مطالب
آشنایی با Fluent interfaces

تعریف مقدماتی fluent interface در ویکی پدیا به شرح زیر است: (+)

In software engineering, a fluent interface (as first coined by Eric Evans and Martin Fowler) is a way of implementing an object oriented API in a way that aims to provide for more readable code.

به صورت خلاصه هدف آن فراهم آوردن روشی است که بتوان متدها را زنجیر وار فراخوانی کرد و به این ترتیب خوانایی کد نوشته شده را بالا برد. پیاده سازی آن هم شامل دو نکته است:
الف) نوع متد تعریف شده باید مساوی با نام کلاس جاری باشد.
ب) در این حالت خروجی متد‌های ما کلمه کلیدی this خواهند بود.

برای مثال:
using System;

namespace FluentInt
{
public class FluentApiTest
{
private int _val;

public FluentApiTest Number(int val)
{
_val = val;
return this;
}

public FluentApiTest Abs()
{
_val = Math.Abs(_val);
return this;
}

public bool IsEqualTo(int val)
{
return val == _val;
}
}
}
مثالی هم از استفاده‌ی آن به صورت زیر می‌تواند باشد:
if (new FluentApiTest().Number(-10).Abs().IsEqualTo(10))
{
Console.WriteLine("Abs(-10)==10");
}
که در آن توانستیم تمام متدها را زنجیر وار و با خوانایی خوبی شبیه به نوشتن جملات انگلیسی در کنار هم قرار دهیم.
خوب! این مطلبی است که همه جا پیدا می‌کنید و مطلب جدیدی هم نیست. اما موردی را که سخت می‌شود یافت این است که طراحی کلاس فوق ایراد دارد. برای مثال شما می‌توانید ترکیب‌های زیر را هم تشکیل دهید و کار می‌کند؛ یا به عبارتی برنامه کامپایل می‌شود و این خوب نیست:
if(new FluentApiTest().Abs().Number(-10).IsEqualTo(10)) ...
if (new FluentApiTest().Abs().IsEqualTo(10)) ...
می‌شود در کدهای برنامه یک سری throw new exception را هم قرار داد که ... هی! اول باید اون رو فراخوانی کنی بعد این رو!
ولی ... این روش هم صحیح نیست. از ابتدای کار نباید بتوان متد بی‌ربطی را در طول این زنجیره مشاهده کرد. اگر قرار نیست استفاده گردد، نباید هم در intellisense ظاهر شود و پس از آن هم نباید قابل کامپایل باشد.

بنابراین صورت مساله به این ترتیب اصلاح می‌شود:
می‌خواهیم پس از نوشتن FluentApiTest و قرار دادن یک نقطه، در intellisense فقط Number ظاهر شود و نه هیچ متد دیگری. پس از ذکر متد Number فقط متد Abs یا مواردی شبیه به آن مانند Sqrt ظاهر شوند. پس از انتخاب مثلا Abs آنگاه متد IsEqualTo توسط Intellisense قابل دسترسی باشد. در روش اول فوق، به صورت دوستانه همه چیز در دسترس است و هر ترکیب قابل کامپایلی را می‌شود با متدها ساخت که این مورد نظر ما نیست.
اینبار پیاده سازی اولیه به شرح زیر تغییر خواهد کرد:
using System;

namespace FluentInt
{
public class FluentApiTest
{
public MathMethods<FluentApiTest> Number(int val)
{
return new MathMethods<FluentApiTest>(this, val);
}
}

public class MathMethods<TParent>
{
private int _val;
private readonly TParent _parent;

public MathMethods(TParent parent, int val)
{
_val = val;
_parent = parent;
}

public Restrictions<MathMethods<TParent>> Abs()
{
_val = Math.Abs(_val);
return new Restrictions<MathMethods<TParent>>(this, _val);
}
}

public class Restrictions<TParent>
{
private readonly int _val;
private readonly TParent _parent;

