسط آن می‌توان به لیست پارامترهای یک متد دسترسی یافت. برای نمونه مثال ذیل را درنظر بگیرید:
function sum() {
     var numbers = Array.prototype.slice.call(arguments),
     result = 0;
     numbers.forEach(function (number) {
          result += number;
    });
    return result;
}
در اینجا به ظاهر متد sum دارای پارامتری نیست. اما با استفاده از شیء arguments، می‌توان هر تعداد آرگومانی را برای آن متصور شد و فراخوانی‌ها ذیل کاملا مجاز هستند:
console.log(sum(1)); // 1
console.log(sum(1, 2, 3, 4, 5)); // 15
اما مشکل اینجا است که به ظاهر متد sum، هیچ پارامتری را قبول نمی‌کند و هدف از تعریف آن واضح نیست. برای رفع این مشکل، در ES 6 عملگر rest معرفی شده‌است که بسیار شبیه به عملگر spread است:
function sum(…numbers) {
      var result = 0;
      numbers.forEach(function (number) {
          result += number;
      });
      return result;
}
console.log(sum(1)); // 1
console.log(sum(1, 2, 3, 4, 5)); // 15
در اینجا عملگر سه نقطه‌ای rest که به عنوان پارامتر متد معرفی شده‌است، بیانگر امکان دریافت لیستی از آرگومان‌ها، توسط متد sum است. به این ترتیب، تعریف این متد که تعداد آرگومان‌های متغیری را می‌پذیرد، وضوح بیشتری پیدا کرده‌است.
در اینجا باید دقت داشت که پس از ذکر rest، دیگر نمی‌توان پارامتری را تعریف کرد:
 function sum(…numbers, last) { // causes a syntax error
مطالب
AOP با استفاده از Microsoft Unity
چند روز پیش فرصتی پیش آمد تا بتوانم مروری بر مطلب منتشر شده درباره AOP داشته باشم. به حق مطلب مورد نظر، بسیار خوب و مناسب شرح داده شده بود و همانند سایر مقالات جناب نصیری چیزی کم نداشت. اما امروز قصد پیاده سازی یک مثال AOP، با استفاده از Microsoft Unity Application Block را به عنوان IOC Container دارم. اگر شما هم، مانند من از UnityContainer به عنوان IOC Container در پروژه‌های خود استفاده می‌کنید نگران نباشید. این کتابخانه به خوبی از مباحث Interception پشتیبانی می‌کند. در ادامه طی یک مقاله این مورد را با هم بررسی می‌کنیم.
برای دوستانی که با AOP آشنایی ندارند پیشنهاد می‌شود ابتدا مطلب مورد نظر را یک بار مطالعه نمایند.
برای شروع یک پروژه در VS.Net بسازید و ارجاع به اسمبلی‌های زیر را در پروژه فراموش نکنید:
»Microsoft.Practices.EnterpriseLibrary.Common
»Microsoft.Practices.Unity
»Microsoft.Practices.Unity.Configuration
»Microsoft.Practices.Unity.Interception
»Microsoft.Practices.Unity.Interception.Configuration

یک اینترفیس به نام IMyOperation بسازید:
    public interface IMyOperation
    {      
        void DoIt();
    }

کلاسی می‌سازیم که اینترفیس بالا را پیاده سازی نماید:
 public void DoIt()
  {
     Console.WriteLine( "this is main block of code" );
  }
قصد داریم با استفاده از AOP یک سری کد مورد نظر خود(در این مثال کد لاگ کردن عملیات در یک فایل مد نظر است) را به کد‌های متد‌های مورد نظر تزریق کنیم. یعنی با فراخوانی این متد کد‌های لاگ عملیات در یک فایل ذخیره شود بدون تکرار یا فراخوانی دستی متد لاگ.
ابتدا یک کلاس برای لاگ عملیات می‌سازیم:
public class Logger
    {
        const string path = @"D:\Log.txt";

        public static void WriteToFile( string methodName )
        {
            object lockObject = new object();
            if ( !File.Exists( path ) )
            {
                File.Create( path );
            }
            lock ( lockObject )
            {
                using ( TextWriter writer = new StreamWriter( path , true ) )
                {
                    writer.WriteLine( string.Format( "{0} at {1}" , methodName , DateTime.Now ) );                
                }
            }
        }
    }
حال نیاز به یک Handler برای مدیریت فراخوانی کد‌های تزریق شده داریم. برای این کار یک کلاس می‌سازیم که اینترفیس ICallHandler را پیاده سازی نماید.
public class LogHandler : ICallHandler
    {
        public IMethodReturn Invoke( IMethodInvocation input , GetNextHandlerDelegate getNext )
        {
            Logger.WriteToFile( input.MethodBase.Name );

