مطالب دوره‌ها
شی گرایی در #F
برنامه نویسی شی گرای سومین نسل از الگوهای اصلی برنامه نویسی است. در توضیحات فصل اول گفته شد که #F یک زبان تابع گرا است ولی این بدان معنی نیست که #F از مفاهیمی نظیر کلاس و یا interface پشتیبانی نکند. برعکس در #F امکان تعریف کلاس و interface و هم چنین پیاده سازی مفاهیم شی گرایی وجود دارد.

*با توجه به این موضوع که فرض است دوستان با مفاهیم شی گرایی آشنایی دارند از توضیح و تشریح این مفاهیم خودداری می‌کنم.

Classes
کلاس چارچوبی از اشیا است برای نگهداری خواص(Properties) و رفتار ها(Methods) و رخدادها(Events). کلاس پایه ای‌ترین مفهوم در برنامه نویسی شی گراست. ساختار کلی تعربف کلاس در #F به صورت زیر است:
type [access-modifier] type-name [type-params] [access-modifier] ( parameter-list ) [ as identifier ] =
   [ class ]
     [ inherit base-type-name(base-constructor-args) ]
     [ let-bindings ]
     [ do-bindings ]
     member-list
      ...
   [ end ]

type [access-modifier] type-name1 ...
and [access-modifier] type-name2 ...
...
همان طور که در ساختار بالا می‌بینید مفاهیم access-modifier و inherit و constructor هم در #F وجود دارد.

انواع access-modifier در #F
  • public : دسترسی برای تمام فراخوان‌ها امکان پذیر است
  • internal : دسترسی برای تمام فراخوان هایی که در همین assembly هستند امکان پذیر است
  • private : دسترسی فقط برای فراخوان‌های موجود در همین ماژول امکان پذیر است

نکته : protected access modifier در #F پشتیبانی نمی‌شود.

مثالی از تعریف کلاس:

type Account(number : int, name : string) = class
    let mutable amount = 0m
   
end
کلاس بالا دارای یک سازنده است که دو پارامتر ورودی می‌گیرد. کلمه end به معنای انتهای کلاس است. برای استفاده کلاس باید به صورت زیر عمل کنید:
let myAccount = new Account(123456, "Masoud")
توابع و خواص در کلاس ها
برای تعریف خاصیت در #F باید از کلمه کلیدی member استفاده کنید. در مثال بعدی برای کلاس بالا تابع و خاصیت تعریف خواهیم کرد.
type Account(number : int, name: string) = class
    let mutable amount = 0m
 
    member x.Number = number
    member x.Name= name
    member x.Amount = amount
 
    member x.Deposit(value) = amount <- amount + value
    member x.Withdraw(value) = amount <- amount - value
end
کلاس بالا دارای سه خاصیت به نام‌های Number و Name و Amount است و دو تابع به نام‌های Deposit و Withdraw دارد. اما x استفاده شده قبل از هر member به معنی this در #C  است. در #F شما برای اشاره به شناسه‌های یک محدوده خودتون باید یک نام رو برای اشاره گر مربوطه تعیین کنید.
open System
 
type Account(number : int, name: string) = class
    let mutable amount = 0m
 
    member x.Number = number
    member x.Name= name
    member x.Amount = amount
 
    member x.Deposit(value) = amount <- amount + value
    member x.Withdraw(value) = amount <- amount - value
end
 let masoud= new Account(12345, "Masoud") let saeed = new Account(67890, "Saeed") let transfer amount (source : Account) (target : Account) = source.Withdraw amount target.Deposit amount let printAccount (x : Account) = printfn "x.Number: %i, x.Name: %s, x.Amount: %M" x.Number x.Name x.Amount let main() = let printAccounts() = [masoud; saeed] |> Seq.iter printAccount printfn "\nInializing account" homer.Deposit 50M marge.Deposit 100M printAccounts() printfn "\nTransferring $30 from Masoud to Saeed" transfer 30M masoud saeed
 printAccounts() printfn "\nTransferring $75 from Saeed to Masoud" transfer 75M saeed masoud printAccounts() main()
استفاده از کلمه do
در #F زمانی که قصد داشته باشیم در بعد از وهله سازی از کلاس و فراخوانی سازنده، عملیات خاصی انجام شود(مثل انجام برخی عملیات متداول در سازنده‌های کلاس‌های دات نت) باید از کلمه کلیدی do به همراه یک بلاک از کد استفاده کنیم.
open System
open System.Net
 
type Stock(symbol : string) = class

    let mutable _symbol = String.Empty
    do
     //کد مورد نظر در این جا نوشته  میشود
end
یک مثال در این زمینه:

open System

type MyType(a:int, b:int) as this =
    inherit Object()
    let x = 2*a
    let y = 2*b
    do printfn "Initializing object %d %d %d %d %d %d"
               a b x y (this.Prop1) (this.Prop2)
    static do printfn "Initializing MyType." 
    member this.Prop1 = 4*x
    member this.Prop2 = 4*y
    override this.ToString() = System.String.Format("{0} {1}", this.Prop1, this.Prop2)

let obj1 = new MyType(1, 2)
در مثال بالا دو عبارت do  یکی به صورت static و دیگری به صورت غیر static تعریف شده اند. استفاده از do  به صورت غیر static این امکان را به ما می‌دهد که بتوانیم به تمام شناسه‌ها و توابع تعریف شده در کلاس استفاده کنیم ولی do به صورت static فقط به خواص و توابع از نوع static در کلاس دسترسی دارد.
خروجی مثال بالا:
Initializing MyType.
Initializing object 1 2 2 4 8 16
خواص static:
برای تعریف خواص به صورت استاتیک مانند #C از کلمه کلیدی static استفاده کنید.مثالی در این زمینه:
type SomeClass(prop : int) = class
    member x.Prop = prop
    static member SomeStaticMethod = "This is a static method"
end
SomeStaticMethod به صورت استاتیک تعریف شده در حالی که x.Prop به صورت غیر استاتیک. دسترسی به متد‌ها یا خواص static باید بدون وهله سازی از کلاس انجام بگیرد در غیر این صورت با خطای کامپایلر روبرو خواهید شد.
let instance = new SomeClass(5);;
instance.SomeStaticMethod;; 

output:
stdin(81,1): error FS0191: property 'SomeStaticMethod' is static.
روش استفاده درست:
SomeClass.SomeStaticMethod;; (* invoking static method *)
متد‌های get , set در خاصیت ها:
همانند #C و سایر زبان‌های دات نت امکان تعریف متد‌های get و set برای خاصیت‌های یک کلاس وجود دارد.
ساختار کلی:
 member alias.PropertyName
        with get() = some-value
        and set(value) = some-assignment
مثالی در این زمینه:
type MyClass() = class
   let mutable num = 0 
    member x.Num
        with get() = num
        and set(value) = num <- value
end;;
کد متناظر در #C:
public int Num
{
   get{return num;}
   set{num=value;}
}
یا به صورت:
type MyClass() = class
    let mutable num = 0
 
    member x.Num
        with get() = num
        and set(value) =
            if value > 10 || value < 0 then
                raise (new Exception("Values must be between 0 and 10"))
            else
                num <- value
end

Interface ها
اینترفیس به تمامی خواص و توابع عمومی اشئایی که آن را پیاده سازی کرده اند اشاره می‌کند. (توضیحات بیشتر (^ ) و (^ ))ساختار کلی برای تعریف آن به صورت زیر است:
type type-name = 
   interface
       inherits-decl 
       member-defns 
   end
مثال:
type IPrintable =
   abstract member Print : unit -> unit
استفاده از حرف I برای شروع نام اینترفیس طبق قوانین تعریف شده (اختیاری) برای نام گذاری است.
نکته: در هنگام تعریف توابع و خاصیت در interface‌ها باید از کلمه abstract استفاده کنیم. هر کلاسی که از یک یا چند تا اینترفیس ارث ببرد باید تمام خواص و توابع اینتریس‌ها را پیاده سازی کند. در مثال بعدی کلاس SomeClass1 اینترفیس بالا را پیاده سازی می‌کند. دقت کنید که کلمه this توسط من به عنوان اشاره گر به اشیای کلاس تعیین شده و شما می‌تونید از هر کلمه یا حرف دیگری استفاده کنید.
type SomeClass1(x: int, y: float) =
   interface IPrintable with 
      member this.Print() = printfn "%d %f" x y
نکته مهم: اگر قصد فراخوانی متد Print را در کلاس بالا دارید نمی‌تونید به صورت مستقیم متد بالا را فراخوانی کنید. بلکه حتما باید کلاس به اینترفیس مربوطه cast شود.
روش نادرست:
let instance = new SomeClass1(10,20)
instance.Print//فراخوانی این متد باعث ایجاد خطای کامپایلری می‌شود.
روش درست:
let instance = new SomeClass1(10,20) 
let instanceCast = instance :> IPrintable// استفاده از (<:)  برای عملیات تبدیل کلاس به اینترفیس
instanceCast.Print
برای عملیات cast ازاستفاده کنید.
در مثال بعدی کلاسی خواهیم داشت که از سه اینترفیس ارث می‌برد. در نتیجه باید تمام متد‌های هر سه اینترفیس را پیاده سازی کند.
type Interface1 =
    abstract member Method1 : int -> int