public Restrictions(TParent parent, int val)
{
_val = val;
_parent = parent;
}

public bool IsEqualTo(int val)
{
return _val == val;
}
}
}
در اینجا هم به همان کاربرد اولیه می‌رسیم:
if (new FluentApiTest().Number(-10).Abs().IsEqualTo(10))
{
Console.WriteLine("Abs(-10)==10");
}
با این تفاوت که intellisense هربار فقط یک متد مرتبط در طول زنجیره را نمایش می‌دهد و تمام متدها در همان ابتدای کار قابل انتخاب نیستند.
در پیاده سازی کلاس MathMethods از Generics استفاده شده به این جهت که بتوان نوع متد Number را بر همین اساس تعیین کرد تا متدهای کلاس MathMethods در Intellisense (یا به قولی در طول زنجیره مورد نظر) ظاهر شوند. کلاس Restrictions نیز به همین ترتیب معرفی شده است و از آن جهت تعریف نوع متد Abs استفاده کردیم. هر کلاس جدید در طول زنجیره، توسط سازنده خود به وهله‌ای از کلاس قبلی به همراه مقادیر پاس شده دسترسی خواهد داشت. به این ترتیب زنجیره‌ای را تشکیل داده‌ایم که سازمان یافته است و نمی‌توان در آن متدی را بی‌جهت پیش یا پس از دیگری صدا زد و همچنین دیگر نیازی به بررسی نحوه‌ی فراخوانی‌های یک مصرف کننده نیز نخواهد بود زیرا برنامه کامپایل نمی‌شود.
مطالب
طراحی شیء گرا: OO Design Heuristics - قسمت دوم

در قسمت اول با مفاهیم اولیه Class و Object آشنا شدیم.

Messages and Methods

Objectها باید مانند ماشین‌هایی تلقی شوند که عملیات موجود در واسط عمومی خود را برای افرادی که درخواست مناسبی ارسال کنند، اجرا خواهند کرد. با توجه به اینکه یک object از استفاده کننده خود مستقل است و وابستگی به او ندارد و همچنین توجه به ساختار نحوی (syntax) برخی از زبان‌های شیء گرای جدید، عبارت «sending a message» برای توصیف اجرای رفتاری از مجموعه رفتارهای object، استفاده میشود.
به محض اینکه پیغامی (Message) به سمت object ارسال شود، ابتدا باید تصمیم بگیرد که این پیغام ارسالی را درک می‌کند. فرض کنیم این پیغام قابل درک است. در این صورت object مورد نظر، همزمان با نگاشت پیغام به یک فراخوانی تابع (function call)، خود را به صورت ضمنی به عنوان اولین آرگومان ارسال می‌کند. تصمیم گرفتن در رابطه با قابل درک بودن یک پیغام، در زبان‌های مفسری در زمان اجرا و در زبان‌های کامپایلری در زمان کامپایل، انجام میگرد. 
نام (یا prototype) رفتار یک وهله، Message (پیغام) نامیده می‌شود. بسیاری از زبان‌های شیء گرا مفهموم Overloaded Functions Or Operators را پشتیبانی می‌کنند. در این صورت می‌توان در سیستم دو تابعی داشت که با نام یکسان، یا انواع مختلف آرگومان (intraclass overloading) داشته باشند یا در کلاس‌های مختلفی (interclass overloading) قرار گیرند. 
ممکن است کلاس ساعت زنگدار، دو پیغام set_time که یکی از آنها با دو آرگومان از نوع عدد صحیح و دیگری یک آرگومان رشته‌ای است داشته باشد.

void AlarmClock::set_time(int hours, int minutes); 

void AlarmClock::set_time(String time);

در مقابل، کلاس ساعت زنگدار و کلاس ساعت مچی هر دو messageای به نام set_time با دو آرگومان از نوع عدد صحیح دارند.

void AlarmClock::set_time(int hours, int minutes); 

void Watch::set_time(int hours, int minutes);

باید توجه کنید که یک پیغام، شامل نام تابع، انواع آرگومان، نوع بازگشتی و کلاسی که پیغام به آن متصل است، می‌باشد. این اطلاعاتی که مطرح شد، بخش اصلی چیزی است که کاربر یک کلاس نیاز دارد در مورد آن‌ها آگاهی داشته باشد. 

در برخی از زبان‌ها و یا سیستم‌ها، اطلاعات دیگری مانند: انواع استثناءهایی که از سمت پیغام پرتاب می‌شوند تا اطلاعات همزمانی (پیغام به صورت همزمان است یا ناهمزمان) را برای استفاده کننده مهیا کنند. از طرفی پیاده سازی کنندگان یک کلاس باید از پیاده سازی پیغام آگاه باشند. جزئیات پیاده سازی یک پیغام -کدی که پیغام را پیاده سازی می‌کند- Method (متد) نامیده میشود. آنگاه که نخ (thread) کنترل درون متد باشد، برای مشخص کردن اینکه پیغام رسیده برای کدام وهله ارسال شده‌است، ارجاعی به وهله مورد نظر و به عنوان اولین آرگومان، به صورت ضمنی ارسال می‌شود. این آرگومان ضمنی، در بیشتر زبان‌ها Self Object نامیده می‌شود (در سی پلاس پلاس this object نام دارد). در نهایت، مجموعه پیغام‌هایی که یک وهله می‌تواند به آنها پاسخ دهد، Protocol (قرارداد) نام دارد.