            var methodReturn = getNext()( input , getNext );         

            return methodReturn;
        }

        public int Order { get; set; }
    }
کلاس بالا یک متد به نام Invoke دارد که فراخوانی متد‌های مورد نظر برای تزریق کد را در دست خواهد گرفت. در این متد ابتدا عملیات لاگ در فایل مورد نظر ثبت می‌شود(با استفاده از Logger.WriteToFile). سپس با استفاده از getNext که از نوع GetNextHandlerDelegate است، اجرا را به کد‌های اصلی برنامه منتقل می‌کنیم.
 var methodReturn = getNext()( input , getNext );
برای مدیریت بهتر عملیات لاگ یک Attribute می‌سازیم که فقط متد هایی که نیاز به لاگ کردن دارند را مشخص کنیم. به صورت زیر:
 public class LogAttribute : HandlerAttribute
    {
        public override ICallHandler CreateHandler( Microsoft.Practices.Unity.IUnityContainer container )
        {
            return new LogHandler();
        }
    }
فقط دقت داشته باشید که کلاس مورد نظر به جای ارث بری از کلاس Attribute باید از کلاس HandlerAttribute که در فضای نام Microsoft.Practices.Unity.InterceptionExtension  تعبیه شده است ارث ببرد(خود این کلاس از کلاس Attribute ارث برده است).  کافیست در متد CreateHandler آن که Override شده است یک نمونه از کلاس LogHandler را برگشت دهیم.
برای آماده سازی Ms Unity جهت عملیات Interception باید کد‌های زیر در ابتدا برنامه قرار داده شود:
var  unityContainer = new UnityContainer();

 unityContainer.AddNewExtension<Interception>();

  unityContainer.Configure<Interception>().SetDefaultInterceptorFor<IMyOperation>( new InterfaceInterceptor() );
            
  unityContainer.RegisterType<IMyOperation, MyOperation>();

توضیح چند مطلب:
بعد از نمونه سازی از کلاس UnityContainer باید Interception به عنوان یک Extension به این Container اضافه شود. سپس با استفاده از متد Configure برای اینترفیس IMyOperation یک Interceptor پیش فرض تعیین می‌کنیم. در پایان هم به وسیله متد RegisterType کلاس MyOperation  به اینترفیس IMyOperation رجیستر می‌شود. از این پس هر گاه درخواستی برای اینترفیس IMyOperation از unityContainer شود یک نمونه از کلاس MyOperation در اختیار خواهیم داشت.
به عنوان نکته آخر متد DoIt در اینترفیس بالا باید دارای LogAttribute باشد تا عملیات مزین سازی با کد‌های لاگ به درستی انجام شود.

یک نکته تکمیلی:
در هنگام مزین سازی متد  set خاصیت ها، به دلیل اینکه اینترفیسی برای این کار وجود ندارد باید مستقیما عملیات AOP به خود کلاس اعمال شود. برای این کار باید به صورت زیر عمل نمود:

var container = new UnityContainer();
container.RegisterType<Book , Book>();

container.AddNewExtension<Interception>();

 var policy = container.Configure<Interception>().SetDefaultInterceptorFor<Book>( new VirtualMethodInterceptor() ).AddPolicy( "MyPolicy" );

  policy.AddMatchingRule( new PropertyMatchingRule( "*" , PropertyMatchingOption.Set ) );
  policy.AddCallHandler<Handler.NotifyChangedHandler>();
همان طور که مشاهده می‌کنید عملیات Interception مستقیما برای کلاس پیکر بندی می‌شود و به جای InterfaceInterceptor از VirtualMethodInterceptor برای تزریق کد به بدنه متد‌ها استفاده شده است. در پایان نیز با تعریف یک Policy می‌توانیم به راحتی(با استفاده از "*") متد Set  تمام خواص کلاس را به NotifyChangedHandler مزین نماییم.