type Interface2 =
    abstract member Method2 : int -> int

type Interface3 =
    inherit Interface1
    inherit Interface2
    abstract member Method3 : int -> int

type MyClass() =
    interface Interface3 with 
        member this.Method1(n) = 2 * n
        member this.Method2(n) = n + 100
        member this.Method3(n) = n / 10
فراخوانی این متد‌ها نیز به صورت زیر خواهد بود:
let instance = new MyClass()
let instanceToCast = instance :> Interface3
instanceToCast.Method3 10
کلاس‌های Abstract
#F از کلاس‌های abstract هم پشتیبانی می‌کند. اگر با کلاس‌های abstract در #C آشنایی ندارید می‌تونید مطالب مورد نظر رو در  (^ ) و (^ ) مطالعه کنید. به صورت خلاصه کلاس‌های abstract به عنوان کلاس‌های پایه در برنامه نویسی شی گرا استفاده می‌شوند. این کلاس‌ها دارای خواص و متد‌های پیاده سازی شده و نشده هستند. خواص و متد هایی که در کلاس پایه abstract پیاده سازی نشده اند باید توسط کلاس هایی که از این کلاس پایه ارث می‌برند حتما پیاده سازی شوند.
ساختار کلی تعریف کلاس‌های abstract:
[<AbstractClass>]
type [ accessibility-modifier ] abstract-class-name =
    [ inherit base-class-or-interface-name ]
    [ abstract-member-declarations-and-member-definitions ]

    abstract member member-name : type-signature
در #F برای این که مشخص کنیم که یک کلاس abstract است حتما باید [<AbstractClass>] در بالای کلاس تعریف شود.
[<AbstractClass>]
type Shape(x0 : float, y0 : float) =
    let mutable x, y = x0, y0
    let mutable rotAngle = 0.0

    abstract Area : float with get
    abstract Perimeter : float  with get
    abstract Name : string with get
کلاس بالا تعریفی از کلاس abstract است که سه خصوصیت abstract دارد (برای تعیین خصوصیت‌ها و متد هایی که در کلاس پایه پیاده سازی نمی‌شوند از کلمه کلیدی abstract در هنگام تعریف آن‌ها استفاده می‌کنیم). حال دو کلاس ایجاد می‌کنیم که این کلاس پایه را پیاده سازی کنند.

#1 کلاس اول
type Square(x, y,SideLength) =
    inherit Shape(x, y)
  override this.Area = this.SideLength * this.SideLength override this.Perimeter = this.SideLength * 4. override this.Name = "Square"
#2 کلاس دوم
type Circle(x, y, radius) =
    inherit Shape(x, y)
 let PI = 3.141592654 member this.Radius = radius override this.Area = PI * this.Radius * this.Radius override this.Perimeter = 2. * PI * this.Radius
Structures
structure‌ها در #F دقیقا معال struct در #C هستند. توضیحات بیشتر درباره struct در #C (^ ) و (^ )). اما به طور خلاصه باید ذکر کنم که strucure‌ها تقریبا دارای مفهوم کلاس هستند با اندکی تفاوت که شامل موارد زیر است:
  • structure‌ها از نوع مقداری هستند و این بدین معنی است مستقیما درون پشته ذخیره می‌شوند.
  • ارجاع به structure‌ها از نوع ارجاع با مقدار است بر خلاف کلاس‌ها که از نوع ارجاع به منبع هستند.(^ )
  • structure‌ها دارای خواص ارث بری نیستند.
  • عموما از structure برای ذخیره مجموعه ای از داده‌ها با حجم و اندازه کم استفاده می‌شود.

ساختار کلی تعریف structure

[ attributes ]
type [accessibility-modifier] type-name =
   struct
      type-definition-elements
   end

//یا به صورت زیر

[ attributes ]
[<StructAttribute>]
type [accessibility-modifier] type-name =
   type-definition-elements
یک نکته مهم هنگام کار با struct‌ها در #F این است که امکان استفاده از let و Binding در struct‌ها وجود ندارد. به جای آن باید از val استفاده کنید.
type Point3D =
   struct 
      val x: float
      val y: float
      val z: float
   end
تفاوت اصلی بین val و let در این است که هنگام تعریف شناسه با val امکان مقدار دهی اولیه به شناسه وجود ندارد. در مثال بالا مقادیر برای x و y و z برابر 0.0 است که توسط کامپایلر انجام می‌شود. در ادامه یک struct به همراه سازنده تعریف می‌کنیم:
type Point2D =
   struct 
      val X: float
      val Y: float
      new(x: float, y: float) = { X = x; Y = y }
   end
توسط سازنده struct بالا مقادیر اولیه x و y دریافت می‌شود به متغیر‌های متناظر انتساب می‌شود.

  در پایان یک مثال مشترک رو در #C و #F پیاده سازی می‌کنیم:


مطالب
نحوه کار با ftp - بخش اول
امروز می‌خوام نحوه کار با FTP بصورت ساده برای کاربران و برنامه نویسان مبتدی رو آموزش بدم.

برای استفاده از FTP نیاز به یک اکانت FTP در سایت مورد نظر بهمراه دسترسی به پوشه ای مشخص می‌باشد.
برای مثال ما یک اکانت FTP در سایت dotnettip.info داریم که به پوشه upload دسترسی داره.

ابتدا در فایل Web.config و در بین تگ های  appSettings مقادیر زیر را برای دسترسی به اکانت و نام کاربری و رمز عبور ذخیره می‌کنیم.
<add key="FtpAddress" value="ftp://ftp.dotnetips.info" />
<add key="FtpUser" value="uploadcenter" />
<add key="FtpPass" value="123123" />
<add key="FolderPath" value="~/Upload/" />
*نکته : برای امنیت بیشتر و دسترسی به اطلاعات اکانت می‌شود از روش‌های دیگری نیز استفاده کرد.

در ادامه یک کلاس در App_code  پروژه خود با نام FTPHelper ایجاد می‌کنیم و کد زیر را در آن قرار می‌دهیم:
تکه کد بالا برای ست کردن مقادیر نام کاربری و رمز عبور و آدرس FTP در کلاس مذکور که بصورت پیش‌فرض از web.config پر می‌شود ایجاد و بکار خواهد رفت.
using System.Net;
using System.IO;
using System.Configuration; 


public class FtpHelper
{
public FtpHelper()
{
       //Default Value Set From Application 
         _hostname = ConfigurationManager.AppSettings.GetValues("FtpAddress")[0]; 
        _username = ConfigurationManager.AppSettings.GetValues("FtpUser")[0]; 
        _password = ConfigurationManager.AppSettings.GetValues("FtpPass")[0];  
}
    
    #region "Properties"
    private string _hostname;
    /// <summary>
    /// Hostname
    /// </summary>
    /// <value></value>
    /// <remarks>Hostname can be in either the full URL format
    /// ftp://ftp.myhost.com or just ftp.myhost.com
    /// </remarks>
    public string Hostname
    {
        get
        {
            if (_hostname.StartsWith("ftp://"))
            {
                return _hostname;
            }
            else
            {
                return "ftp://" + _hostname;
            }
        }
        set
        {
            _hostname = value;
        }
    }
    private string _username;
    /// <summary>
    /// Username property
    /// </summary>
    /// <value></value>
    /// <remarks>Can be left blank, in which case 'anonymous' is returned</remarks>
    public string Username
    {
        get
        {
            return (_username == "" ? "anonymous" : _username);
        }
        set
        {
            _username = value;
        }
    }
    private string _password;
    public string Password
    {
        get
        {
            return _password;
        }
        set
        {
            _password = value;
        }
    }


    #endregion
}


سپس فضای نام‌های زیر را در کلاس خود قرار می‌دهیم.
using System.Net;
using System.IO;
 
حالا برای بارگذاری فایل می‌توانیم از یک تابع بصورت shared استفاده کنیم که بتوان با دادن آدرس فایل بصورت فیزیکی به تابع و مشخص کردن پوشه مورد نظر آنرا در هاست مقصد (FTP) بارگذاری کرد.توجه داشته باشیذ که تابع فوق نیازی به قرار گرفتن در کلاس بالا (FtpHelper) ندارد.یعنی می‌توان آنرا در هرجای برنامه پیاده سازی نمود.
public static bool Upload(string fileUrl)
        {
            if (File.Exists(fileUrl))
            {
                FtpHelper ftpClient = new FtpHelper();
                string ftpUrl = ftpClient.Hostname + System.IO.Path.GetFileName(fileUrl);


                FtpWebRequest ftp = (FtpWebRequest)FtpWebRequest.Create(ftpUrl);
                ftp.Credentials = new NetworkCredential(ftpClient.Username, ftpClient.Password);

                ftp.KeepAlive = true;
                ftp.UseBinary = true;
                ftp.Timeout = 3600000;
                ftp.KeepAlive = true;
                ftp.Method = WebRequestMethods.Ftp.UploadFile;

                const int bufferLength = 102400;
                byte[] buffer = new byte[bufferLength];
                int readBytes = 0;

                //open file for reading
                using (FileStream fs = File.OpenRead(fileUrl))
                {
                    try
                    {
                        //open request to send
                        using (Stream rs = ftp.GetRequestStream())
                        {
                            do
                            {
                                readBytes = fs.Read(buffer, 0, bufferLength);
                                fs.Write(buffer, 0, readBytes);
                            } while (!(readBytes < bufferLength));
                            rs.Close();
                        }

                    }
                    catch (Exception)
                    {
                     //Optional Alert for Exeption To Application Layer
                       //throw (new ApplicationException("بارگذاری فایل با خطا  رو به رو شد"));
 
                    }
                    finally
                    {
                        //ensure file closed
                        //fs.Close();
                    }

                }

                ftp = null;
                return true;
            }
            return false;



        }


تکه کد بالا فایل مورد نظر را در صورت وجود به صورت تکه‌های 100 کیلوبایتی بر روی ftp بارگذاری می‌کند، که می‌توانید مقدار آنرا نیز تغییر دهید.
اینکار باعث افزایش سرعت بارگذاری در فایل‌های با حجم بالا برای بارگذاری می‌شود.