دو پیغام خاصی که کلاس‌ها یا وهله‌ها می‌توانند به آنها پاسخ دهند، اولی که استفاده کنندگان کلاس برای ساخت وهله‌ها از آن استفاده می‌کنند، Constructor (سازنده) نام دارد. هر کلاسی می‌تواند سازنده‌های متعددی داشته باشد که هر کدام مجموعه پارامترهای مختلفی را برای مقدار دهی اولیه می‌پذیرند. دومین پیغام، عملیاتی است که وهله را قبل از حذف از سیستم، پاک سازی می‌کند. این عملیات، Destructor (تخریب کننده) نام دارد. بیشتر زبان‌های شیء گرا، برای هر کلاس تنها یک تخریب کننده دارند. این پیغام‌ها را به عنوان مکانیزم مقدار دهی اولیه و پاک سازی در پارادایم شیء گرا در نظر بگیرید.

قاعده شهودی 2.2

استفاده کنندگان از کلاس باید به واسط عمومی آن وابسته باشند، اما یک کلاس نباید به استفاده کنندگان خود، وابسته باشد. (Users of a class must be dependent on its public interface, but a class should not be dependent on its users)

منطق پشت این قاعده، یکی از شکل‌های قابلیت استفاده مجدد (resuability) می‌باشد. یک ساعت زنگدار ممکن است توسط شخصی در اتاق خواب او استفاده شود. واضح است که شخص مورد نظر به واسط عمومی ساعت زنگدار وابسته می‌باشد. به هر حال، ساعت زنگدار نباید به شخصی وابسته باشد. اگر ساعت زنگدار به شخصی وابسته باشد، بدون مهیا کردن یک شخص، نمی‌توان از آن برای ساخت یک TimeLockSafe استفاده کرد. این وابستگی‌ها برای مواقعیکه می‌خواهیم امکان این را داشته باشیم تا کلاس ساعت زنگدار را از دامین (domain) خود خارج کرده و در دامین دیگری، بدون وابستگی هایش مورد استفاده قرار دهیم، نامطلوب هستند.

شکل 2.4 The Use Of Alarm Clocks

 The Use Of Alarm Clocks قاعده شهودی 2.3

تعداد پیغام‌های موجود در قرارداد یک کلاس را کمینه سازید. (Minimize the number of messages in the protocol of a class)

چندین سال قبل، مطلبی منتشر شد که کاملا متضاد این قاعده شهودی می‌باشد. طبق آن، پیاده سازی کننده یک کلاس می‌تواند یکسری عملیات را با فرض اینکه در آینده مورد استفاده قرار گیرند، برای آن در نظر بگیرد. ایراد این کار چیست؟ اگر شما از این قاعده پیروی کنید، حتما کلاس LinkedList من، توجه شما را جلب خواهد کرد؛ این کلاس در واسط عمومی خود 4000 عملیات را دارد. فرض کنید قصد ادغام دو وهله از این کلاس را داشته باشید. در این صورت حتما فرض شما این است که عملیاتی تحت عنوان merge در این کلاس تعبیه شده است. بعد از جستجوی بین این تعداد عملیات، در نهایت این عملیات خاص را پیدا نخواهید کرد. چراکه این عملیات متأسفانه به صورت یک overloaded plus operator پیاده سازی شده است. مشکل اصلی واسط عمومی با تعداد زیادی عملیات این است که فرآیند یافتن عملیات مورد نظرمان را خیلی سخت یا حتی ناممکن خواهد کرد و مشکلی جدی برای قابلیت استفاده مجدد تلقی می‌شود.

با کمینه نگه داشتن تعداد عملیات واسط عمومی، سیستم، قابل فهم‌تر و همچنین مولفه‌های (components) آن به راحتی قابل استفاده مجدد خواهند بود.