سورس کامل مثال بالا
مطالب
OpenCVSharp #7
معرفی اینترفیس ++C کتابخانه‌ی OpenCVSharp

اینترفیس یا API زبان C کتابخانه‌ی OpenCV مربوط است به نگارش‌های 1x این کتابخانه و تمام مثال‌هایی را که تاکنون ملاحظه کردید، بر مبنای همین اینترفیس تهیه شده بودند. اما از OpenCV سری 2x، این اینترفیس صرفا جهت سازگاری با نگارش‌های قبلی، نگهداری می‌شود و اینترفیس اصلی مورد استفاده، API جدید ++C آن است. به همین جهت کتابخانه‌ی OpenCVSharp نیز در فضای نام OpenCvSharp.CPlusPlus و توسط اسمبلی OpenCvSharp.CPlusPlus.dll، امکان دسترسی به این API جدید را فراهم کرده‌است که در ادامه نکات مهم آن‌را بررسی خواهیم کرد.


تبدیل مثال‌های اینترفیس C به اینترفیس ++C

مثال «تبدیل تصویر به حالت سیاه و سفید» قسمت سوم را درنظر بگیرید. این مثال به کمک اینترفیس C کتابخانه‌ی OpenCV کار می‌کند. معادل تبدیل شده‌ی آن به اینترفیس ++C به صورت ذیل است:
// Cv2.ImRead
using (var src = new Mat(@"..\..\Images\Penguin.Png", LoadMode.AnyDepth | LoadMode.AnyColor))
using (var dst = new Mat())
{
    Cv2.CvtColor(src, dst, ColorConversion.BgrToGray);
 
    // How to export
    using (var bitmap = dst.ToBitmap()) // => OpenCvSharp.Extensions.BitmapConverter.ToBitmap(dst)
    {
        bitmap.Save("gray.png", ImageFormat.Png);
    }
 
    using (new Window("BgrToGray C++: src", image: src))
    using (new Window("BgrToGray C++: dst", image: dst))
    {
        Cv2.WaitKey();
    }
}
نکاتی را که باید در اینجا مدنظر داشت:
- بجای IplImage، از کلاس Mat استفاده شده‌است.
- برای ایجاد Clone یک تصویر نیازی نیست تا پارامترهای خاصی را به Mat دوم (همان dst) انتساب داد و ایجاد یک Mat خالی کفایت می‌کند.
- اینبار بجای کلاس Cv اینترفیس C، از کلاس Cv2 اینترفیس ++C استفاده شده‌است.
- متد الحاقی ToBitmap نیز که در کلاس OpenCvSharp.Extensions.BitmapConverter قرار دارد، با نمونه‌ی Mat سازگار است و به این ترتیب می‌توان خروجی معادل دات نتی Mat را با فرمت Bitmap تهیه کرد.
- بجای CvWindow، در اینجا باید از Window سازگار با Mat، استفاده شود.
- new Mat معادل Cv2.ImRead است. بنابراین اگر مثال ++C ایی را در اینترنت یافتید:
cv::Mat src = cv::imread ("foo.jpg");
cv::Mat dst;
cv::cvtColor (src, dst, CV_BGR2GRAY);
معادل متد imread آن همان new Mat کتابخانه‌ی OpenCVSharp است و یا متد Cv2.ImRead آن.


کار مستقیم با نقاط در OpenCVSharp

متدهای ماتریسی OpenCV، فوق العاده در جهت سریع اجرا شدن و استفاده‌ی از امکانات سخت افزاری و پردازش‌های موازی، بهینه سازی شده‌اند. اما اگر قصد داشتید این متدهای سریع را با نمونه‌هایی متداول و نه چندان سریع جایگزین کنید، می‌توان مستقیما با نقاط تصویر نیز کار کرد. در ادامه قصد داریم کار فیلتر توکار Not را که عملیات معکوس سازی رنگ نقاط را انجام می‌دهد، شبیه سازی کنیم.

در اینجا نحوه‌ی دسترسی مستقیم به نقاط تصویر بارگذاری شده را توسط اینترفیس C، ملاحظه می‌کنید:
using (var src = new IplImage(@"..\..\Images\Penguin.Png", LoadMode.AnyDepth | LoadMode.AnyColor))
using (var dst = new IplImage(src.Size, src.Depth, src.NChannels))
{
    for (var y = 0; y < src.Height; y++)
    {
        for (var x = 0; x < src.Width; x++)
        {
            CvColor pixel = src[y, x];
            dst[y, x] = new CvColor
            {
                B = (byte)(255 - pixel.B),
                G = (byte)(255 - pixel.G),
                R = (byte)(255 - pixel.R)
            };
        }
    }
 
    // [C] Accessing Pixel
    // https://github.com/shimat/opencvsharp/wiki/%5BC%5D-Accessing-Pixel
 
    using (new CvWindow("C Interface: Src", image: src))
    using (new CvWindow("C Interface: Dst", image: dst))
    {
        Cv.WaitKey(0);
    }
}
IplImage امکان دسترسی به نقاط را به صورت یک آرایه‌ی دو بعدی میسر می‌کند. خروجی آن از نوع CvColor است که در اینجا از هر عنصر آن، 255 واحد کسر خواهد شد تا فیلتر Not شبیه سازی شود. سپس این رنگ جدید، به نقطه‌ای معادل آن در تصویر خروجی انتساب داده می‌شود.
روش ارائه شده‌ی در اینجا یکی از روش‌های دسترسی به نقاط، توسط اینترفیس C است. سایر روش‌های ممکن را در Wiki آن می‌توانید مطالعه کنید.