در بخش‌های بعدی نحوه ایجاد پوشه ، حذف فایل ، حذف پوشه و دانلود فایل از روی FTP را بررسی خواهیم کرد.
مطالب
استفاده از MVVM زمانیکه امکان Binding وجود ندارد

ساده‌ترین تعریف MVVM، نهایت استفاده از امکانات Binding موجود در WPF و Silverlight است. اما خوب، همیشه همه چیز بر وفق مراد نیست. مثلا کنترل WebBrowser را در WPF در نظر بگیرید. فرض کنید که می‌خواهیم خاصیت Source آن‌را در ViewModel مقدار دهی کنیم تا صفحه‌ای را نمایش دهد. بلافاصله با خطای زیر متوقف خواهیم شد:

A 'Binding' cannot be set on the 'Source' property of type 'WebBrowser'.
A 'Binding' can only be set on a DependencyProperty of a DependencyObject.

بله؛ این خاصیت از نوع DependencyProperty نیست و نمی‌توان چیزی را به آن Bind کرد. بنابراین این نکته مهم را توسعه دهنده‌های کنترل‌های WPF و Silverlight همیشه باید بخاطر داشته باشند که اگر قرار است کنترل‌های شما MVVM friendly باشند باید کمی بیشتر زحمت کشیده و بجای تعریف خواص ساده دات نتی، خواص مورد نظر را از نوع DependencyProperty تعریف کنید.
الان که تعریف نشده چه باید کرد؟
پاسخ متداول آن این است: مهم نیست؛ خودمان می‌توانیم این‌کار را انجام دهیم! یک Attached property یا به عبارتی یک Behavior را تعریف و سپس به کمک آن عملیات Binding را میسر خواهیم ساخت. برای مثال:
در این Attached property قصد داریم یک خاصیت جدید به نام BindableSource را جهت کنترل WebBrowser تعریف کنیم:

using System;
using System.Windows;
using System.Windows.Controls;

namespace WebBrowserSample.Behaviors
{
public static class WebBrowserBehaviors
{
public static readonly DependencyProperty BindableSourceProperty =
DependencyProperty.RegisterAttached("BindableSource",
typeof(object),
typeof(WebBrowserBehaviors),
new UIPropertyMetadata(null, BindableSourcePropertyChanged));

public static object GetBindableSource(DependencyObject obj)
{
return (string)obj.GetValue(BindableSourceProperty);
}

public static void SetBindableSource(DependencyObject obj, object value)
{
obj.SetValue(BindableSourceProperty, value);
}

public static void BindableSourcePropertyChanged(DependencyObject o, DependencyPropertyChangedEventArgs e)
{
WebBrowser browser = o as WebBrowser;
if (browser == null) return;

Uri uri = null;

if (e.NewValue is string)
{
var uriString = e.NewValue as string;
uri = string.IsNullOrWhiteSpace(uriString) ? null : new Uri(uriString);
}
else if (e.NewValue is Uri)
{
uri = e.NewValue as Uri;
}

if (uri != null) browser.Source = uri;
}
}
}


یک مثال ساده از استفاده‌ی آن هم به صورت زیر می‌تواند باشد:
ابتدا ViewModel مرتبط با فرم برنامه را تهیه خواهیم کرد. اینجا چون یک خاصیت را قرار است Bind کنیم، همینجا داخل ViewModel آن‌را تعریف کرده‌ایم. اگر تعداد آن‌ها بیشتر بود بهتر است به یک کلاس مجزا مثلا GuiModel منتقل شوند.

using System;
using System.ComponentModel;

namespace WebBrowserSample.ViewModels
{
public class MainWindowViewModel : INotifyPropertyChanged
{
Uri _sourceUri;
public Uri SourceUri
{
get { return _sourceUri; }
set
{
_sourceUri = value;
raisePropertyChanged("SourceUri");
}
}

public MainWindowViewModel()
{
SourceUri = new Uri(@"C:\path\arrow.png");
}

#region INotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;
void raisePropertyChanged(string propertyName)
{
var handler = PropertyChanged;
if (handler == null) return;
handler(this, new PropertyChangedEventArgs(propertyName));
}
#endregion
}
}

در ادامه بجای استفاده از خاصیت Source که قابلیت Binding ندارد، از Behavior سفارشی تعریف شده استفاده خواهیم کرد. ابتدا باید فضای نام آن تعریف شود، سپس BindableSource مرتبط آن در دسترس خواهد بود:

<Window x:Class="WebBrowserSample.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:VM="clr-namespace:WebBrowserSample.ViewModels"
xmlns:B="clr-namespace:WebBrowserSample.Behaviors"
Title="MainWindow" Height="350" Width="525">
<Window.Resources>
<VM:MainWindowViewModel x:Key="vmMainWindowViewModel" />
</Window.Resources>
<Grid DataContext="{Binding Source={StaticResource vmMainWindowViewModel}}">
<WebBrowser B:WebBrowserBehaviors.BindableSource="{Binding SourceUri}" />
</Grid>
</Window>



نمونه مشابه این مورد را در مثال «استفاده از کنترل‌های Active-X در WPF» پیشتر در این سایت دیده‌اید.

مطالب
آموزش TypeScript #4
در پست‌های قبل با کلیات و primitive types در زبان TypeScript آشنا شدیم:

در این پست به مفاهیم شی گرایی در این زبان می‌پردازیم.

ماژول ها:
تعریف یک ماژول: برای تعریف یک ماژول باید از کلمه کلیدی module استفاده کنید. یک ماژول معادل یک ظرف است برای نگهداری کلاس‌ها و اینترفیس‌ها و سایر ماژول ها. کلاس‌ها و اینترفیس‌ها در TypeScript می‌توانند به صورت internal یا public باشند(به صورت پیش فرض internal است؛ یعنی فقط در همان ماژول قابل استفاده و فراخوانی است). هر چیزی که در داخل یک ماژول تعریف می‌شود محدوده آن در داخل آن ماژول خواهد بود. اگر قصد توسعه یک پروژه در مقیاس بزرگ را دارید می‌توانید همانند دات نت که در آن امکان تعریف فضای نام‌های تودرتو امکان پذیر است در TypeScript نیز، ماژول‌های تودرتو تعریف کنید.  برای مثال:
module MyModule1 {
    module  MyModule2 {
     }
}
اما به صورت معمول سعی می‌شود هر ماژول در یک فایل جداگانه تعریف شود. استفاده از چند ماژول در یک فایل به مرور، درک پروژه را سخت خواهد کرد و در هنگام توسعه امکان برخورد با مشکل وجود خواهد داشت. برای مثال اگر یک فایل به نام MyModule.ts داشته باشیم که یک ماژول به این نام را شامل شود بعد از کامپایل یک فایل به نام  MyModule.js ایجاد خواهد شد. 

کلاس ها:
برای تعریف یک کلاس می‌توانیم همانند دات نت از کلمه کلیدی class استفاده کنیم. بعد از تعریف کلاس می‌توانیم متغیر‌ها و توابع مورد نظر را در این کلاس قرار داده و تعریف کنیم.  
module Utilities {
   export class Logger {
      log(message: string): void{
       if(typeofwindow.console !== 'undefined') {
           window.console.log(message);
        }
      }
   }    
}
نکته مهم و جالب قسمت بالا کلمه export است. export معادل public در دات نت است و کلاس  logger را قابل دسترس در خارج ماژول Utilities خواهد کرد. اگر از export در هنگام تعریف کلاس استفاده نکنیم این کلاس فقط در سایر کلاس‌های تعریف شده در داخل همان ماژول قابل دسترس است.
تابع log  که در کلاس بالا تعریف کردیم به صورت پیش فرض public یا عمومی است و نیاز به استفاده export نیست.
برای استفاده از کلاس بالا باید این کلمه کلیدی new استفاده کنیم.  
window.onload = function() {
  varlogger = new Utilities.Logger();
  logger.log('Logger is loaded'); 
};
برای تعریف سازنده برای کلاس بالا باید از کلمه کلیدی constructor استفاده نماییم:
export class Logger{
constructor(private num: number) { 
}
با کمی دقت متوجه تعریف متغیر num به صورت private خواهید شد که برخلاف انتظار ما در زبان‌های دات نتی است. بر خلاف دات نت در زبان TypeScript، دسترسی به متغیر تعریف شده در سازنده با کمک اشاره گر this  در هر جای کلاس ممکن می‌باشد. در نتیجه نیازی به تعریف متغیر جدید و  پاس دادن مقادیر این متغیر‌ها به این فیلدها نمی‌باشد.
اگر به تابع log دقت کنید خواهید دید که یک پارامتر ورودی به نام message دارد که نوع آن string است. در ضمن Typescript از پارامتر‌های اختیاری( پارامتر با مقدار پیش فرض) نیز پشتیبانی می‌کند. مثال:

pad(num: number, len: number= 2, char: string= '0')
استفاده از پارامترهای Rest
منظور از پارامترهای Rest یعنی در هنگام فراخوانی توابع محدودیتی برای تعداد پارامتر‌ها نیست که معادل params در دات نت است. برای تعریف این گونه پارامترهاکافیست به جای params از ... استفاده نماییم.
function addManyNumbers(...numbers: number[]) {
  var sum = 0;
  for(var i = 0; i < numbers.length; i++) {
    sum += numbers[i];
 }
  returnsum;
}
var result = addManyNumbers(1,2,3,5,6,7,8,9);
تعریف توابع خصوصی
در TypeScript امکان توابع خصوصی با کلمه کلیدی private امکان پذیر است. همانند دات نت با استفاده از کلمه کلیدی private می‌توانیم کلاسی تعریف کنیم که فقط برای همان کلاس قابل دسترس باشد(به صورت پیش فرض توابع به صورت عمومی هستند).
module Utilities {
    Export class Logger {  
     log(message: string): void{
                 if(typeofwindow.console !== 'undefined') {   
                    window.console.log(this.getTimeStamp() + ' -'+ message);
                    window.console.log(this.getTimeStamp() + ' -'+ message); 
                }
        }
  private getTimeStamp(): string{
      var now = newDate();
      return now.getHours() + ':'+
      now.getMinutes() + ':'+
      now.getSeconds() + ':'+
      now.getMilliseconds();
  }
 }
}
از آن جا که تابع getTimeStamp به صورت خصوصی تعریف شده است در نتیجه امکان استفاده از آن در خارج کلاس وجود ندارد. اگر سعی بر استفاده این تابع داشته باشیم توسط کامپایلر با یک warning مواجه خواهیم شد.

یک نکته مهم این است که کلمه private فقط برای توابع و متغیر‌ها قابل استفاده است.

تعریف توابع static:

در TypeScript امکان تعریف توابع static وجود دارد. همانند دات نت باید از کلمه کلیدی static استفاده کنیم.

classFormatter {
static pad(num: number, len: number, char: string): string{
      var output = num.toString();
         while(output.length < len) {
         output = char + output;
      }
   returnoutput;
   }
  }
}
و استفاده از این تابع بدون وهله سازی از کلاس :
Formatter.pad(now.getSeconds(), 2, '0') +
Function Overload
همان گونه که در دات نت امکان overload کردن توابع میسر است در TypeScript هم این امکان وجود دارد.
static pad(num: number, len?: number, char?: string);
static pad(num: string, len?: number, char?: string);
static pad(num: any, len: number= 2, char: string= '0') {
 var output = num.toString();
 while(output.length < len) {
 output = char + output;
 }
 returnoutput;
}

ادامه دارد...
مطالب
استفاده از Web API در ASP.NET Web Forms
گرچه ASP.NET Web API بهمراه ASP.NET MVC بسته بندی شده و استفاده می‌شود، اما اضافه کردن آن به اپلیکیشن‌های ASP.NET Web Forms کار ساده ای است. در این مقاله مراحل لازم را بررسی می‌کنیم.

برای استفاده از Web API در یک اپلیکیشن ASP.NET Web Forms دو قدم اصلی باید برداشته شود:

  • اضافه کردن یک کنترلر Web API که از کلاس ApiController مشتق می‌شود.
  • اضافه کردن مسیرهای جدید به متد Application_Start.


یک پروژه Web Forms بسازید

ویژوال استودیو را اجرا کنید و پروژه جدیدی از نوع ASP.NET Web Forms Application ایجاد کنید.


کنترلر و مدل اپلیکیشن را ایجاد کنید

کلاس جدیدی با نام Product بسازید و خواص زیر را به آن اضافه کنید.

public class Product
{
    public int Id { get; set; }
    public string Name { get; set; }
    public decimal Price { get; set; }
    public string Category { get; set; }
}
همانطور که مشاهده می‌کنید مدل مثال جاری نمایانگر یک محصول است. حال یک کنترلر Web API به پروژه اضافه کنید. کنترلر‌های Web API درخواست‌های HTTP را به اکشن متدها نگاشت می‌کنند. در پنجره Solution Explorer روی نام پروژه کلیک راست کنید و گزینه Add, New Item را انتخاب کنید.

در دیالوگ باز شده گزینه Web را از پانل سمت چپ کلیک کنید و نوع آیتم جدید را Web API Controller Class انتخاب نمایید. نام این کنترلر را به "ProductsController" تغییر دهید و OK کنید.

کنترلر ایجاد شده شامل یک سری متد است که بصورت خودکار برای شما اضافه شده اند، آنها را حذف کنید و کد زیر را به کنترلر خود اضافه کنید.

namespace WebForms
{
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Net;
    using System.Net.Http;
    using System.Web.Http;

    public class ProductsController : ApiController
    {

        Product[] products = new Product[] 
        { 
            new Product { Id = 1, Name = "Tomato Soup", Category = "Groceries", Price = 1 }, 
            new Product { Id = 2, Name = "Yo-yo", Category = "Toys", Price = 3.75M }, 
            new Product { Id = 3, Name = "Hammer", Category = "Hardware", Price = 16.99M } 
        };

        public IEnumerable<Product> GetAllProducts()
        {
            return products;
        }

        public Product GetProductById(int id)
        {
            var product = products.FirstOrDefault((p) => p.Id == id);
            if (product == null)
            {
                throw new HttpResponseException(HttpStatusCode.NotFound);
            }
            return product;
        }

        public IEnumerable<Product> GetProductsByCategory(string category)
        {
            return products.Where(
                (p) => string.Equals(p.Category, category,
                    StringComparison.OrdinalIgnoreCase));
        }
    }
}
کنترلر جاری لیستی از محصولات را بصورت استاتیک در حافظه محلی نگهداری می‌کند. متدهایی هم برای دریافت لیست محصولات تعریف شده اند.


اطلاعات مسیریابی را اضافه کنید

مرحله بعدی اضافه کردن اطلاعات مسیریابی (routing) است. در مثال جاری می‌خواهیم آدرس هایی مانند "api/products/" به کنترلر Web API نگاشت شوند. فایل Global.asax را باز کنید و عبارت زیر را به بالای آن اضافه نمایید.

using System.Web.Http;
حال کد زیر را به متد Application_Start اضافه کنید.
RouteTable.Routes.MapHttpRoute(
    name: "DefaultApi",
    routeTemplate: "api/{controller}/{id}",
    defaults: new { id = System.Web.Http.RouteParameter.Optional }
    );

برای اطلاعات بیشتر درباره مسیریابی در Web API به این لینک مراجعه کنید.


دریافت اطلاعات بصورت آژاکسی در کلاینت

تا اینجا شما یک API دارید که کلاینت‌ها می‌توانند به آن دسترسی داشته باشند. حال یک صفحهHTML خواهیم ساخت که با استفاده از jQuery سرویس را فراخوانی می‌کند. صفحه Default.aspx را باز کنید و کدی که بصورت خودکار در قسمت Content تولید شده است را حذف کرده و کد زیر را به این قسمت اضافه کنید:

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.Master" 
    AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inherits="WebForms._Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
    <h2>Products</h2>
    <table>
    <thead>
        <tr><th>Name</th><th>Price</th></tr>
    </thead>
    <tbody id="products">
    </tbody>
    </table>
</asp:Content>
حال در قسمت HeaderContent کتابخانه jQuery را ارجاع دهید.
<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
    <script src="Scripts/jquery-1.7.1.min.js" type="text/javascript"></script>
</asp:Content>

همانطور که می‌بینید در مثال جاری از فایل محلی استفاده شده است اما در اپلیکیشن‌های واقعی بهتر است از CDN‌‌ها استفاده کنید.

نکته: برای ارجاع دادن اسکریپت‌ها می‌توانید بسادگی فایل مورد نظر را با drag & drop به کد خود اضافه کنید.

زیر تگ jQuery اسکریپت زیر را اضافه کنید.

<script type="text/javascript">
    function getProducts() {
        $.getJSON("api/products",
            function (data) {
                $('#products').empty(); // Clear the table body.

                // Loop through the list of products.
                $.each(data, function (key, val) {
                    // Add a table row for the product.
                    var row = '<td>' + val.Name + '</td><td>' + val.Price + '</td>';
                    $('<tr/>', { text: row })  // Append the name.
                        .appendTo($('#products'));
                });
            });
        }

        $(document).ready(getProducts);
</script>

هنگامی که سند جاری (document) بارگذاری شد این اسکریپت یک درخواست آژاکسی به آدرس "api/products/" ارسال می‌کند. سرویس ما لیستی از محصولات را با فرمت JSON بر می‌گرداند، سپس این اسکریپت لیست دریافت شده را به جدول HTML اضافه می‌کند.