قاعده شهودی 2.4

پیاده سازی یک واسط عمومی یکسان کمینه برای همه کلاس‌ها  (Implement a minimal public interface that all classes understand [e.g., operations such as copy (deep versus shallow), equality testing, pretty printing, parsing from an ASCII description, etc.].)

مهیا کردن یک واسط عمومی مشترک کمینه برای کلاس‌هایی که توسط یک توسعه دهنده پیاده سازی شده و قرار است توسط توسعه دهندگان دیگر مورد استفاده قرار گیرد، خیلی مفید خواهد بود. این واسط عمومی، حداقل عاملیتی را که به طور منطقی از هر کلاس میشود انتظار داشت، مهیا خواهد ساخت. واسطی که می‌تواند از آن به عنوان مبنای یادگیری درباره رفتار‌های کلاس‌ها در پایه نرم افزاری با قابلیت استفاده مجدد، بهره برد.

به عنوان مثال کلاس Object در دات نت به عنوان کلاس پایه ضمنی با یکسری از متدهای عمومی (برای مثال ToString)، نشان دهنده تعریف یک واسط عمومی مشترک برای همه کلاس‌ها در این فریمورک، می‌باشد.

public class Object
    {
        public Object();
        public static bool Equals(Object objA, Object objB){...}
        public static bool ReferenceEquals(Object objA, Object objB){...}
        public virtual bool Equals(Object obj){...}
        public virtual int GetHashCode(){...}
        public Type GetType(){...}
        public virtual string ToString(){...}
        protected Object MemberwiseClone(){...}
    }


قاعده شهودی 2.5 

جزئیات پیاده سازی، مانند توابع خصوصی common-code  ( توابعی که کد مشترک سایر متدهای کلاس را در بدنه خود دارند) را در واسط عمومی یک کلاس قرار ندهید.  (Do not put implementation details such as common-code private functions into the public interface of a class)

این قاعده برای کاهش پیچیدگی واسط عمومی کلاس برای استفاده کنندگان آن، طراحی شده است. ایده اصلی این است که استفاده کنندگان کلاس تمایلی ندارند به اعضایی دسترسی داشته باشند که از آنها استفاده نخواهند کرد؛ این اعضا باید به صورت خصوصی در کلاس قرار داده شوند. این توابع خصوصی common-code، زمانیکه متدهای یک کلاس، کد مشترکی را داشته باشند، ایجاد خواهند شد. قرار دادن این کد مشترک در یک متد، معمولا روش مناسبی می‌باشد. نکته قابل توجه این است که این متد، عملیات جدیدی نمی‌باشد؛ بله جزئیات پیاده سازی دو عملیات دیگر از کلاس را ساده کرده است.

شکل 2.5  Example of a common-code private function

Example of a common-code private function

مثال واقعی

فرض کنید در شکل بالا، کلاس X معادل یک LinkedList کلاس، f1و f2 به عنوان توابع insert و remove و تابع f به عنوان تابع common-code که عملیات یافتن آدرس را برای درج و حذف انجام می‌دهد، می‌باشند.

قاعده شهودی 2.6

واسط عمومی کلاس را با اقلامی که یا استفاده کنندگان از کلاس توانایی استفاده از آن را نداشته و یا تمایلی به استفاده از آنها ندارند، آمیخته نکنید.  (Do not clutter the public interface of a class with items that users of that class are not able to use or are not interested in using )

 این قاعده شهودی با قاعده قبلی که با قرار دادن تابع common-code در واسط عمومی کلاس، فقط باعث در هم ریختن واسط عمومی شده بود، مرتبط می‌باشد. در برخی از زبان‌ها مانند C++‎، برای مثال این امکان وجود دارد که سازنده یک کلاس انتزاعی (abstract) را در واسط عمومی آن قرار دهید؛ حتی با وجود اینکه در زمان استفاده از آن سازنده با خطای نحوی روبرو خواهید شد. این قاعده شهودی کلی، برای کاهش این مشکلات در نظر گرفته شده است. 

اشتراک‌ها
بررسی Native AOT در دات‌نت 8
Deep .NET - Ahead of Time Compilation (Native AOT) with Eric Erhardt

Scott Hanselman is joined by Eric Erhardt to go deep on all things Native AOT, that is right, Ahead of Time Compilation. Learn about everything Native AOT from start to finish and how .NET leverages this technology to make your apps and code super fast.