شبیه به همین کار را می‌توان به نحو ذیل توسط اینترفیس ++C کتابخانه‌ی OpenCVSharp نیز انجام داد:
// Cv2.ImRead
using (var src = new Mat(@"..\..\Images\Penguin.Png", LoadMode.AnyDepth | LoadMode.AnyColor))
using (var dst = new Mat())
{
    src.CopyTo(dst);
 
    for (var y = 0; y < src.Height; y++)
    {
        for (var x = 0; x < src.Width; x++)
        {
            var pixel = src.Get<Vec3b>(y, x);
            var newPixel = new Vec3b
            {
                Item0 = (byte)(255 - pixel.Item0), // B
                Item1 = (byte)(255 - pixel.Item1), // G
                Item2 = (byte)(255 - pixel.Item2) // R
            };
            dst.Set(y, x, newPixel);
        }
    }
 
    // [Cpp] Accessing Pixel
    // https://github.com/shimat/opencvsharp/wiki/%5BCpp%5D-Accessing-Pixel
 
    //Cv2.NamedWindow();
    //Cv2.ImShow();
    using (new Window("C++ Interface: Src", image: src))
    using (new Window("C++ Interface: Dst", image: dst))
    {
        Cv2.WaitKey(0);
    }
}
ابتدا توسط کلاس Mat، کار بارگذاری و سپس تهیه‌ی یک کپی، از تصویر اصلی انجام می‌شود. در ادامه برای دسترسی به نقاط تصویر، از متد Get که خروجی آن از نوع Vec3b است، استفاده خواهد شد. این بردار دارای سه جزء است که بیانگر اجزای رنگ نقطه‌ی مدنظر می‌باشند. در اینجا نیز 255 واحد از هر جزء کسر شده و سپس توسط متد Set، به تصویر خروجی اعمال خواهند شد.
می‌توانید سایر روش‌های دسترسی به نقاط را توسط اینترفیس ++C، در Wiki این کتابخانه مطالعه نمائید.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
Asp.Net Identity #2
پیشتر در اینجا در مورد تاریخچه‌ی سیستم Identity مطالبی را عنوان کردیم. در این مقاله می‌خواهیم نحوه‌ی برپایی سیستم Identity را بحث کنیم.
ASP.NET Identity مانند ASP.NET Membership به اسکیمای SQL Server وابسته نیست؛ اما Relational Storage همچنان واحد ذخیره سازی پیش فرض و آسانی می‌باشد. بدین جهت که تقریبا بین همه‌ی توسعه دهندگان جا افتاده است. ما در این نوشتار از LocalDB جهت ذخیره سازی جداول استفاده می‌کنیم. ذکر این نکته ضروری است که سیستم Identity از Entity Framework Code First جهت ساخت اسکیما استفاده می‌کند.
پیش از هر چیز، ابتدا یک پروژه‌ی وب را ایجاد کنید؛ مانند شکل زیر:

در مرحله‌ی بعد سه پکیج زیر را باید نصب کنیم :