اگر اپلیکیشن را اجرا کنید باید با نمایی مانند تصویر زیر مواجه شوید:

مطالب
انجام پی در پی اعمال Async به کمک Iterators - قسمت اول

تقریبا تمام اعمال کار با شبکه در Silverlight از مدل asynchronous programming پیروی می‌کنند؛ از فراخوانی یک متد وب سرویس تا دریافت اطلاعات از وب و غیره. اگر در سایر فناوری‌های موجود در دات نت فریم ورک برای مثال جهت کار با یک وب سرویس هر دو متد همزمان و غیرهمزمان در اختیار برنامه نویس هستند اما اینجا خیر. اینجا فقط روش‌های غیرهمزمان مرسوم هستند و بس. خیلی هم خوب. یک چارچوب کاری خوب باید روش استفاده‌ی صحیح از کتابخانه‌های موجود را نیز ترویج کند و این مورد حداقل در Silverlight اتفاق افتاده است.
برای مثال فراخوانی‌های زیر را در نظر بگیرید:
private int n1, n2;

private void FirstCall()
{
Service.GetRandomNumber(10, SecondCall);
}

private void SecondCall(int number)
{
n1 = number;
Service.GetRandomNumber(n1, ThirdCall);
}

private void ThirdCall(int number)
{
n2 = number;
// etc
}
عموما در اعمال Async پس از پایان عملیات در تردی دیگر، یک متد فراخوانی می‌گردد که به آن callback delegate نیز گفته می‌شود. برای مثال توسط این سه متد قصد داریم اطلاعاتی را از یک وب سرویس دریافت و استفاده کنیم. ابتدا FirstCall فراخوانی می‌شود. پس از پایان کار آن به صورت خودکار متد SecondCall فراخوانی شده و این متد نیز یک عملیات Async دیگر را شروع کرده و الی آخر. در نهایت قصد داریم توسط مقادیر بازگشت داده شده منطق خاصی را پیاده سازی کنیم. همانطور که مشاهده می‌کنید این اعمال زیبا نیستند! چقدر خوب می‌شد مانند دوران synchronous programming (!) فراخوانی‌های این متدها به صورت ذیل انجام می‌شد:
private void FetchNumbers()
{
int n1 = Service.GetRandomNumber(10);
int n2 = Service.GetRandomNumber(n1);
}
در برنامه نویسی متداول همیشه عادت داریم که اعمال به صورت A –> B –> C انجام شوند. اما در Async programming ممکن است ابتدا C انجام شود، سپس A و بعد B یا هر حالت دیگری صرفنظر از تقدم و تاخر آن‌ها در حین معرفی متدهای مرتبط در یک قطعه کد. همچنین میزان خوانایی این نوع کدنویسی نیز مطلوب نیست. مانند مثال اول ذکر شده، یک عملیات به ظاهر ساده به چندین متد منقطع تقسیم شده است. البته به کمک lambda expressions مثال اول را به شکل زیر نیز می‌توان در طی یک متد ارائه داد اما اگر تعداد فراخوانی‌ها بیشتر بود چطور؟ همچنین آیا استفاده از عدد n2 بلافاصله پس از عبارت ذکر شده مجاز است؟ آیا عملیات واقعا به پایان رسیده و مقدار مطلوب به آن انتساب داده شده است؟
private void FetchNumbers()
{
int n1, n2;

Service.GetRandomNumber(10, result =>
{
n1 = result;
Service.GetRandomNumber(n1, secondResult =>
{
n2 = secondResult;
});
});
}

به عبارتی می‌خواهیم کل اعمال انجام شده در متد FetchNumbers هنوز Async باشند (ترد اصلی برنامه را قفل نکنند) اما پی در پی انجام شوند تا مدیریت آن‌ها ساده‌تر شوند (هر لحظه دقیقا بدانیم که کجا هستیم) و همچنین کدهای تولیدی نیز خواناتر باشند.
روش استانداری که توسط الگوهای برنامه نویسی برای حل این مساله پیشنهاد می‌شود، استفاده از الگوی coroutines است. توسط این الگو می‌توان چندین متد Async را در حالت معلق قرار داده و سپس در هر زمانی که نیاز به آن‌ها بود عملیات آن‌ها را از سر گرفت.
دات نت فریم ورک حالت ویژه‌ای از coroutines را توسط Iterators پشتیبانی می‌کند (از C# 2.0 به بعد) که در ابتدا نیاز است از دیدگاه این مساله مروری بر آن‌ها داشته باشیم. مثال بعد یک enumerator را به همراه yield return ارائه داده است:

using System;
using System.Collections.Generic;
using System.Threading;

namespace CoroutinesSample
{
class Program
{
static void printAll()
{
foreach (int x in integerList())
{
Console.WriteLine(x);
}
}

static IEnumerable<int> integerList()
{
yield return 1;
Thread.Sleep(1000);
yield return 2;
yield return 3;
}

static void Main()
{
printAll();
}
}
}

کامپایلر سی شارپ در عمل یک state machine را برای پیاده سازی این عملیات به صورت خودکار تولید خواهد کرد:

private bool MoveNext()
{
switch (this.<>1__state)
{
case 0:
this.<>1__state = -1;
this.<>2__current = 1;
this.<>1__state = 1;
return true;

case 1:
this.<>1__state = -1;
Thread.Sleep(0x3e8);
this.<>2__current = 2;
this.<>1__state = 2;
return true;

case 2:
this.<>1__state = -1;
this.<>2__current = 3;
this.<>1__state = 3;
return true;

case 3:
this.<>1__state = -1;
break;
}
return false;
}

در حین استفاده از یک IEnumerator ابتدا در وضعیت شیء Current آن قرار خواهیم داشت و تا زمانیکه متد MoveNext آن فراخوانی نشود هیچ اتفاق دیگری رخ نخواهد داد. هر بار که متد MoveNext این enumerator فرخوانی گردد (برای مثال توسط یک حلقه‌ی foreach) اجرای متد integerList ادامه خواهد یافت تا به yield return بعدی برسیم (سایر اعمال تعریف شده در حالت تعلیق قرار دارند) و همینطور الی آخر.
از همین قابلیت جهت مدیریت اعمال Async پی در پی نیز می‌توان استفاده کرد. State machine فوق تا پایان اولین عملیات تعریف شده صبر می‌کند تا به yield return برسد. سپس با فراخوانی متد MoveNext به عملیات بعدی رهنمون خواهیم شد. به این صورت دیدگاهی پی در پی از یک سلسه عملیات غیرهمزمان حاصل می‌گردد.

خوب ما الان نیاز به یک کلاس داریم که بتواند enumerator ایی از این دست را به صورت خودکار مرحله به مرحله آن هم پس از پایان واقعی عملیات Async قبلی (یا مرحله‌ی قبلی)، اجرا کند. قبل از اختراع چرخ باید متذکر شد که دیگران اینکار را انجام داده‌اند و کتابخانه‌های رایگان و یا سورس بازی برای این منظور موجود است.


ادامه دارد ...

مطالب
به روز رسانی ساده‌تر اجزاء ارتباطات در EF Code first به کمک GraphDiff
دو نوع حالت کلی کارکردن با EF وجود دارند: متصل و منقطع.
در حالت متصل مانند برنامه‌های متداول دسکتاپ، Context مورد استفاده در طول عمر صفحه‌ی جاری زنده نگه داشته می‌شود. در این حالت اگر شیءایی اضافه شود، حذف شود یا تغییر کند، توسط EF ردیابی شده و تنها با فراخوانی متد SaveChanges، تمام این تغییرات به صورت یکجا به بانک اطلاعاتی اعمال می‌شوند.
در حالت غیرمتصل مانند برنامه‌های وب، طول عمر Context در حد طول عمر یک درخواست است. پس از آن از بین خواهد رفت و دیگر فرصت ردیابی تغییرات سمت کاربر را نخواهد یافت. در این حالت به روز رسانی کلیه تغییرات انجام شده در خواص و همچنین ارتباطات اشیاء موجود، کاری مشکل و زمانبر خواهد بود.
برای حل این مشکل، کتابخانه‌ای به نام GraphDiff طراحی شده‌است که صرفا با فراخوانی متد UpdateGraph آن، به صورت خودکار، محاسبات تغییرات صورت گرفته در اشیاء منقطع و اعمال آن‌ها به بانک اطلاعاتی صورت خواهد گرفت. البته ذکر متد SaveChanges پس از آن نباید فراموش شود.


اصطلاحات بکار رفته در GraphDiff

برای کار با GraphDiff نیاز است با یک سری اصطلاح آشنا بود:

Aggregate root
گرافی است از اشیاء به هم وابسته که مرجع تغییرات داده‌ها به شمار می‌رود. برای مثال یک سفارش و آیتم‌های آن‌را درنظر بگیرید. بارگذاری آیتم‌های سفارش، بدون سفارش معنایی ندارند. بنابراین در اینجا سفارش aggregate root است.

AssociatedCollection/AssociatedEntity
حالت‌های Associated به GraphDiff اعلام می‌کنند که اینگونه خواص راهبری تعریف شده، در حین به روز رسانی aggregate root نباید به روز رسانی شوند. در این حالت تنها ارجاعات به روز رسانی خواهند شد.
اگر خاصیت راهبری از نوع ICollection است، حالت AssociatedCollection و اگر صرفا یک شیء ساده است، از AssociatedEntity استفاده خواهد شد.