Chapters:
00:00:00 Intro
00:04:17 Understanding the Options and Restrictions of Publishing in .NET Apps
00:06:46 Limitations and Benefits of Native AOT
00:12:33 Development and Implementation of Web API AOT
00:16:28 Use of Create Small and Source Generators in Web Development
00:22:03 Role and Impact of Source Generators in Software Development
00:29:17 Application Performance Optimization and Role-Based Optimization in Web Development
00:33:27 Program Optimization Techniques and Trade-offs
00:37:28 Trade-offs and Considerations in Application Optimization
00:41:27 Understanding the Challenges and Limitations of Implementing AOT
00:46:34 Understanding and Implementing AOT
00:52:56 Understanding Model Streaming Extensions
00:55:50 C# 11 and AOT
01:03:49 Understanding and Addressing AOT Compatibility Issues
01:08:54 Understanding Trimming
01:10:35 Understanding and Addressing System Memory Data and Error Handling
01:16:16 Binary Data Compatibility and Source Generation in Visual Studio
01:24:25 Advanced Features
01:25:29 Wrap-up
بررسی Native AOT در دات‌نت 8
مطالب
نحوه پیاده سازی عملیات Undo و Redo با استفاده از الگوی طراحی Command
اگر با الگوهای طراحی آشنا باشید، یکی از مناسب‌ترین الگوهای طراحی برای پیاده سازی عملیات Undo و Redo استفاده از الگوی طراحی Command هست (مطالعه بیشتر).
در این الگو یک کلاینت دارم که مشخص می‌کند چه کاری قرار است انجام شود. یک Command داریم که می‌گوید هر کاری را چه کسی انجام دهد و یک Receiver داریم که می‌گوید هر کاری چطور انجام می‌شود.
قدم اول: کلاینت می‌خواهد عملیات Undo و Redo انجام شود. من اضافه‌بر این دو عملیات، عملیات Execute را هم اضافه می‌کنم. پس کلاینت می‌خواهد که سه کار Undo و Redo و Execute را انجام دهد. 
    public class Client
    {
        public delegate string Invoker();
        public static Invoker Execute;//اضافه کردن یک آیتم جدید
        public static Invoker Redo;//حرکت به جلو
        public static Invoker Undo;//حرکت به عقب
    }
قدم دوم: Command باید مشخص کند که هر کاری را چه کسی باید انجام دهد:
    public class Command
    {
        public Command(Receiver receiver)
        {
            Client.Execute = receiver.Action;
            Client.Redo = receiver.Foreward;
            Client.Undo = receiver.Reverse;
        }
    }
Command در سازنده‌ی خود ورودی از نوع Receiver دارد (در ادامه پیاده سازی خواهد شد) و در واقع می‌خواهد کارها را به Receiver محول نماید.
قدم سوم: بایدمشخص شود هر کاری قرار است چگونه انجام شود:
    public class Receiver
    {
        private readonly List<string> build = new List<string>();
        private readonly List<string> oldBuild = new List<string>();

        public string Action()
        {
            if (build.Count > 0)
                oldBuild.Add(build.LastOrDefault());
            build.Add(build.Count.ToString(CultureInfo.InvariantCulture));
            return build.LastOrDefault();
        }

        public string Reverse()
        {
            string last = oldBuild.LastOrDefault();
            if (last == null)
                return "EMPTY";
            oldBuild.Remove(last);
            return last;
        }

        public string Foreward()
        {
            string oldIndex = oldBuild.LastOrDefault();
            int index = oldIndex == null ? -1 : build.IndexOf(oldIndex);
            if ((index + 1) == build.Count)
                return "END";
            oldBuild.Add(build.ElementAt(index + 1));
            return oldBuild.LastOrDefault();
        }
    }
اگر روش بهتری برای پیاده سازی Undo و Redo و Execute دارید، میتوانید جایگزین کنید. این اولین روشی بود که به ذهنم رسید!
قدم‌های لازم برای پیاده کردن الگوی Command تا اینجا به پایان می‌رسند. حالا کافی‌است از آن استفاده کنیم:
            new Command(new Receiver());
            Console.WriteLine(Client.Execute());
            Console.WriteLine(Client.Execute());
            Console.WriteLine(Client.Undo());
            Console.WriteLine(Client.Undo());
            Console.WriteLine(Client.Undo());
            Console.WriteLine(Client.Redo());
            Console.WriteLine(Client.Redo());
            Console.WriteLine(Client.Redo());
            Console.WriteLine(Client.Execute());
در این روش ما از delegate استفاده کردیم و به کمک آن یک واسط را بین کلاینت و Command ساختیم (Invoker). 
مطالب
Design Pattern: Factory