- Microsoft.AspNet.Identity.EntityFramework

-   Microsoft.AspNet.Identity.OWIN

-  Microsoft.Owin.Host.SystemWeb

بعد از اینکه پکیج‌های بالا را نصب کردیم، باید فایل Web.config را بروز کنیم. اولین مورد، تعریف یک Connection String می‌باشد:
<connectionStrings>
 <add name="IdentityDb" 
      providerName="System.Data.SqlClient"
      connectionString="Data Source=(localdb)\v11.0;Initial Catalog=IdentityDb;Integrated Security=True;Connect Timeout=15;Encrypt=False;TrustServerCertificate=False;MultipleActiveResultSets=True"/>
 </connectionStrings>
بعد از آن، تعریف یک کلید در قسمت AppSettings تحت عنوان Owin:AppStartup است:
<appSettings>
 <add key="webpages:Version" value="3.0.0.0" />
 <add key="webpages:Enabled" value="false" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
 <add key="owin:AppStartup" value="Users.IdentityConfig" />
 </appSettings>
Owin مدل شروع برنامه (Application Startup Model) خودش را تعریف می‌کند که از کلاس کلی برنامه (منظور Global.asax) جداست. AppSetting تعریف شده با نام owin:Startup شناخته می‌شود و مشخص کننده کلاسی است که Owin وهله سازی خواهد کرد. وقتی برنامه شروع به کار می‌کند، تنظیمات خودش را از این کلاس دریافت خواهد کرد (در این نوشتار کلاس IdentityConfig می‌باشد).

ساخت کلاس User
مرحله‌ی بعد ساخت کلاس User می‌باشد. این کلاس بیانگر یک کاربر می‌باشد. کلاس User باید از کلاس IdentityUser ارث بری کند که این کلاس در فضای نام Microsoft.AspNet.Identity.EntityFramework قرار دارد. کلاس IdentityUser فراهم کننده‌ی یک کاربر عمومی و ابتدایی است. اگر بخواهیم اطلاعات اضافی مربوط به کاربر را ذخیره کنیم باید آنها در کلاسی که از کلاس IdentityUser ارث بری می‌کند قرار دهیم. کلاس ما در اینجا AppUser نام دارد.
using System;
using Microsoft.AspNet.Identity.EntityFramework;
namespace Users.Models 
{
   public class AppUser : IdentityUser 
  {
      // پروپرتی‌های اضافی در اینجا
  }
}

ساخت کلاس Database Context برنامه
مرحله‌ی بعد ساخت کلاس DbContext برنامه می‌باشد که بر روی کلاس AppUser عمل میکند. کلاس Context برنامه که ما در اینجا آن را AppIdentityDbContext تعریف کرده‌ایم، از کلاس <IdentityDbContext<T ارث بری می‌کند که T همان کلاس User می‌باشد (در مثال ما AppUser) .
using System.Data.Entity;
using Microsoft.AspNet.Identity.EntityFramework;
using Users.Models;
namespace Users.Infrastructure {
 public class AppIdentityDbContext : IdentityDbContext<AppUser> 
{
   public AppIdentityDbContext() 
              : base("IdentityDb") { }

  static AppIdentityDbContext() 
 {
    Database.SetInitializer<AppIdentityDbContext>(new IdentityDbInit());
  }
 public static AppIdentityDbContext Create() {
 return new AppIdentityDbContext();
 }
 }
public class IdentityDbInit
 : DropCreateDatabaseIfModelChanges<AppIdentityDbContext> {
 protected override void Seed(AppIdentityDbContext context) {
 PerformInitialSetup(context);
 base.Seed(context);
 }
 public void PerformInitialSetup(AppIdentityDbContext context) {
 // initial configuration will go here
 }
 }
}

ساخت کلاس User Manager
یکی از مهمترین کلاسهای Identity کلاس User Manager (مدیر کاربر) می‌باشد که نمونه‌هایی از کلاس User را مدیریت می‌کند. کلاسی را که تعریف می‌کنیم، باید از کلاس <UserManager<T ارث بری کند که T همان کلاس User می‌باشد. کلاس UserManager خاص EF نمی‌باشد و ویژگی‌های عمومی بیشتری برای ساخت و انجام عملیات بر روی داده‌های کاربر را فراهم می‌نماید.

کلاس UserManager حاوی متدهای بالا است. اگر دقت کنید، می‌بینید که تمامی متدهای بالا به کلمه‌ی Async ختم می‌شوند. زیرا Asp.Net Identity تقریبا کل ویژگیهای برنامه نویسی Async را پیاده سازی کرده است و این بدین معنی است که عملیات میتوانند به صورت غیر همزمان اجرا شده و دیگر فعالیت‌ها را بلوکه نکنند.