OwnedCollection/OwnedEntity
حالت‌های Owned به GraphDiff اعلام می‌کنند که جزئیات و همچنین ارجاعات اینگونه خواص راهبری تعریف شده، در حین به روز رسانی aggregate root باید به روز رسانی شوند.


دریافت و نصب GraphDiff

برای نصب خودکار کتابخانه‌ی GraphDiff می‌توان از دستور نیوگت ذیل استفاده کرد:
 PM> Install-Package RefactorThis.GraphDiff


بررسی GraphDiff در طی یک مثال

مدل‌های برنامه آزمایشی، از سه کلاس ذیل که روابط many-to-many و one-to-many با یکدیگر دارند، تشکیل شده‌است:
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace GraphDiffTests.Models
{
    public class BlogPost
    {
        public int Id { get; set; }
        public string Title { get; set; }
        public string Content { get; set; }

        public virtual ICollection<Tag> Tags { set; get; } // many-to-many

        [ForeignKey("UserId")]
        public virtual User User { get; set; }
        public int UserId { get; set; }

        public BlogPost()
        {
            Tags = new List<Tag>();
        }
    }

    public class Tag
    {
        public int Id { set; get; }

        [StringLength(maximumLength: 450), Required]
        public string Name { set; get; }

        public virtual ICollection<BlogPost> BlogPosts { set; get; } // many-to-many

        public Tag()
        {
            BlogPosts = new List<BlogPost>();
        }
    }

    public class User
    {
        public int Id { get; set; }
        public string Name { get; set; }

        public virtual ICollection<BlogPost> BlogPosts { get; set; } // one-to-many
    }
}
- یک مطلب می‌تواند چندین برچسب داشته باشد و هر برچسب می‌تواند به چندین مطلب انتساب داده شود.
- هر کاربر می‌تواند چندین مطلب ارسال کند.

در این حالت، Context برنامه چنین شکلی را خواهد یافت:
using System;
using System.Data.Entity;
using GraphDiffTests.Models;

namespace GraphDiffTests.Config
{
    public class MyContext : DbContext
    {
        public DbSet<User> Users { get; set; }
        public DbSet<BlogPost> BlogPosts { get; set; }
        public DbSet<Tag> Tags { get; set; }


        public MyContext()
            : base("Connection1")
        {
            this.Database.Log = sql => Console.Write(sql);
        }
    }
}
به همراه تنظیمات به روز رسانی ساختار بانک اطلاعاتی به صورت خودکار:
using System.Data.Entity.Migrations;
using System.Linq;
using GraphDiffTests.Models;

namespace GraphDiffTests.Config
{
    public class Configuration : DbMigrationsConfiguration<MyContext>
    {
        public Configuration()
        {
            AutomaticMigrationsEnabled = true;
            AutomaticMigrationDataLossAllowed = true;
        }

        protected override void Seed(MyContext context)
        {
            if(context.Users.Any())
                return;

            var user1 = new User {Name = "User 1"};
            context.Users.Add(user1);

            var tag1 = new Tag { Name = "Tag1" };
            context.Tags.Add(tag1);

            var post1 = new BlogPost { Title = "Title...1", Content = "Content...1", User = user1};
            context.BlogPosts.Add(post1);

            post1.Tags.Add(tag1);

            base.Seed(context);
        }
    }
}
در متد Seed آن یک سری اطلاعات ابتدایی ثبت شده‌اند؛ یک کاربر، یک برچسب و یک مطلب.




در این تصاویر به Id هر کدام از رکوردها دقت کنید. از آن‌ها در ادامه استفاده خواهیم کرد.
در اینجا نمونه‌ای از نحوه‌ی استفاده از GraphDiff را جهت به روز رسانی یک Aggregate root ملاحظه می‌کنید:
            using (var context = new MyContext())
            {
                var user1 = new User { Id = 1, Name = "User 1_1_1" };
                var post1 = new BlogPost { Id = 1, Title = "Title...1_1", Content = "Body...1_1",
                    User = user1, UserId = user1.Id };
                var tags = new List<Tag>
                {
                    new Tag {Id = 1, Name = "Tag1_1"},
                    new Tag {Id=12, Name = "Tag2_1"},
                    new Tag {Name = "Tag3"},
                    new Tag {Name = "Tag4"},
                };
                tags.ForEach(tag => post1.Tags.Add(tag));

                context.UpdateGraph(post1, map => map
                    .OwnedEntity(p => p.User)
                    .OwnedCollection(p => p.Tags)
                    );

                context.SaveChanges();
            }
پارامتر اول UpdateGraph، گرافی از اشیاء است که قرار است به روز رسانی شوند.
پارامتر دوم آن، همان مباحث Owned و Associated بحث شده در ابتدای مطلب را مشخص می‌کنند. در اینجا چون می‌خواهیم هم برچسب‌ها و هم اطلاعات کاربر مطلب اول به روز شوند، نوع رابطه را Owned تعریف کرده‌ایم.
در حین کار با متد UpdateGraph، ذکر Idهای اشیاء منقطع از Context بسیار مهم هستند. اگر دستورات فوق را اجرا کنیم به خروجی ذیل خواهیم رسید:




- همانطور که مشخص است، چون id کاربر ذکر شده و همچنین این Id در post1 نیز درج گردیده است، صرفا نام او ویرایش گردیده است. اگر یکی از موارد ذکر شده رعایت نشوند، ابتدا کاربر جدیدی ثبت شده و سپس رابطه‌ی مطلب و کاربر به روز رسانی خواهد شد (userId آن به userId آخرین کاربر ثبت شده تنظیم می‌شود).
- در حین ثبت برچسب‌ها، چون Id=1 از پیش در بانک اطلاعاتی موجود بوده، تنها نام آن ویرایش شده‌است. در سایر موارد، برچسب‌های تعریف شده صرفا اضافه شده‌اند (چون Id مشخصی ندارند یا Id=12 در بانک اطلاعاتی وجود خارجی ندارد).
- چون Id مطلب مشخص شده‌است، فیلدهای عنوان و محتوای آن نیز به صورت خودکار ویرایش شده‌اند.

و ... تمام این کارها صرفا با فراخوانی متدهای UpdateGraph و سپس SaveChanges رخ داده‌است.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید:
GraphDiffTests.zip
مطالب
ایجاد لیستی از کلاسی جنریک
کلاس جنریک زیر را در نظر بگیرید:
public class Column<T>

{
public string Name { set; get; }
public T Data { set; get; }
}

مشکلی که با این نوع کلاس‌ها وجود دارد این است که نمی‌توان مثلا لیست زیر را در مورد آن‌ها تعریف کرد:

IList<Column<T>> myList = new List<Column<T>>();



به عبارتی می‌خواهیم یک لیست از کلاسی جنریک داشته باشیم. راه حل انجام آن به صورت زیر است:

using System.Collections;


namespace Tests
{
public interface IColumn
{
string Name { set; get; }
object Data { set; get; }
}

public class Column<T> : IColumn
{
public string Name { set; get; }

public T Data { set; get; }

object IColumn.Data
{
get { return this.Data; }
set { this.Data = (T)value; }
}
}
}

ابتدا یک اینترفیس عمومی را همانند اعضای کلاس Column تعریف می‌کنیم که در آن بجای T از object‌ استفاده شده است. سپس یک پیاده سازی جنریک از این اینترفیس را ارائه خواهیم داد؛ با این تفاوت که اینبار خاصیت Data مربوط به اینترفیس، به صورت خصوصی و صریح با استفاده از IColumn.Data تعریف می‌شود و نمونه‌ی جنریک هم نام آن، عمومی خواهد بود.
اکنون می‌توان نوشت:

var myList = new List<IColumn>();


برای مثال در این حالت تعریف لیست زیر که از تعدادی وهله‌ی کلاسی جنریک ایجاد شده، کاملا مجاز می‌باشد:

var myList = new List<IColumn>

{
new Column<int> { Data = 1, Name = "Col1"},
new Column<double> { Data = 1.2, Name = "Col2"}
};

خوب، تا اینجا یک مرحله پیشرفت است.اکنون اگر بخواهیم در این لیست، Data مثلا عنصری را که نامش Col1 است، دریافت کنیم چه باید کرد؟ آن هم نه به شکل object بلکه از نوع T مشخص:

static T GetColumnData<T>(IList<IColumn> list, string name)

{
var column = (Column<T>)Convert.ChangeType(list.Single(s => s.Name.Equals(name)), typeof(Column<T>), null);
return column.Data;
}

و نمونه‌ای از استفاده آن:

int data = GetColumnData<int>(myList, "Col1");