الگوهای طراحی، سندها و راه حلهای از پیش تعریف شده و تست شده‌ای برای مسائل و مشکلات روزمره‌ی برنامه نویسی می‌باشند که هر روزه ما را درگیر خودشان می‌کنند. هر چقدر مقیاس پروژه وسیعتر و تعداد کلاسها و اشیاء بزرگتر باشند، درگیری برنامه نویس و چالش برای مرتب سازی و خوانایی برنامه و همچنین بالا بردن کارآیی و امنیت افزون‌تر می‌شود. از همین رو استفاده از ساختارهایی تست شده برای سناریوهای یکسان، امری واجب تلقی می‌شود.

الگوهای طراحی از لحاظ سناریو، به سه گروه عمده تقسیم می‌شوند:

1- تکوینی: هر چقدر تعداد کلاسها در یک پروژه زیاد شود، به مراتب تعداد اشیاء ساخته شده از آن نیز افزوده شده و پیچیدگی و درگیری نیز افزایش می‌یابد. راه حل‌هایی از این دست، تمرکز بر روی مرکزیت دادن به کلاسها با استفاده از رابط‌ها و کپسوله نمودن (پنهان سازی) اشیاء دارد. 

2- ساختاری: گاهی در پروژه‌ها پیش می‌آید که می‌خواهیم ارتباط بین دو کلاس را تغییر دهیم. از این رو امکان از هم پاشی اجزایِ دیگر پروژه پیش می‌آید. راه حلهای ساختاری، سعی در حفظ انسجام پروژه در برابر این دست از تغییرات را دارند.

3- رفتاری: گاهی بنا به مصلحت و نیاز مشتری، رفتار یک کلاس می‌بایستی تغییر نماید. مثلا چنانچه کلاسی برای ارائه صورتحساب داریم و در آن میزان مالیات 30% لحاظ شده است، حال این درصد باید به عددی دیگر تغییر کند و یا پایگاه داده به جای مشاهده‌ی تعدادِ معدودی گره از درخت، حال می‌بایست تمام گره‌ها را ارائه نماید.


الگوی فکتوری:

الگوی فکتوری در دستهء اول قرار می‌گیرد. من در اینجا به نمونه‌ای از مشکلاتی که این الگو حل می‌نماید، اشاره می‌کنم:

فرض کنید یک شرکت بزرگ قصد دارد تا جزییات کامل خرید هر مشتری را با زدن دکمه چاپ ارسال نماید. چنین شرکت بزرگی بر اساس سیاستهای داخلی، بر حسب میزان خرید، مشتریان را به چند گروه مشتری معمولی و مشتری ممتاز تقسیم می‌نماید. در نتیجه نمایش جزییات برای آنها با احتساب میزان تخفیف و به عنوان مثال تعداد فیلدهایی که برای آنها در نظر گرفته شده است، تفاوت دارد. بنابراین برای هر نوع مشتری یک کلاس وجود دارد.


یک راه این است که با کلیک روی دکمه‌ی چاپ، نوع مشتری تشخیص داده شود و به ازای نوع مشتری، یک شیء از کلاس مشخص شده برای همان نوع ساخته شود.

 

 

            // Get Customer Type from Customer click on Print Button
            int customerType = 0;

            // Create Object without instantiation
            object obj;


            //Instantiate obj according to customer Type
            if (customerType == 1)
            {
                obj = new Customer1();
            }
            else if (customerType == 2)
            {
                obj = new Customer2();
            }
            // Problem:
            //          1: Scattered New Keywords
            //          2: Client side is aware of Customer Type

 همانگونه که مشاهده می‌نمایید در این سبک کدنویسی غیرحرفه‌ای، مشکلاتی مشهود است که قابل اغماض نیستند. در ابتدا سمت کلاینت دسترسی مستقیم به کلاسها دارد و همانگونه که در شکل بالا قابل مشاهده است کلاینت مستقیما به کلاس وصل است. مشکل دوم عدم پنهان سازی کلاس از دید مشتری است.

راه حل: این مشکل با استفاده از الگوی فکتوری قابل حل است. با استناد به الگوی فکتوری، کلاینت تنها به کلاس فکتوری و یک اینترفیس دسترسی دارد و کلاسهای فکتوری و اینترفیس، حق دسترسی به کلاسهای اصلی برنامه را دارند.