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Users.Models;

namespace Users.Infrastructure 
{
 public class AppUserManager : UserManager<AppUser> 
{

 public AppUserManager(IUserStore<AppUser> store)
 : base(store) {
 }
 public static AppUserManager Create( IdentityFactoryOptions<AppUserManager> options, IOwinContext context) 
{
 AppIdentityDbContext db = context.Get<AppIdentityDbContext>();
 AppUserManager manager = new AppUserManager(new UserStore<AppUser>(db));
 return manager;
 }
 }
}

زمانی که Identity نیاز به وهله‌ای از کلاس AppUserManager داشته باشد، متد استاتیک Create را صدا خواهد زد. این عمل زمانی اتفاق می‌افتد که عملیاتی بر روی داده‌های کاربر انجام گیرد. برای ساخت وهله‌ای از کلاس AppUserManager نیاز به کلاس <UserStor<AppUser دارد. کلاس <UserStore<T یک پیاده سازی از رابط <IUserStore<T  توسط  EF میباشد که وظیفه‌ی آن فراهم کننده‌ی پیاده سازی Storage-Specific متدهای تعریف شده در کلاس User Manager (که در اینجا AppUserManager ) می‌باشد. برای ساخت <UserStore<T نیاز به وهله‌ای از کلاس AppIdentityDbContext می‌باشد که از طریق Owin به صورت زیر قابل دریافت است:

AppIdentityDbContext db = context.Get<AppIdentityDbContext>();

یک پیاده سازی از رابط IOwinContext، به عنوان پارامتر به متد Create پاس داده می‌شود. در این پیاده سازی، یک تابع جنریک به نام Get تعریف شده که اقدام به برگشت وهله ای از اشیای ثبت شده‌ی در کلاس شروع Owin می‌نماید.


ساخت کلاس شروع Owin

اگر خاطرتان باشد یک کلید در قسمت AppSettings فایل Web.config به صورت زیر تعریف کردیم:

<add key="owin:AppStartup" value="Users.IdentityConfig" />

قسمت Value کلید بالا از دو قسمت تشکیل شده است: Users بیانگر فضای نام برنامه‌ی شماست و IdentityConfig بیانگر کلاس شروع می‌باشد. (البته شما می‌توانید هر نام دلخواهی را برای کلاس شروع بگذارید. فقط دقت داشته باشید که نام کلاس شروع و مقدار، با کلیدی که تعریف می‌کنید یکی باشد)

Owin مستقل از ASP.NET اعلام شده است و قراردادهای خاص خودش را دارد. یکی از این قراردادها تعریف یک کلاس و وهله سازی آن به منظور بارگذاری و پیکربندی میان افزار و انجام دیگر کارهای پیکربندی که نیاز است، می‌باشد. به طور پیش فرض این کلاس Start نام دارد و در پوشه‌ی App_Start تعریف می‌شود. این کلاس حاوی یک متد به نام Configuration می‌باشد که بوسیله زیرساخت Owin فراخوانی می‌شود و یک پیاده سازی از رابط Owin.IAppBuilder به عنوان آرگومان به آن پاس داده می‌شود که کار پشتیبانی از Setup میان افزار مورد نیاز برنامه را برعهده دارد.

using Microsoft.AspNet.Identity;
using Microsoft.Owin;
using Microsoft.Owin.Security.Cookies;
using Owin;
using Users.Infrastructure;
namespace Users 
{
 public class IdentityConfig 
{
 public void Configuration(IAppBuilder app) 
{
 app.CreatePerOwinContext<AppIdentityDbContext>(AppIdentityDbContext.Create);
 app.CreatePerOwinContext<AppUserManager>(AppUserManager.Create);
 app.UseCookieAuthentication(new CookieAuthenticationOptions {
 AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
 LoginPath = new PathString("/Account/Login"),
 });
 }
 }
}

رابط IAppBuilder بوسیله تعدادی متد الحاقی که در کلاسهایی که در فضای نام Owin تعریف شده‌اند، تکمیل شده است. متد CreatePerOwinContext کار ساخت وهله‌ای از کلاس AppUserManager و کلاس AppIdentityDbContext را برای هر درخواست بر عهده دارد. این مورد تضمین می‌کند که هر درخواست، به یک داده‌ی تمیز از Asp.Net Identity دسترسی خواهد داشت و نگران اعمال همزمانی و یا کش ضعیف داده نخواهد بود. متد UseCookieAuthentication به Asp.Net Identity می‌گوید که چگونه از کوکی‌ها برای تصدیق هویت کاربران استفاده کند که Optionهای آن از طریق کلاس CookieAuthenticationOptions مشخص می‌شود. مهمترین قسمت در اینجا پروپرتی LoginPath می‌باشد و مشخص می‌کند که کلاینت‌های تصدیق هویت نشده، هنگام دسترسی به یک منبع محافظت شده، به کدام URL هدایت شوند که توسط یک رشته به متد PathString پاس داده می‌شود.

خوب دوستان برپایی سیستم Identity به پایان رسید. انشالله در قسمت بعدی به چگونگی استفاده‌ی از این سیستم خواهیم پرداخت.