مطالب
بهبود کارآیی LINQ در دات نت 7
LINQ یا همان Language-Integrated Query، یک زبان ساده‌ی کوئری نوشتن یکپارچه‌ی با دات نت است. به کمک آن می‌توان اعمال پیچیده‌ای را بر روی اشیاء، به زبانی ساده بیان کرد و امروزه تقریبا توسط تمام توسعه دهندگان دات نت مورد استفاده قرار می‌گیرد. اما ... این سادگی، بهایی را نیز به همراه دارد: کمتر بودن سرعت اجرا و همچنین افزایش مصرف حافظه. با توجه به گستردگی استفاده‌ی از LINQ، اگر بهبودی در این زمینه حاصل شود، بر روی کارآیی تمام برنامه‌های دات نتی تاثیر خواهد گذاشت و این امر در دات نت 7 محقق شده‌است. کارآیی متدهای LINQ to Objects در دات نت 7 (مانند متدهای Enumerable.Max, Enumerable.Min, Enumerable.Average, Enumerable.Sum) به شدت افزایش یافته و این افزایش گاهی حتی بیشتر از 10 برابر نسبت به نگارش‌های قبلی دات نت است؛ اما چگونه به چنین کارآیی رسیده‌اند؟


تدارک یک آزمایش برای بررسی میزان افزایش کارآیی متدهای LINQ در دات نت 7

در ادامه یک آزمایش ساده‌ی بررسی کارآیی متدهای Enumerable.Max, Enumerable.Min, Enumerable.Average, Enumerable.Sum را با استفاده از کتابخانه‌ی معروف BenchmarkDotNet مشاهده می‌کنید:
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;
using System.Collections.Generic;
using System.Linq;


[MemoryDiagnoser(displayGenColumns: false)]
public partial class Program
{
  static void Main(string[] args) =>
    BenchmarkSwitcher.FromAssembly(typeof(Program).Assembly).Run(args);

  [Params (10, 10000)]
  public int Size { get; set; }
  private IEnumerable<int> items;

  [GlobalSetup]
  public void Setup()
  {
    items = Enumerable.Range(1, Size).ToArray();
  }  

  [Benchmark]
  public int Min() => items.Min();

  [Benchmark]
  public int Max() => items.Max();

  [Benchmark]
  public double Average() => items.Average();

  [Benchmark]
  public int Sum() => items.Sum();
}
برای آزمایش آن، یکبار target framework پروژه را بر روی net6.0 و بار دیگر بر روی net7.0 قرار داده و برنامه را اجرا می‌کنیم. خلاصه‌ی مفهومی نتایج حاصل به صورت زیر است که ... شگفت‌انگیز هستند!
در مورد کار با آرایه‌ها:


- زمان اجرای یافتن Min در آرایه‌های کوچک، در دات نت 7، نسبت به دات نت 6، حدودا 10 برابر کاهش یافته و اگر این آرایه بزرگتر شود و برای مثال حاوی 10 هزار المان باشد، این زمان 20 برابر کاهش یافته‌است.
- این کاهش زمان‌ها برای سایر متدهای LINQ نیز تقریبا به همین صورت است؛ منها متد Sum که اندازه‌ی آرایه، تاثیری را بر روی نتیجه‌ی نهایی ندارد.
- همچنین در دات نت 7، با فراخوانی متدهای LINQ، افزایش حافظه‌ای مشاهده نمی‌شود.

در مورد کار با لیست‌ها:


- در دات نت 6، اعمال صورت گرفته‌ی توسط LINQ بر روی آرایه‌ها، نسبت به لیست‌ها، همواره سریعتر است.
- در دات نت 7 هم در مورد مجموعه‌های کوچک، وضعیت همانند دات نت 6 است. اما اگر مجموعه‌ها بزرگتر شوند، تفاوتی بین مجموعه‌ها و آرایه‌ها وجود ندارد و حتی وضعیت مجموعه‌ها بهتر است: کارآیی کار با لیست‌ها 32 برابر بیشتر شده‌است!


اما چگونه در دات نت 7، چنین بهبود کارآیی خیره‌کننده‌ای در متدهای LINQ حاصل شده‌است؟

برای بررسی چگونگی بهبود کارآیی متدهای LINQ در دات نت 7 باید به نحوه‌ی پیاده سازی آن‌ها در نگارش‌های مختلف دات نت مراجعه کرد. برای مثال پیاده سازی متد الحاقی Min تا دات نت 6 به صورت زیر است:
public static int Min(this IEnumerable<int> source)
{
  if (source == null)
  {
    ThrowHelper.ThrowArgumentNullException(ExceptionArgument.source);
  }

  int value;
  using (IEnumerator<int> e = source.GetEnumerator())
  {
    if (!e.MoveNext())
    {
      ThrowHelper.ThrowNoElementsException();
    }

    value = e.Current;
    while (e.MoveNext())
    {
      int x = e.Current;
      if (x < value)
      {
        value = x;
      }
    }
  }
  return value;
}
این متد نسبتا ساده‌است. یک IEnumerable را دریافت کرده و سپس با استفاده از متد MoveNext، مقدار فعلی را با مقدار بعدی مقایسه می‌کند. در این مقایسه، کوچکترین مقدار ذخیره می‌شود تا در نهایت به انتهای مجموعه برسیم.
اما ... پیاده سازی این متد در دات نت 7 متفاوت است:
public static int Min(this IEnumerable<int> source) => MinInteger(source);

private static T MinInteger<T>(this IEnumerable<T> source)
  where T : struct, IBinaryInteger<T>
{
  T value;

  if (source.TryGetSpan(out ReadOnlySpan<T> span))
  {
    if (Vector.IsHardwareAccelerated && 
        span.Length >= Vector<T>.Count * 2)
    {
      .... // Optimized implementation
      return ....;
    }
  }
  .... //Implementation as in .NET 6
}
در اینجا در ابتدا سعی می‌شود تا یک ReadOnlySpan از مجموعه‌ی ارائه شده، تهیه شود. اگر این کار میسر نشد، کدهای همان روش قبلی دات نت 6 که توضیح داده شد، اجرا می‌شود. البته در آزمایشی که ما تدارک دیدیم، چون از لیست‌ها و آرایه‌ها استفاده شده بود، همواره امکان تهیه‌ی یک ReadOnlySpan از آن‌ها میسر است. بنابراین به قسمت اجرایی همانند دات نت 6 نمی‌رسیم.
اما ... ReadOnlySpan چیست؟ نوع‌های Span و ReadOnlySpan، یک ناحیه‌ی پیوسته‌ی مدیریت شده و مدیریت نشده‌ی حافظه را بیان می‌کنند. یک Span از نوع ref struct است؛ یعنی تنها می‌تواند بر روی stack قرار گیرد که مزیت آن، عدم نیاز به تخصیص حافظه‌ی اضافی و بهبود کارآیی است. همچنین ساختار داخلی Span در سی شارپ 11 اندکی تغییر کرده‌است که در آن از ref fields جهت دسترسی امن به این ناحیه‌ی از حافظه استفاده می‌شود. پیشتر از نوع داخلی ByReference برای اشاره به ابتدای این ناحیه‌ی از حافظه استفاده می‌شد که به همراه بررسی امنیتی در این باره نبود.

پس از دریافت ReadOnlySpan، به سطر زیر می‌رسیم:
if (Vector.IsHardwareAccelerated && span.Length >= Vector<T>.Count * 2)
که بررسی می‌کند آیا سخت افرار فعلی از قابلیت‌های SIMD برخوردار است یا خیر؟ اگر بله، اینبار با استفاده از ریاضیات برداری شتاب یافته‌ی توسط سخت افزار، محاسبات را انجام می‌دهد:
private static T MinInteger<T>(this IEnumerable<T> source)
where T : struct, IBinaryInteger<T>
{
  .... 
  if (Vector.IsHardwareAccelerated && span.Length >= Vector<T>.Count * 2)
  {
    var mins = new Vector<T>(span);
    index = Vector<T>.Count;
    do
    {
      mins = Vector.Min(mins, new Vector<T>(span.Slice(index)));
      index += Vector<T>.Count;
    }
    while (index + Vector<T>.Count <= span.Length);

    value = mins[0];
    for (int i = 1; i < Vector<T>.Count; i++)
    {  
      if (mins[i] < value)
      {
        value = mins[i];
      }
    }
  ....
}
بنابراین به صورت خلاصه در دات نت 7 با استفاده از بکارگیری نوع‌های ویژه‌ی Span و نوع‌های برداری شتاب‌یافته‌ی توسط اکثر سخت افزارهای امروزی، سبب بهبود قابل ملاحظه‌ی کارآیی متدهای LINQ شده‌اند.
مطالب
روش های ارث بری در Entity Framework - قسمت اول
بخش هایی از کتاب "مرجع کامل Entity Framework 6.0"
ترجمه و تالیف: بهروز راد
وضعیت: در حال نگارش


پیشتر، آقای نصیری در بخشی از مباحث مربوط به Code First در مورد روش‌های مختلف ارث بری در EF و در روش Code First صحبت کرده اند. در این مقاله‌ی دو قسمتی، در مورد دو تا از این روش‌ها در حالت Database First می‌خوانید.

چرا باید از ارث بری استفاده کنیم؟

یکی از اهداف اصلی ORMها این است که با ایجاد یک مدل مفهومی از پایگاه داده، آن را هر چه بیشتر به طرز تفکر ما از مدل شی گرای برنامه مان نزدیکتر کنند. از آنجا که ما توسعه گران از مفاهیم شی گرایی مانند "ارث بری" در کدهای خود استفاده می‌کنیم، نیاز داریم تا این مفهوم را در سطح پایگاه داده نیز داشته باشیم. آیا این کار امکان پذیر است؟ EF چه امکاناتی برای رسیدن به این هدف برای ما فراهم کرده است؟ در این قسمت به این سوال پاسخ خواهیم داد.