گام نخست: در ابتدا یک class library  به نام Interface ساخته و در آن یک کلاس با نام ICustomer  می سازیم   که متد Report() را معرفی می‌نماید.

  //Interface

namespace Interface
{
    public interface ICustomer
    {
        void Report();
    }
}

گام دوم: یک class library  به نام MainClass  ساخته و با Add Reference کلاس Interface را اضافه نموده، در آن دو کلاس با نام Customer1, Customer2 می‌سازیم و using Interface را Import می‌نماییم. هر دو کلاس از ICustomer  ارث می‌برند و  سپس متد Report() را در هر دو کلاس Implement می‌نماییم.

// Customer1
using System;
using Interface;

namespace MainClass
{
    public class Customer1 : ICustomer
    {
        public void Report()
        {           
            Console.WriteLine("این گزارش مخصوص مشتری نوع اول است");           
        }
    }
}

//Customer2
using System;
using Interface;

namespace MainClass
{
   public class Customer2 : ICustomer
    {
        public void Report()
        {           
            Console.WriteLine("این گزارش مخصوص مشتری نوع دوم است");           
        }
    }
}

گام سوم: یک class library  به نام FactoryClass  ساخته و با Add Reference کلاس Interface, MainClass را اضافه نموده، در آن یک کلاس با نام clsFactory  می سازیم و using Interface, using MainClass را Import می‌نماییم. پس از آن یک متد با نام getCustomerType ساخته که ورودی آن نوع مشتری از نوع int است و خروجی آن از نوع Interface-ICustomer و بر اساس کد نوع مشتری object را از کلاس Customer1 و یا Customer2 می‌سازیم و آن را return می نماییم.

//Factory
using System;
using Interface;
using MainClass;

namespace FactoryClass
{
    public class clsFactory
    {
        static public ICustomer getCustomerType(int intCustomerType)
        {
            ICustomer objCust;
            if (intCustomerType == 1)
            {
                objCust = new Customer1();
            }
            else if (intCustomerType == 2)
            {
                objCust = new Customer2();
            }
            else
            {
                return null;
            }
            return objCust;
        }
    }
}

گام چهارم (آخر): در قسمت UI   Client، کد نوع مشتری را از کاربر دریافت کرده و با Add Reference کلاس Interface, FactoryClass را اضافه نموده (دقت نمایید هیچ دسترسی به کلاس‌های اصلی وجود ندارد)، و using Interface,  using FactoryClass را Import می‌نماییم. از clsFactory تابع  getCustomerType را فراخوانی نموده (به آن کد نوع مشتری را پاس می‌دهیم) و خروجی آن را که از نوع اینترفیس است به یک object از نوع ICustomer  نسبت می‌دهیم. سپس از این object  متد Report را فراخوانی می‌نماییم. همانطور که از شکل و کدها مشخص است، هیچ رابطه ای بین UI(Client) و کلاسهای اصلی برقرار نیست.

//UI (Client)
using System;
using FactoryClass;
using Interface;

namespace DesignPattern
{
    class Program
    {
        static void Main(string[] args)
        {
            int intCustomerType = 0;
            ICustomer objCust;
            Console.WriteLine("نوع مشتری را وارد نمایید");           
            intCustomerType = Convert.ToInt16(Console.ReadLine());
            objCust = clsFactory.getCustomerType(intCustomerType);
            objCust.Report();
            Console.ReadLine();
        }
    }
}

اشتراک‌ها
سری طراحی بهتر برنامه‌های #C

Practical C# Design

Learn about object-oriented and functional programming using C# and .NET. Improve your skills while avoiding pitfalls and common mistakes.
Videos in this list are covering C# syntax, coding practices and patterns applied in object-oriented and functional design. 

سری طراحی بهتر برنامه‌های #C
اشتراک‌ها
الگوهای طراحی، الگوهای رفتاری [Behavioral Design Patterns] (مقاله سوم)
طی ماه‌های اخیر مجموعه ای سه گانه از مقالات الگوهای طراحی در Code Project منتشر شده‌اند.
قسمت اول - الگوهای سازنده (Best C# article of July 2012 - Best overall article of July 2012)
قسمت دوم - الگوهای ساختاری

الگوهای طراحی، الگوهای رفتاری [Behavioral Design Patterns] (مقاله سوم)