ارث­ بری جداول مفهومی است که در EF به راحتی قابل پیاده­ سازی است. سه روش برای پیاده­ سازی این مفهوم در مدل وجود دارد.
  1. Table Per Type یا TPT: خصیصه‌های مشترک در جدول پایه قرار دارند و به ازای هر زیر مجموعه نیز یک جدول جدا ایجاد می‌شود.
  2. Table Per Hierarchy یا TPH: تمامی خصیصه‌ها در یک جدول وجود دارند.
  3. Table Per Concrete Type یا TPC: جدول پایه ای وجود ندارد و به ازای هر موجودیت دقیقاً یک جدول همراه با خصیصه‌های موجودیت در آن ایجاد می‌شود.
 
روش TPT

در این روش، خصیصه‌های مشترک در یک جدول پایه قرار دارند و به ازای هر زیر مجموعه از جدول پایه، یک جدول با خصیصه‌های منحصر به آن نوع ایجاد می‌شود. ابتدا جداول و ارتباطات بین آنها که در توضیح مثال برای این روش با آنها کار می‌کنیم را ببینیم.



فرض کنید قصد داریم تا در هنگام ثبت مشخصات یک دانش آموز، مقطع تحصیلی او نیز حتماً ذخیره شود. در این حالت، فیلدی با نام Degree ایجاد و تیک گزینه‌ی Allow Nulls را از روبروی آن بر میداریم. با این حال اگر مشخصات دانش آموزان را در جدولی عمومی مثلاً با نام People ذخیره کنیم و این جدول را مکانی برای ذخیره‌ی مشخصات افراد دیگری مانند مدیران و معلمان نیز در نظر بگیریم، از آنجا که قصد ثبت مقطع تحصیلی برای مدیران و معلمان را نداریم، وجود فیلد Degree در کار ما اختلال ایجاد می‌کند. اما با ذخیره‌ی اطلاعات مدیران و معلمان در جداول مختص به خود، می‌توان قانون غیر قابل Null بودن فیلد Degree برای دانش آموزان را به راحتی پیاده سازی کرد.
همان طور که در شکل قبل نیز مشخص است، ما یک جدول پایه با نام Persons ایجاد کرده ایم و خصیصه‌های مشترک بین زیر مجموعه‌ها (FirstName و LastName) را در آن قرار داده ایم. سه موجودیت (Student، Admin و Instructor) از Persons ارث می‌برند و موجودیت BusinessStudent نیز از Student ارث می‌بَرَد.
جداول ایجاد شده، پس از ایجاد مدل به روش Database First، به شکل زیر تبدیل می‌شوند.


از آنجا که قصد داریم ارتباطات ارث بری شده ایجاد کنیم، باید ارتباطات پیش فرض شکل گرفته بین موجودیت‌ها را حذف کنیم. بدین منظور، بر روی هر خط ارتباطی در EDM Designer کلیک راست و گزینه‌ی Delete from Model را انتخاب کنید. سپس بر روی موجودیت Person، کلیک راست کرده و از منوی Add New، گزینه‌ی Inheritance را انتخاب کنید (شکل زیر).


شکل زیر ظاهر می‌شود.


قسمت بالا، موجودیت پایه، و قسمت پایین، موجودیت مشتق شده را مشخص می‌کند. این کار را سه مرتبه برای ایجاد ارتباط ارث بری شده بین موجودیت Person به عنوان موجودیت پایه و موجودیت‌های Student، Instructor و Admin به عنوان موجودیت‌های مشتق شده ایجاد کنید. همچنین یک ارتباط نیز بین موجودیت Student به عنوان موجودیت پایه و موجودیت BusinessStudent به عنوان موجودیت مشتق شده ایجاد کنید. نتیجه‌ی کار را در شکل زیر ملاحظه می‌کنید.

اگر بر روی دکمه‌ی Save در نوار ابزار Visual Studio کلیک کنید، چهار خطا در پنجره‌ی Error List نمایش داده می‌شود


این خطاها بیانگر این هستند که خصیصه‌ی PersonId به دلیل اینکه در موجودیت پایه‌ی Person تعریف شده است، نباید در موجودیت‌های مشتق شده از آن نیز وجود داشته باشد چون موجودیت‌های مشتق شده، خصیصه‌ی PersonId را به ارث برده اند. وجود این خصیصه در زمان طراحی جدول در مدل فیزیکی الزامی بوده است اما اکنون ما با مدل مفهومی و قوانین شی گرایی سر و کار داریم. بنابراین خصیصه‌ی PersonId را از موجودیت‌های Student، Instructor، Admin و BusinessStudent حذف کنید. شکل زیر، نتیجه‌ی کار را نشان می‌دهد.


اکنون اگر بر روی دکمه‌ی Save کلیک کنید، خطاها از بین می‌روند.
ما خصیصه‌ی PersonId را از موجودیت‌های مشتق شده به این دلیل که آن را از موجودیت پایه ارث می‌برند حذف کردیم. حال این خصیصه برای موجودیت‌های مشتق شده وجود دارد اما باید مشخص کنیم که به کدام خصیصه از کلاس پایه تناظر دارد. شاید انتظار این باشد که EF، خود تشخیص بدهد که PersonId در موجودیت‌های مشتق شده باید به PersonId کلاس پایه‌ی خود تناظر داشته باشد اما در حال حاضر این کاری است که خود باید انجام دهیم. بدین منظور، بر روی هر یک از موجودیت‌های مشتق شده کلیک راست کرده و گزینه‌ی Table Mapping را انتخاب کنید. سپس همان طور که در شکل زیر مشاهده می‌کنید، تناظر را ایجاد کنید.


مدل ما آماده است. آن را امتحان می‌کنیم. در زیر، یک کوئری LINQ ساده بر روی مدل ایجاد شده را ملاحظه می‌کنید.
using (PersonDbEntities context = new PersonDbEntities())
{

    var people = from p in context.Persons
                 select p;

    foreach (Person person in people)
    {
        Console.WriteLine("{0}, {1}",
            person.LastName,
            person.FirstName);
    }

    Console.ReadLine();
}

قضیه به همین جا ختم نمی‌شود! ما الان یک مدل ارث بری شده داریم. بهتر است مزایای آن را در عمل ببینیم. شاید دوست داشته باشیم تا فقط اطلاعات زیر مجموعه‌ی BusinessStudent را بازیابی کنیم.
using (PersonDbEntities context = new PersonDbEntities())
{

    var students = from p in context.Persons.OfType<BusinessStudent>()
                 select p;

    foreach (BusinessStudent student in students)
    {
        Console.WriteLine("{0}, {1}: Degree {2}, Discipline {3}",
            student.LastName,
            student.FirstName,
            student.Degree,
            student.Discipline);
    }

    Console.ReadLine();
}

همان طور که در کدهای قبل نیز مشخص است، خصیصه‌های LastName و FirstName از موجودیت پایه یعنی Person، خصیصه‌ی Degree از موجودیت مشتق شده‌ی Student (که البته در نقش موجودیت پایه برای BusinessStudent است) و Discipline از موجودیت مشتق شده یعنی BusinessStudent خوانده می‌شوند.
یک روش دیگر نیز برای کار با این سلسه مراتب ارث بری وجود دارد. کوئری اول را دست نزنیم (اطلاعات موجودیت پایه را بازیابی کنیم) و پیش از انجام عملیاتی خاص، نوع موجودیت مشتق شده را بررسی کنیم. مثالی در این زمینه:
using (PersonDbEntities context = new PersonDbEntities())
{

    var people = from p in context.Persons
                 select p;

    foreach (Person person in people)
    {
        Console.WriteLine("{0}, {1}",
            person.LastName,
            person.FirstName);

        if (person is Student)
            Console.WriteLine("    Degree: {0}",
                ((Student)person).Degree);
        
        if (person is BusinessStudent)
            Console.WriteLine("    Discipline: {0}",
                ((BusinessStudent)person).Discipline);
    }

    Console.ReadLine();
}

مزایای روش TPT
  • امکان نرمال سازی سطح 3 در این روش به خوبی وجود دارد
  • افزونگی در جداول وجود ندارد.
  • اصلاح مدل آسان است (برای اضافه یا حذف کردن یک موجودیت به/از مدل فقط کافی است تا جدول متناظر با آن را از پایگاه داده حذف کنید)
معایب روش TPT
  • سرعت عملیات CRUD (ایجاد، بازیابی، آپدیت، حذف) داده‌ها با افزایش تعداد موجودیت‌های شرکت کننده در سلسله مراتب ارث بری کاهش می‌یابد. به عنوان مثال، کوئری‌های SELECT، حاوی عبارت‌های JOIN خواهند بود و عدم توجه صحیح به کوئری نوشته شده می‌تواند منجر به حضور چندین عبارت JOIN که برای ارتباط بین جداول به کار می‌رود در اسکریپت تولیدی و کاهش زمان اجرای بازیابی داده‌ها شود.
  • تعداد جداول در پایگاه داده زیاد می‌شود

در قسمت بعد با روش TPH آشنا می‌شوید.